粉煤灰/Al合金复合材料的制备及摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝合金基复合材料中研究最多的增强体有SiC、SiO2、Al2O3等颗粒,这些增强体一般都有尖锐的棱角,在受应力的作用下易引起应力集中,球形增强体以其优良的抗应力特性而得到广泛地关注。本文选择工业废弃物粉煤灰作为增强体,不仅提高铝合金复合材料性能,降低其成本,还能将粉煤灰变废为宝,达到以废治废的目的。课题首先通过酸溶法对粉煤灰进行表面改性,制得与铝合金基体相容性好的粉煤灰颗粒,然后采用粉未冶金法成功地制备了粉煤灰/Al合金复合材料,并对粉煤灰的最佳改性工艺及不同含量粉煤灰增强铝合金复合材料的制备工艺、密度、硬度、界面反应、微观结构、摩擦磨损性能及摩擦机理进行了研究。研究结果表明:
     (1)与盐酸和硝酸相比,硫酸改性粉煤灰效果最好,其最佳改性条件为浓度10mol/L硫酸溶液在常温下改性15h。
     (2)用粉末冶金法可以制备出密度较小、硬度较大的粉煤灰/A1合金复合材料。复合材料的密度随着粉煤灰质量分数的增加而减小,硬度先升高后减小,密度和硬度都随着烧结温度的升高而增大。
     (3)在不同烧结温度下,粉煤灰与铝合金基体均发生一定界面反应,生成有利于界面结合的MgO、MgAl2O4、Mg2Si等新生相。
     (4)复合材料的摩擦磨损性能均优于铝合金基体。复合材料的磨损量随着粉煤灰掺量的增加而减小,随载荷和磨损时间增大而增大;摩擦系数随粉煤灰掺量、载荷的增加先减小后趋于稳定然后增大,随摩擦磨损时间延长而增大。
     (5)粉煤灰/铝合金复合材料的主要磨损机制是粘着磨损、磨粒磨损,高载荷下出现剥层磨损。
     图34表4参75
The most reinforcements studied in particle-reinforced aluminum alloy matrix composites are SiC, SiO2, Al2O3, etc. These reinforcements usually have sharp edges and corners and under the effect of stress in the subject could easily cause stress concentration, among of which spherical reinforcements for its excellent anti-stress properties receive extensive attention. The fly ash reinforcement of industrial waste not only improve the performance of aluminum composites and lower cost, but also with making full use of the fly ash waste circularly can turn fly ash waste into treasure. To obtain the fly-ash particles which have good compatibility with aluminum matrix composites, the paper first by acid-dissolution method carries out surface modification, then successfully prepares fly ash/Al alloy composite materials visa using powder metallurgy method and researches the best modification process of fly ash and the preparation process, density, hardness, interfacial reaction, microstructure, friction and wear properties and friction mechanism of reinforced aluminum alloy composites of different fly ash content. The results show that:
     (1) Comparing with hydrochloric acid and nitric acid, the effect of sulfuric acid-modified fly ash is the best, and the optimum conditions for modification is 10mol/L sulfuric acid solution at room temperature 15h.
     (2) A method of powder metallurgy can be prepared relatively small density and hardness greater composite materials. with the mass fraction of fly ash increasing, the density of composite decreases and the hardness value first increases and then decreases. As the sintering temperature increases, the density and hardness grows up.
     (3) At different sintering temperatures, fly ash and aluminum alloy matrix after interfacial reaction produces new substances, which are beneficial to interfacial bonding, MgO, MgAl2O4, Mg2Si and so on.
     (4) Friction and wear properties of composites are superior to aluminum alloy matrix. The wear volume of composites decreases with the fly ash increasing and increases accompanying that the load and wear time increases. The friction coefficient, with the increase in fly ash content and load, first decreases, then tends to stable and again decreases and the friction coefficient also decreases by extending the wear of time.
     (5) The main wear mechanism of fly ash/aluminum composite materials is adhesive wear, abrasive wear. The delamination wear occurs at high load.
