牛血清白蛋白与槲皮素和莱菔硫烷相互作用模式及纳米颗粒形成的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛血清白蛋白(Bovine serum albumin, BSA)与槲皮素(Quercetin, QUE)和莱菔硫烷(Sulforaphane, SFN)的相互作用及形成纳米颗粒的机理以及影响因素的研究对于生物活性大分子与生物小分子的相互作用方式、纳米颗粒的形成及其功能改变具有一定理论和实际意义。前期实验研究表明10%二甲基亚砜(Dimethyl sulfoxide, DMSO)中的S=O基团可能在BSA-QUE纳米颗粒的形成过程中起重要作用。本文首先研究了水(Deionized water, dH2O)、10%二甲基亚砜和10%乙醇(Ethanol,EtOH)等三种不同溶液对BSA与QUE相互作用及形成纳米颗粒的影响,从而验证S=O基团在纳米颗粒形成过程中的作用。我们还选择了一个含有S=O基团的生物小分子莱菔硫烷,研究其与BSA的相互作用机理以及形成纳米颗粒的特征,同时也比较研究了BSA-SFN在dH2O、10%DMSO和10%EtOH等三种不同溶液中相互作用机理及形成纳米颗粒特征,进一步阐明S=O基团在纳米颗粒的形成过程中的作用。最后研究了在dH2O、10%DMSO和10%EtOH三种不同溶液中BSA纳米载体对QUE和SFN的结合量和稳定性的影响。具体研究结果如下:
     QUE对BSA有较强的荧光淬灭作用,且为静态与动态并存的复合猝灭方式,相互作用力为疏水作用力和氢键,BSA的酪氨酸和色氨酸残基同时参与与QUE的相互作用,且QUE均结合在BSA的亚结构域HA即Site I处。在三种溶液中BSA与QUE的相互作用方式没有改变。但在三种溶液中,BSA与QUE的结合常数和结合位点数由大到小依次为:dH2O>10%DMSO>10%EtOH,结合距离由大到小依次为:10%EtOH>10%DMSO>dH2O。根据结合距离的大小可知,结合作用由强到弱依次为dH2O>10%DMSO>10%EtOH。纳米颗粒粒径由大到小依次为:10%EtOH (50-55nm)>dH2O (40-45nm)>10%DMSO(10-15nm).结合量由大到小依次为:dH20(17摩尔)>10%EtOH(15摩尔)>10%DMSO(6摩尔)。在10%DMSO中,DMSO的S=O基团具有很强的夺氢能力,能破坏BSA肽链骨架α-螺旋中的氢键,α-螺旋的消失使得更多的疏水基团暴露,一方面BSA分子之间发生疏水聚集形成更致密、粒径较小的球形颗粒,同时导致结合QUE的面积减少,结合QUE量较少。而在dH20和10%EtOH中,α-螺旋结构含量降低,疏水性基团暴露较少,因此粒径和结合量较大。此外,在dH20和10%EtOH中,QUE与BSA的结合使得BSA的二硫键构型由ggg变为ggt,但在10%DMSO中二硫键构型没有改变。因为10%DMSO中的两个甲基可以与BSA优先结合而避免BSA的二硫键构型发生变化,从而使得BSA的构象变化小,进而导致结合的QUE的量较少。DMSO中S=O基团和甲基的存在有利于形成粒径较小的BSA-QUE纳米颗粒。
     SFN对BSA有较强的荧光淬灭作用,且为静态猝灭方式,相互作用力为氢键和范德华力以及疏水作用力,BSA的酪氨酸和色氨酸残基同时参与与SFN的相互作用。在三种溶液中BSA与SFN的相互作用方式没有改变。但在三种溶液中,BSA与SFN的结合常数和结合位点数由大到小依次为dH2O>10%DMSO>10%EtOH,自由能绝对值由大到小依次为10%EtOH>10%DMSO>dH2O。根据自由能绝对值的大小可知,结合作用由强到弱依次为:dH20>10%DMSO>10%EtOH。在三种溶液中BSA与SFN相互作用均能形成致密,分散性好的球形纳米颗粒,纳米颗粒粒径大小相似,分别为25-30nm。结合量由大到小依次为:dH2O(32摩尔)>10%EtOH(28摩尔)>10%DMSO(19摩尔)。在三种溶液中SFN的结合没有改变BSA的二硫键构型,因为10%DMSO中的甲基以及SFN中的S=O和N=C=S基团(S=O和N=C=S与BSA相互作用引起了BSA多肽链的收缩,拉近了肽链中的C=O和N-H,使它们形成新的氢键,生成了新的α-螺旋结构)稳定了BSA的构象,有利于水溶性SFN的结合,纳米颗粒的粒径没有明显差别。但在10%DMSO中,10%DMSO的S=O基团破坏了BSA的α-螺旋使得更多的疏水基团暴露,不利于水溶性SFN的结合,导致结合量较少。DMSO中的S=O基团,甲基和SFN中的S=O,N=C=S基团在BSA-SFN纳米颗粒的形成过程中起着重要作用。
     未结合与结合BSA的QUE对DPPH自由基清除能力没有显著性差异,与BSA结合的QUE的ABTS自由基清除率显著降低。QUE的抗氧化作用主要取决于其酚羟基,其中QUE的A环上的5-OH和7-OH以及B环上的3'-OH和4'-OH是主要的抗氧化基团。BSA与QUE的5-OH可以形成分子间氢键。因此,A环上的5-OH的屏蔽可能会导致QUE的自由基清除率降低。然而BSA-QUE对DPPH自由基清除率较低,所以BSA对QUE的屏蔽作用没有显现出来。未结合与结合BSA的QUE对DPPH和ABTS自由基清除能力在dH2O、10%DMSO、10%EtOH三种溶液中没有显著性差异。未结合与结合BSA的SFN对DPPH和ABTS自由基清除能力没有显著性差异,且在dH2O、10%DMSO、10%EtOH三种溶液中没有显著性差异。三种溶液中BSA纳米载体均对QUE和SFN的抗氧化性和氧化稳定性具有明显的保护作用,但是在不同溶液中保护作用有所不同,保护作用由大到小依次为:dH2O>10%EtOH>10%DMSO.造成差异的原因跟BSA与QUE和SFN形成纳米颗粒的结合量有关。
     总之,除了DMSO中的S=O基团外,DMSO中的甲基以及SFN中的活性基团S=O和N=C=S均对BSA-QUE和BSA-SFN纳米颗粒的形成以及特性有重要影响。但是DMSO中的S=O基团与SFN中的S=O基团对BSA结构的影响机制不同,DMSO中的S=O基团破坏BSA的α-螺旋结构,SFN中的S=O基团则能促使生成新的α-螺旋结构。
