新型共掺杂TiO_2在造纸废液处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,纳米二氧化钛作为一种性能较好的光催化材料,已经应用于水和空气的净化、细菌和病毒的破坏等领域,成为众多研究者在治理环境污染方面所关注的热点。但目前依然存在的主要问题是:TiO2光催化剂对光的吸收范围狭窄,主要集中在紫外光区,对可见光基本无光催化活性;半导体载流子复合效率高,量子效率低,因而很难在实际中得到广泛应用。为此,为了提高TiO2的可见光催化活性,近年来国内外学者对TiO2的改性进行了大量的研究。本研究以钛酸四丁酯为前驱体,采用溶胶-凝胶法(Sol-Gel)制备了TiO2、F-Zn及La-B共掺杂的TiO2,并利用XRD、UV-Vis、SEM对样品进行了表征,使用500W高压氙灯为光源(模拟太阳光),以甲基橙(40mg/L)溶液模拟染料废水为目标降解物,考察了样品在不同掺杂量配比和焙烧温度下的光催化性能,并且对TiO2光催化氧化技术在实际造纸废液处理中的应用进行了研究。结果表明:
     (1)经F、Zn掺杂改性后的TiO2样品光催化降解率均得到了不同程度的提高,尤其500℃煅烧制得的F(0.5%)/Zn(1.0%)/TiO2表现出最好的光催化活性,对甲基橙的降解率可达75.8%,分别是活性最好的TiO2(500℃), F(0.5)/TiO2, Zn(1.0%)TiO2的1.81倍、1.34倍和1.31倍。
     (2)500℃焙烧制得的La(0.05%)/B(2.0%)/TiO2表现出最好的光催化活性,对甲基橙的降解率可达92.0%,分别是活性最好的TiO2(500℃焙烧),La(0.05)/TiO2, B(2.0%)TiO2的2.20倍、1.12倍和1.45倍,综合比较来看,各TiO2样品的可见光光催化活性高低顺序为:La(0.05%)/B(2.0%)/TiO2>La(0.1%)TiO2>F(0.5%)/Zn(1.0%)/TiO2>B(2.0)/TiO2>TiO2。因此可确定的最佳掺杂改性制备条件,即La、B的最佳掺杂量分别为0.05%、2.0%,最佳焙烧温度为500℃。
     (3)在造纸废液的处理研究中,采用光催化效果最佳的0.05%La/2.0%B/TiO2样品进行单因素实验研究发现,溶液中的pH、光催化剂用量、光照时间和H2O2添加量对TiO2光催化降解污染物降解速率均有显著影响。利用正交试验探讨出造纸废液光催化降解的最佳工艺条件为:pH=7,TiO2用量为3g/L,H2O2添加量为1.25mL/L,光照时间150min。使用500W氙灯为光源,此条件下COD去除率可达到86.5%。
     XRD分析表明在同等条件下对TiO2样品进行掺杂改性后有效的减小了样品的晶粒尺寸,抑制了TiO2晶型由锐钛矿向金红石相的改变。同时,UV-Vis图谱表明了掺杂改性提高了TiO2样品在可见光下的光催化活性。
At present, nano-TiO2 photocatalyst is a good photocatalysis material. It has been applied to water, air purification and the destruction of bacteria and viruses. A large number of researchers focus their attention on it with regard to environmental pollution. However, it has some problems. The wave band for light absorption mainly focused on the rage of ultraviolet radiation, while it is out of work in the visible light region. Recombining rate of electron and hole in the semiconductor is high and quantum efficiency is low. It is difficult to be widely used in practice. In order to enhance the photocatalytic efficiency of TiO2 in the visible light region, tetrabutyl titanate was as precursors and sol-gel method was applied in this study to make TiO2, TiO2 mixed with F-Zn and La-B. Also XRD, UV-Vis and SEM analysis on specimen were carried out. By using xenon lamp of 500W as light resource (simulate sunlight). Methyl orange (40mg/L) solution which is to simulate dye wastewater as the goal degradation production, the photocatalysis performance of specimen were investigated under different mixture ratio and sintering temperature. In addition, the application of TiO2 photocatalytie oxidation technology in disposal of paper wastewater was researched, the results indicate:
     (1) The photocatalysis degradation rate of TiO2 specimen modified by adding F, Zn are enhanced in different degree. Especially, F(0.5%)/Zn(1.0%)/TiO2 sintered under the temperature of 500℃presents best photocatalysis activity and the degradation rate of degrading methyl orange can be as high as 75.8%,1.81 times,1.34 times and 1.31 times than that of TiO2(sintered under the temperature of 500℃), F(0.5)/TiO2, Zn(1.0%)TiO2, respectively.