     Figure 34 table 4 reference 75
引文
[1]李建超等.铸造铝合金圆锭温场试验研究和数值模拟[J].特种铸造及有色合金,2006,(6):337-339
    [2]吴林丽等.粉煤灰颗粒HF表面改性处理[J].有色矿冶.2004,20(5):37-41
    [3]Rohatgi P K etal. Friction and wear of metal-ma-trix composites [A]. In:ASM Metals Handbook [M].2001:801-811
    [4]Deuis R L etc. Dry sliding wear of aluminum composites—A review [J]. Composites Science and Technology,1997,57:415-435
    [5]Zhang J, Alpas A T. Wear regimes and transitions in Al2O3 particulate-reinforced aluminum-alloys [J]. Materials Science and Engineering A,1999,161:273-284
    [6]蒋爱蓉等.粉煤灰微珠增强铝基复合材料的研究[J].铸造,2008,57(7):671-677
    [7]李月英等.Al2O3-SiO2颗粒增强铝基复合材料的摩擦磨损特性[J].材料科学与工艺,2003,11(2):140-143
    [8]王庆平等.粉煤灰颗粒增强铝基复合材料的研究[J].特种铸造及有色合金,2007,27(5):344-346
    [9]陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究[J].兵器材料科学与工程,1999,22(4):32-34
    [10]Eisenmenger etc. Solid-state wetting and spreading of tin(Sn) on aluminium interfaces[J]. Vacuum,2003,71:25-3259
    [11]Hashim J etc. The enhancement of wettability of SiC particles in cast aluminium matrix composites[J]. Journal of Materials Processing Technology,2001,119:329-335
    [12]白芸等.铝基复合材料性能的研究现状[J].材料保护,2003,36(9):5-8
    [13]阴瑜娟等.原位生成铝基复合材料增强相的研究现状[J].热加工工艺,2006,35(17):70-73
    [14]Ramachandra M, Radhakrishna K. Effect of reinforcement of flyash on sliding wear slurry erosive wear and corrosive behavior of aluminium matrix composite[J]. Science Direct, 2007,262:1450-1462
    [15]王宝顺等.SiCp/Al复合材料-半金属刹车材料干摩擦磨损性能研究[J].材料工程,2007,(6):7-14
    [16]刘静安等.铝合金材料的应用与技术开发[M].冶金工业出版社,2004
    [17]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996:11-175
    [18]CHEN Zhenzhong etc. The role of particles in fatigue crack propagation of aluminum matrix composites and casting aluminum alloys[J]. J.Mater.Sci.Technol,2007,23(2): 213-216
    [19]张强等.高体积分数SiCp/Al复合材料的微观组织与导热性能[J].材料科学与工艺,2006,14(5):474-477
    [20]耿桂宏等.真空微重力熔炼高锂含量铝锂合金[J].特种铸造及有色合金,2006,26(11):750-752
    [21]张士佼等.压铸铝铁合金的组织与性能[J].特种铸造及有色金属,2007,27(9):698-700
    [22]陈子勇等.高强铸造铝合金显微组织与力学性能的研究[J].材料科学与工艺,2007,15(5):718-722
    [23]白朴存等.A12O3/Al复合材料的界面结构特征[J].复合材料学报,2008,25(1):88-92
    [24]TAMEROzben etc. Investigation of mechanical and machinability properties of SiC particle reinforced A1-MMC[J]. Journal ofMaterials ProcessingTechnology,2008,98:220-225
    [25]董天顺等.纤维增强铝基复合材料的发展现状[J].热加工工艺,2006,35(6):49-55
    [26]于春田等.金属基复合材料[M].北京:冶金工业出版社,1995:105
    [27]平延磊等.SiCp/Al复合材料的研究方法现状[J].粉末冶金技术,2005,23(4):296-299
    [28]袁广江等.SiC颗粒增强铝基复合材料制备及机加性能研究[J].复合材料学报,2000,17(2):38-41
    [29]VALDEZ S. Synthesis andmicrostructural characterization of Al-Mg alloy-SiC particle composite[J]. Mat.Lett.doi,2008:2
    [30]孟宪云等.半固态复合熔铸过程中SiC与2A1 1合金的润湿性[J].中国有色金属学报,2001,11(2):77-80
    [31]王晓阳等.粉末冶金法制备Al/SiC电子封装材料及性能[J].电子与封装,2007,7(5):9-11
    [32]钟鼓等.高SiCp或高Si含量电子封装材料研究进展[J].材料导报,2008,22(2):13-17
    [33]程南璞等.SiCp/Al复合材料的显微结构分析[J].稀有金属材料与工程,2007,36(4):602-606