Interaction mode, nanoparticle formation and influencing factors of bovine serum albumin (BSA) with quercetin (QUE) and sulforaphane (SFN) will help us understand the interaction mechanisms, nanoparticle formation and functional changes of bioactive small molecules and biomacromolecules. Previous study indicated that S=O group of10%dimethyl sulfoxide (DMSO) might play an important role in the formation of BSA-QUE nanoparticles. This study investigated interaction mechanisms and nanoparticle formation of BSA and QUE in three solution systems of deionized water (dH2O),10%dimethyl sulfoxide (DMSO) and10%ethanol (EtOH) in order to verify the role of S=O group in the nanoparticle formation. Furthermore, a S=O containing bioactive small molecules, sulforaphane was selected study on influence of S=O group on BSA nanoparticle fonnation and the interaction mechanisms of BSA and SFN in three solution systems of dH2O,10%DMSO and10%EtOH. Furthermore, the binding capacity and stability of QUE and SFN bound by BSA nanoparticle in dH2O,10%DMSO and10%EtOH were evaluated. All the results are as follow:
     QUE had a great ability to quench BSA's fluorescence in both static and dynamic modes, and that hydrophobic interaction and hydrogen bonds played a dominant role for BSA and QUE interaction in dH2O,10%DMSO and10%EtOH. QUE interacted with BSA at both tyrosine (Tyr) and tryptophan (Tip) residues at site I corresponding to the pocket of subdomain IIA in three solution systems. The binding constant values and binding site numbers between BSA and QUE were in the order of dH2O>10%DMSO>10%EtOH. The binding distances were in the order of10%EtOH>10%DMSO> dH2O. Referred to the binding distance, the binding forces were in the order of dH2O>10%DMSO>10%EtOH. The particles diameter were in the order of10%EtOH (50-55nm)> dH2O (40-45nm)>10%DMSO (10-15nm). The binding capacities of1mole of BSA for QUE were in the order of17mole (in dH2O)>15mole (in10%EtOH)>6mole (in10%DMSO).10%DMSO contains a S=O group, which competed for the amide's hydrogens with the C=O groups of BSA and resulted in the disappearance of the α-helix, therefore, the partially unfolding of the polypeptide chain exposed the internal hydrophobic groups and thus promoted BSA aggregation and formed dense spherical particles by hydrophobic effects. Additionally, BSA aggregation reduced binding area and binding capacity with QUE. The combination of QUE and BSA only decreased the content of a-helical structure of BSA in dH2O and10%EtOH. BSA exposed a little hydrophobic group, and increased the particles diameter and binding capacity. Furthermore, the combination of BSA and QUE changed the disulfide bond configuration from ggg to ggt in dH2O and10%EtOH, but did not change in10%DMSO. Two methyl groups of10%DMSO can interact with BSA avoiding changes of two disulfide bond configuration, thus the conformational of BSA changed little and resulted in binding less QUE. Therefore, methyl group and S=O group of DMSO were favorable to forming the smaller size of BSA-QUE nanoparticles.
     SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both Tyr and Trp residues. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solutions. The binding constant values and binding site numbers were in a descending order of dH2O>10%DMSO>10%EtOH. The values of free energy change were in a descending order of dH2O>10%DMSO>10%EtOH, which indicated that the binding forces were in a descending order of dH2O>10%DMSO>10%EtOH. BSA interaction with SFN can form dense, good dispersibility and spherical nanoparticles with diameter less than30nm in three solution systems. The binding capacities of1mole of BSA for SFN were in the order of32mole (in dH2O)>28mole (in10%EtOH)>19mole (in10%DMSO). Two methyl groups of10%DMSO and S=O, N=C=S groups of SFN have an important role for stabilizing the two disulfide bond configuration of BSA that is better for water-soluble SFN binding with BSA and no significant difference in particles diameter of BSA-SFN in three solution systems. However S=O group of10%DMSO competed for the amide's hydrogens with the C=O groups of BSA and resulted in the disappearance of the a-helix, therefore, the partially unfolding of the polypeptide chain exposed the internal hydrophobic groups that will go against BSA binding with QUE, and decreased binding capacity of BSA. Therefore, S=O group of DMSO and S=O, N=C=S groups of SFN have an important role in the formation of BSA-SFN nanoparticles.
     No significant difference in DPPH radical scavenging rates between QUE and BSA-QUE was observed. While, the ABTS radical scavenging rate of QUE was significantly lower than the unbound QUE. No significant difference in antioxidant activity between QUE and BSA-QUE was observed in three solution systems. The-OH moieties of the QUE were very important for antioxidant activity, such as5,7-dihydroxylation at the A-ring and3',4'-dihydroxylation at the B-ring. The5-OH at the A-ring formed an intennolecular hydrogen bond with BSA, and thus the antioxidant activity decreased. Nevertheless, the DPPH radical scavenging rate of QUE was weak and accordingly the DPPH radical scavenging rate was not decreased. There was no significant difference in antioxidant activity between SFN and BSA-SFN. Moreover, three solutions had not significant influence on antioxidant activity of SFN and BSA-SFN. BSA nanocarrier had protection effect on the antioxidant activity and oxidation stability of QUE and SFN in dH2O,10%DMSO and10%EtOH, and the protection effect on the activity of QUE and BSA were in the order of dH2O>10%EtOH>10%DMSO. It inferred that this difference resulted from the binding capacity.