    [34]Scala E P. A brief history of composites in the U.S-the dream and the success[J]. JOM, 2000,48(2):45
    [35]Guo-RQ, Rohctgi-PK. Chemical reactions between aluminum and fly ash during synthsis and reheating of Al-fly ash composite[J]. Metall.Mater Trans, Process Metall.and Mater.Processing Sci.,1998,29B (3):519
    [36]张大童等.铝基复合材料研究进展[J].轻合金加工技术,2000,28(1):5-9
    [37]王荣国等.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,2001:1-125
    [38]于志强等.亚微米A1203颗粒表面稀土改性对A1基复合材料界面润湿性的影响[J].2005,15(7):1087-1091
    [39]刘海.机械搅拌法制备SiC颗粒增强铝基复合材料技术研究[D].重庆大学硕士论文,2007
    [40]MONDOLFO.L.F. Aluminium Alloy Structureand Properties[M]. London:Butterworths, 1996
    [41]SUKUMARANK etc. J.Mater.Sci.1995,30:1469-1472
    [42]赵鸿.铝在汽车上的应用[J].汽车工艺与材料,1997,(1):19-24
    [43]朱静,吴丰昌.改性粉煤灰在处理锑矿选矿废水中的应用[J].环境科学学报,2010,30(2)
    [44]张慧弟等.粉煤灰表面改性技术的研究[J].煤化工,2008,(1):47
    [45]Mangialardi T. Disposal of MSWI Fly Ash Through a Combined Washing Immobilization Process[J]. Journal of Hazardous Materials,2003, B98:225-240
    [46]马阁.改性粉煤灰及其对垃圾渗滤液吸附性研究[D].郑州大学硕士论文,2006:5
    [47]卢素焕等.粉煤灰在废水处理中的应用[J].电力情报,1998(2): 27-30
    [48]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,1997
    [49]于秀华等.粉煤灰改性技术综述[J].中国非金属矿工业导刊,2009,(1):26-27
    [50]杨林锋等.酸改性粉煤灰去除污水中磷的试验研究[J]].粉煤灰综合利用,2006,(3):18-20
    [51]李松等.改性粉煤灰处理校园生活污水的研究[J].能源环境保护,2007,21(1):36-40
    [52]律海波,崔俊华.改性粉煤灰处理生活污水的试验研究[J].粉煤灰综合利用,2007,(2):44-45
    [53]杨静,刘心悦.粉煤灰预处理及其对染料单体脱色效果的研究[[J].煤矿环境保护,2002,16(4):18-22
    [54]李尉卿等.粉煤灰漂珠活化处理废水的研究[J].科学研究,2002,2:11-13
    [55]王敏欣等.无机改性粉煤灰对模拟染料废水吸附脱色的作[J].黑龙江矿业学院学报,2000,10(3):13-19
    [56]李晓湘.利用粉煤灰研制高效无机混凝剂聚硅酸铝[J].环境工程,2002,20(1):51
    [57]金东日等.改性粉煤灰的制备及表征[J].粉煤灰综合利用,2006,(1):26-27
    [58]朱洪涛.改性粉煤灰对活性艳兰染料吸附性能的研究[J].环境污染治理技术与设备,2005,6(3):53-55
    [59]于晓彩等.改性粉煤灰处理阴离子表面活性剂废水[J].东北大学学报(自然科学版),2005,26(4):401-404
    [60]刘延湘等.粉煤灰在废水处理中的应用[J].汉江大学学报(自然科学版),2002,12(4):80-83
    [61]朱洪涛等.用粉煤灰及过氢化氢联合处理印染废水[J].华北电力大学学报,2002,29(3):89-92
    [62]伍文波等.利用废铁屑和粉煤灰的电化学原理处理印染废水的方法研究[J].中国环境监测,2003,19(1):47-49
    [63]唐守清.粉煤灰的物理、化学性能及其应用技术研究[J].福建建材,2003,(4):58-60
    [64]李彩霞等.热重分析在粉煤灰化学改性效果评价中的应用[J].有色冶矿,2006,22:103
    [65]Iyer R S, Scott J A.. Power station fly ash—A review of value-added utilization outside of the construction industry[J]. Resources Conservation and Recycling,2001,31:217-228
    [66]刘银辉,粉煤灰预处理及其应用[J].北京工业大学学报,1999,25(3)
    [67]邵谭华等.材料工程基础[M].西安交通大学出版社,2000,3:235
    [68]刘政等.氧化铝短纤维增强铝合金复合材料界面的研究[J].复合材料学报,1991,8(4):26
    [69]Janowski G M, P letkaB J. Material Science and Engineering,1990, A29:65
    [70]周曦亚等.A12O3/Al复合材料氧化生长的动力学研究[J].复合材料学报,1997,14(3):9
    [71]李荣久.陶瓷-金属复合材料[M].冶金工业出版社,2004:10
    [72]Wilson S, Alpas A T. Wear mechanism map for metal matrix composites[J]. Wear,1997, 212:41-49
    [73]李月英等.飞灰颗粒增强铝基复合材料的摩擦与磨损特性[J].复合材料学报,2003,20(6)
    [74]丁志鹏.碳纳米管/铝基复合材料制备及摩擦性能研究[D].浙江大学硕士论文,2005,1
    [75]侯丽丽等.铝基复合材料的研究现状及发展[J].材料热处理技术,2008,37:10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700