     In conclusion, both methyl, S=O groups of DMSO and S=O, N=C=S groups of SFN had an important role in the formation of BSA-QUE and BSA-SFN nanoparticles, while, the S=O group of DMSO and S=O group of SFN performed different functions, one destroyed a-helix, another generated new a-helix.
引文
崔艳花,郭春梅,孙明忠,郭一萌,鱼红闪,刘淑清.系列黄酮化合物与血清白蛋白结合及其结构相关性.中国生化药物杂志,2012,33(6):728-731.
    陈代武,谢青季,蒋雪琴,姚守拙.槲皮素与酪蛋白和牛血清白蛋白的相互作用及共存碳纳米管的影响.物理化学学报,2008,24(3):379-387.
    付彩霞,王继超,高宗华.锌离子对缓冲液中槲皮素和牛血清白蛋白相互作用的影响.化学研究,2012,23(1):60-63.
    方茹.三种蛋白-黄酮自组装纳米颗粒的制备和表征:[博士学位论文].北京:中国农业大学.2011.
    谷友刚.芝麻菜苷及其水解产物Erucin的分离纯化及体外抗氧化研究:[硕士学位论文].北京:北京化工大学.2012.
    郭建宇.拉曼光谱研究人血清白蛋白与药物的相互作用:[硕士学位论文].上海:华东师范大学.2004.
    郭建宇,孙真荣,吴良平,李荣秀,王祖赓.人血清白蛋白与3-氨甲基吡啶相互作用的拉曼光谱研究.光谱学与光谱分析,2006,26(3):460-462.
    韩冬.五种黄酮类化合物与牛血清白蛋白相互作用及金属离子和酒精的影响研究:[硕士学位论文].河北:河北医科大学.2010.
    黄威,田皎,赵楠,张国文.桑色素与溶菌酶相互作用的荧光光谱法研究.食品工业科技,2010,31(11):88-93.
    黄红娜,张丹参,张力,丁杰.纳米药物载体系统的研究.河北北方学院学报(医学版),2010,27(2):69-71.
    廖卫平,司芝坤.荧光光谱法研究槲皮素与牛血清白蛋白的相互作用.烟台大学学报(自然科学与工程版),2006,19(1):20-24.
    刘敏,朱兰英,曲秀葵,孙德志,林瑞森.丹皮酚及其两种同分异构体与牛血清白蛋白相互作用的热力学研究.化学学报,2007,65(16):1555-1560.
    刘帅涛.光谱法研究几种中药小分子与牛血清蛋白相互作用.[硕士学位论文].桂林:桂林理工大学.2012.
    李蔚博,张国文,潘军辉,赵楠.呋喃唑酮与牛血清白蛋白相互作用的荧光光谱.南昌大学学报(理科版),2010,34(6):566-570.
    吕鉴泉,舒韵,周娟,唐春燕,徐明波.荧光法研究钙离子存在下槲皮素与牛血清白蛋白的相互作用.化学与生物工程,2010,27(7):14-17.
    马君燕,陈克海,郑学仿,郭明,马静,唐乾,王玉莲,胡皆汉.秋水仙碱与人血清白蛋相互作用的谱学研究.光谱学与光谱分析,2007,27:2485-2489.
    孙蕾,刘晓瑞,景浩.三种有机酸对红豆越橘花青素的热稳定性研究.食品科技,2011,36(11):230-236.
    陶慧林,寿红娟,朱仕毅.3种黄酮类小分子与牛血清白蛋白间相互作用及其构效关系的研究.广 西科学院学报,2010,26(3):338-342.
    肖倩,梁浩,袁其朋.温度、pH值和光照对莱般硫烷稳定性的影响.中国药学杂志,2007,(40):898-909.
    肖建波.多酚类化合物与血清白蛋白相互作用的结构-结合力关系、理论模型和应用研究.[博士学位论文].长沙:中南大学.2009.
    武花花.包埋技术在天然产物中的应用研究:[硕士学位论文].北京:北京化工大学.2010.
    王荣,赵文华,贾风燕,刘振波,刘永明,索掌怀.不同羟基数目黄酮类药物与牛血清蛋白间相互作用.烟台大学学报(自然科学与工程版),2011,24(1):34-38.
    谢余寰.酚酸类及生物碱类药物小分子和牛血清蛋白相互作用研究:[硕士学位论文].广西:广西师范大学.2008.
    许明.苦荞黄酮类化合物的稳定性及其与胰蛋白酶相互作用的研究:[硕士学位论文].山西:山西大学.2013.
    于竹青,董社英,黄廷林,郑建斌.不同pH条件下槲皮素与牛血清白蛋白相互作用的电化学研究.化学世界,2010,51(3):135-139.
    苑莉莉,胡弯弯,张业中,戴捷.槲皮素与牛血清白蛋白相互作用的研究.化学世界,2013,54(2):83-87.
    张国文,陈秀霞.荧光法研究3种黄酮化合物与牛血清白蛋白的结合作.南昌大学学报(工科版),2010,32(2):140-144.
    张霞.几种药物小分子与牛血清白蛋白相互作用的光谱法研究:[硕士学位论文].江西:南昌大学.2007.
    邹淑君,许树军,董黎明,徐旸,马英丽.光谱法比较木犀草素及槲皮素与牛血清白蛋白相互作用.光谱实验室,2013,30(6):2870-2877.
    赵红辉.类黄酮与胰蛋白酶相互作用特性的研究:[硕士学位论文].广东:华南理工大学.2012.
    Abassi P., Mohajerani N., Abassi R, Yari F., Hashemi M., Nafisi S. Study on the interaction of sulforaphane with human and bovine serum albumins. Journal of Photochemistry and Photobiology, 2013,122:61-67.
    Adenugba A. A., Mcmartin D. W., Bec A. J. In vitro approaches to assess bioavailability and human gastrointestinal mobilization of food-borne polychlorinated biphenyls (PCBs). Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2008,43:410-421.
    Ackermann K. R., Koster J., Schliicker S. Conformations and vibrational properties of disulfide bridges: Potential energy distribution in the model system diethyl disulfide. Chemical Physics,2009,355: 81-84.
    Arnedo A., Espuelas S., Irache J. M. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. International Journal of Pharmaceutics,2002,244:59-72.
    Arakawa T., Kita Y., Timasheff S. N. Protein precipitation and denaturation by dimethyl sulfoxide. Biophysical Chemistry,2007,131:62-70.
    Baneres J., Mesnier D., Martin A., Joubert L., Dumuis A., Bockaert J. Molecular Characterization of a Purified 5-HT4 Receptor. Journal of Biological Chemistry,2005,280:20253-20259.
    Banerjee P., Pramanik S., Sarkar A., Bhattaeharya S. C. Deciphering the fluoreseence resonance energy transfer signature of 3-pyrazolyl 2-pyrazoline in transport proteinous environment. The Journal of Physical Chemistry B,2009,113:11429-11436.
    Bettina M. E., Loitseh S. M., Steinhilber D. et al. Isothiocyanate sulforaphane inhibits protooncogenic ornithine decarboxylase activity in colorectal cancer cells via induction of the TGFβ/SMAD signalling pathway. Gastroenterology,2010,138:S-42.
    Bischoff S. C. Quercetin:Potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care,2008,11(6),733-740.
    Bolel P., Mahapatra N., Halder M. Optical spectroscopic exploration of binding of cochineal red A with two homologous serum albumins. Journal of Agricultural and Food Chemistry,2012,60 (14): 3727-3734.
    Boddohi S., Moore N., Johnson P. A., Kipper M. J. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules,2009,10:1402-1409.
    Bermudez-Soto M., Tomas-Barberan F. & Garcia-Conesa M. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry,2007, 102:865-874.
    Bhattacharjya S., Balaram P. Effects of organic solutions on protein structures:observation of a structured helical core in hen egg-white lysozyme in aqous dimethylsulfoxide. Proteins,1997,29: 492-507.
    Cui F. L., Wang J. L., Cui Y. R., Li J. P. Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N'-(1-naphthyl) thiourea and serum albumin:Synchronous fluorescence determination of serum albumin. Analytica Chimica Acta,2006,2:175-183.
    Cui F. L., Fan J., Li J. P., Hu Z. D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazie and serum albumin:investigation by fluorescence spectroscopy. Bioorganic & Medicinal Chemistry,2004,12(1):151-157.
    Cheng Z. J. Comparative studies on the interactions of honokiol and magnolol with human serum albumin. Journal of Pharmaceutical and Biomedical Analysis,2012,66:240-251.
    Chen C. Y., Ma M. H., Zhang J. Q., Wang L. C., Xiang B. R. Spectroscopic investigation of the interaction of bovine serum albumin with a novel cardiac agent V-09. Journal of Spectroscopy, 2008,22(1):43-50.
    Chen M. C, Lord. R. C. Laser-Excited Raman Spectroscopy of Biomolecules. Ⅷ Conformational Study of Bovine Serum Albumin. Journal of the American Chemical Society,1976,98:990-992.
    Deng F. Y., Liu Y. Study of the interaction between tosufloxacin tosylate and bovine serum albumin by multi-spectroscopic methods. Journal of Luminescence.2012,132:443-448.
    Espanol M., Perez R. A., Montufar E. B., Marichal C., Sacco A., Ginebra M. P. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomaterialia,2009,5:2752-2762.
    Fang R., Jing H., Chai Z., Zhao G. H., Stoll S., Ren F. Z., Liu F., Leng X. J. Design and characterization of protein-quercetin bioactive nanoparticles. Journal of Nanobiotechnology, 2011,9(1):19-32.
    Fang R., Hao R. F., Wu X., Li Q., Leng X. J., Jing H. Bovine serum albumin nanoparticle promotes the stability of quercetin in simulated intestinal fluid. Journal of Agriculture and Food Chemistry. 2011,59,6292-6298.
    Forster T. Modern quantum chemistry. New York:Academic Press,1965.
    Gong A., Zhu X., Hu, Y., Yu, S. A fluorescence spectroscopic study of the interaction between epristeride and bovine serum albumin and its analytical application. Talanta,2007,73:668-673.
    Guo X. J., Han X. W., Tong J., Guo C., Yang W. F., Zhu J. F., Fu B. The investigation of the interaction between piracetam and bovine serum albumin by spectroscopic methods. Journal of Molecular Structure,2010,966:129-135.
    Huang B. X., Kim H. Y. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. Journal of America Society for Mass Spectrometry,2004,15: 1237-1247.
    Jones R. B., Frisina C. L., Winkler S. et al. Cooking method significantly effeets glucosinolate content and sulforaphane production in broccoli florets. Food Chemistry,2010,123:237-242.
    Kandori K., Toshima S., Wakamura M., Fukusumi M., Morisada Y. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior. The Journal of Physical Chemistry B,2010,114:2399-2404.
    Kita Y., Arakawa T., Lin T-Y., Timasheff S. N. Contribution of the surface free energy perturbation to protein solution interactions. Biochemistry,1994,33:15178-15189.
    Kalyan S. G., Bijaya K. S., Swagata D. Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme. Chemical Physics Letters,2008,452:193-197.
    Khan A.Y., Hossain M., Kumar G.S. Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins. Chemosphere,2012,87,775-781.
    Liu Z. H., Jiao Y. P., Wang Y. F., Zhou C. R., Zhang Z.Y. Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews,2008,60:1650-1662.
    Li F. Q., Sua H., Wang J., Liu J. Y., Zhua Q. G., Fei Y. B., Pan Y. H., Hu J. H. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. International Journal of Pharmaceutics,2008,349:274-282.
    Lin H., Lan J. F., Guan M., Sheng F. L., Zhang H. X. Spectroscopic investigation of interaction between mangiferin and bovine serum albumin. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2009,73:936-941.
    Lu W., Zhang Y., Tan Y. Z., Hu K. L., Jiang X. G., Fu S. K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. Journal of Controlled Release,2005,107: 428-448.
    Liang M., Chen V., Chen H., Chen W. A simple and direct isolation of whey components from raw milk by gel filtration chromatography and structural characterization by Fourier transform Raman spectroscopy. Talanta,2006,69:1269-1277.
    Ma K., Chen X. Q., Chen J. W. Study on the interaction of three flavones with BSA by means of fluorescence spectroscopy. Chinese Journal of Spectroscopy Laboratory,2008,25:662-668.
    Michnik A., Drzazga Z. Effect of ethanol on the thermal stability of human serum albumin. Journal of Thermal Analysis and Calorimetry,2007,88:449-454.
    Mitra A., Nan A. J., Line B. R., Ghandehari H. Nanocarriers for nuclear imaging and radiotherapy of cancer. Current Pharmaceutical Design,2006,12:4729-4749.
    Maghsoudi A., Shojaosadati S. A., Farahani E. V.5-Fluorouracil-loaded bsa nanoparticles:formulation optimization and in vitro release study. Aaps Pharm SciTech,2008,9:1092-1096.
    MaHam A. H., Tang Z. H, Wu H., Wang J., Lin Y. H. Protein-based nanomedicine platforms for drug delivery. Small,2009,5:1706-1721.
    Moghimi S. M., Hunter A. C., Murray J. C. Nanomedicine:current status and future prospects. Faseb Journal,2005,19:311-330.
    Musialik M., Kuzmicz R., Pawlowski T. S. & Litwinienko G. Acidity of Hydroxyl Groups:An overlooked influence on antiradical properties of flavonoids. Journal of Organic Chemistry,2009, 74:2699-2709.
    Nie S. M., Xing Y., Kim G. J., Simons J. W. Nanotechnology applications in cancer. Annual Review Biomedical Engineering,2007,9:1221-1232.
    Ni Y., Zhang X., Kokot S. Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2009,71:1865-1872.
    Ou W., Wang R. S., Zhou H., M. Conformational changes and inactivation of rabbit muscle creatine kinase in dimethyl sulfoxide solutions. Biochemistry and cell biology,2002,80:427-434.
    Qin Y., Zhang Y. X., Yan S. L., Ye L. A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern-Volmer equation. Spectrochimica Acta Part A-Molecular and Biomolecular spectroscopy,2010,75:1506-1010.
    Peters T. Serum albumin. Advances in Protein Chemistry,1985,37:161-245.
    Papadopoulou A., Green R. J., Richard A. Frazier interaction of flavonoids with bovine serum albumin: a fluorescence qnching study. Journal of Agricultural and Food Chemistry,2005,53:158-163.
    Rawel H. M., Meidtner K., Kroll J. Binding of selected phenolic compounds to proteins. Journal of Agricultural and Food Chemistry,2005,53,4228-4235.
    Roy A. S., Tripathy D. R., Chatterjee A., Dasgupta, S. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2013),102:393-402.
    Ross P. D., Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry,1981,20:3096-3102.
    Rogers D. M., Hirst J. D. First-principles calculations of protein circular dichroism in the near ultraviolet. Biochemistry,2004,43:11092-11102.
    Sandhya B., Hegde A. H., Kalanur S. S., Katrahalli U., Seetharamappa J. Interaction of triprolidine hydrochloride with serumal bumins:thermodynamic and binding characteristics, and influence of site probes. Journal of Pharmaceutical and Biomedical Analysis,2011,54:1180-1186.
    Sreerama N. & Woody R. Computation and analysis of protein circular dichroism spectra. Methods in Enzymology,2004,383:318-351.
    Sun C. X., Yang J. H., Wu X., Huang X. R., Wang F., Liu S. F. Unfolding and Refolding of Bovine Serum Albumin Induced by Cetylpyridinium Bromide. Biophysical Journal,2005,88:3518-3524.
    Shidhaye S. S., Vaidya R., Sutar S., Patwardhan A. Kadam V. J. Solid Lipid Nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Current Drug Delivery, 2008,5:324-331.
    Santhi K., Dhanaraj S. A., Koshy M., Ponnusankar S., Suresh B. Study of biodistribution of methotrexate-loaded bovine serum albumin nanospheres in mice. Drug Development and Industrial Pharmacy,2000,26:1293-1296.
    Tian J., Zhao Y., Liu X., Zhao S. A steady-state and time-resolved fluorescence,circular dichroism study on the binding of myricetin to bovine serum albumin. Luminescence,2009,24:386-393.
    US Pharmacopeia ⅩⅩⅣ,2000. The United States Pharmacopoeia Convention, Inc., Rockville, MD
    Van D. W. H., Gliszczynska-Swiglo A., Struijs K., Smeets A., Alink G. M. & Rietjens I. M. C. M. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Letter,2003,200:41-47.
    Wu Q., Jiang F. L., Li C. H., Hu Y. J., Liu Y. Interaction of caffeine with bovine serum albumin: determination of binding constants and the binding site by spectroscopic methods. Chinese Journal of Chemistry,2011,29:433-440.
    Weert M. V. D. Fluorescence quenching to study protein-ligand binding:common errors. Journal of fluorescence,2010,20:625-629.
    Xiao J. B., Suzuki M., Jiang X.Y., Chen X. Q., Yamamoto K., Ren F. L., Xu M. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. Journal of Agricultural and Food Chemistry,2008,56:2350-2356.
    Ye H. Z., Qiu B., Lin Z. Y., Chen G. N. Fluorescence spectrometric study on the interaction of tamibarotene with bovine serum albumin. The journal of Biological and Chemical Luminescence, 2011,26:336-341.
    Ye Z. W., Ying Y., Yang X. L., Zheng Z. Q., Shi J. N., Sun Y. F., Huang, P. A spectroscopic study on the interaction between the anticancer drug erlotinib and human serum albumin. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2014,78:405-413.
    Yang J, Jing Z. H., Jie J. J., Guo P. Fluorescence spectroscopy study on the interaetion between gossypol and bovine serum albumin. Journal of Molecular Structure,2009,920:227-230.
    Zheng N, Bucheli P, Jing H. Effects of casein-and whey protein-dextran conjugates on the stability of bog bilberry anthocyanin extract. International Journal of Food Science and Technology,2009,44: 1452-1458.
    Zheng Y., Haworth I., Zuo Z., Chow M., Chow A. Physicochemical and structural characterization of Q-β-Cyclodextrin Complexes.journal of pharmaceutical sciences,2005,94:1079-1089.
    Zhang G. W., Wang L., Pan J. H. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. Journal of Agricultural and Food Chemistry,2012,60: 2721-2729.
    Zu Y. G., Zhang Y., Zhao X. H., Zhang Q., Liu Y., Jiang R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folateconjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). International Journal of Nanomedicine,2009,4:321-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700