     (2) La(0.05%)/B(2.0%)/TiO2, made under 500℃, shows best photocatalysis activity and the degradation rate of degrading methyl orange can be as high as 92.0%,2.2 times as high as TiO2(sintered under 500℃),2.20 times La(0.05)/TiO2 and 1.45 times B(2.0%)TiO2. In general comparison, the order of photocatalysis activity of each Tio2 specimen to visible light from high to low is: La(0.05%)/B(2.0%)/TiO2> La(0.1%)TiO2> F(0.5%)/Zn(1.0%)/TiO2> B(2.0)/TiO2> TiO2. Thus it can determine the optimal mixing modified make condition, that is, the optimal adding amount of La and B are 0.05% and 2.0% respectively, and the best temperature is 500℃
     (3) In the study of its application in paper wastewater, single factor experiment of 0.05%La/2.0%B/TiO2 specimen, whose photocatalysis result is optimal, was conducted. It can be found that pH value in the solution, photocatalysis amount, light time and H2O2 amount all have impact in the degradation rate of degrading waste by TiO2 photocatalysis. By orthogonal test, it draws a conclusion that the optimal technology condition of photocatalysis degradation of paper wastemter is pH=7, TiO2 amount is 3g/L, H2O2 is 1.25ml/L, and the light time is 150min. Under this condition, COD clearance can be as high as 86.5%using xenon lamp as light resource.
     It indicates by XRD analysis that grain size of specimen can be decreased effectively by adding and modifying TiO2 specimen under the same condition, and inhibits the change of TiO2 crystal formation from anatase to rutile. Meanwhile, the UV-Vis analysis shows that the mixture modification can improve the photocatalysis activity of TiO2 specimen under the visible light.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semi-conductor electrode[J]. Nature,1972,37(1):238-245.
    [2]孙超,黄浪欢,刘应亮.氮掺杂二氧化钛纳米管制备与光催化性能[J].功能材料,2005,36(9):1412-1417.
    [3]Wong C C, Chu w. The Direct Photolysis and Photocatalytic Degradation of Alachlor at Different TiO2and UV sources[J]. Chemosphere,2003,50(8):981-987.
    [4]李晓娥,祖庸.溶胶-凝胶法制备超细二氧化钛[J].化学新型材料,1997,(10):28-31.
    [5]Thopsom T L, Yates J T. Surface science studies of the pho-toacativation of TiO2-new photochemical processes[J]. Chem Rev,2006,106(10):4428-4458.
    [6]Tahashi T, Mamoru F, Tetsuro M. Mechanistic insight into the TiO2 photocatalytic reactions design of new photocatalysts[J]. J Phys Chem C,2007,111(14):5259-5275.
    [7]李艳霞,管俊芳,雷绍民,等.掺N纳米Ti02光催化活性的研究进展[J].资源环境与工程,2007,21(2):193-195.
    [8]方晓明,张正国,陈清林.具有可见光活性的氮掺杂二氧化钛光催化剂[J].化学进展,2007,19(9):1282-1290.
    [9]彭峰,黄垒,陈水辉.非金属掺杂的第二代二氧化钛光催化剂研究进展[J].现代化工,2006,26(2):18-22.
    [10]朱国平.可见光活性纳米二氧化钛光催化剂的制备与性能评价[D].长沙:中南大学,2006.
    [11]Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity[J]. J Am Chem Soc,2007,129(27): 8406-8407.
    [12]H M Luo, Tsuyoshi T, Yun G L, et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine[J]. Chemistry of Materials,2004,16, (5):846-849.
    [13]Nagaveni K, Hedge M S, Ravishankar N, et al. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity[J]. J Phys Chem C,2007,98(10):3846-3850.
    [14]Venkatachari K R, Huang D, Ostrander S. Preparation of Nanocrystalline Yttria Stabilized Zirconia[J]. Journal of Materials Research,1995,10:748-755. Langmuir, 2004,20(7):2900-2907.
    [15]赵进才.可见光光催化降解有毒有机污染物的研究[M].2005科技发展报告.2005,3.
    [16]Li L, Wei L, Yue X Z, Bi Y Z. et al. Phosphor-doped Titania Novel Photocatalyst Active in Visible Light[J]. Chemistry Letters,2005,34, (3):284-285.
    [17]刘国光,张学治,许亚杰.铁、锌掺杂对纳米级Ti02光催化降解罗丹明B活性的影响[J].环境工程,2003,21(2):72-74.
    [18]李慧泉,李越湘,周新木,等.Sn203掺杂Ti02光催化剂的制备和性能[J].催化学报,2004,25(10):814-818.
    [19]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60.
    [20]Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode [J]. Nature,1972,238 (358):37-38.
    [21]S N Frank, A J Bard. Heterogenerous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semicondutor Powder[J]. J. Phys. Chem.1977,81:1484-1496.
    [22]张新磊,李翠霞,樊丁,等.Ti02薄膜超亲水性研究进展[J].应用化工,2006,35(12):962-965.
    [23]高伟,吴凤清,罗臻,等.Ti02晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
    [24]Bickley R, Gonzalea-Carreo T, Less J. Mutiphoton semiconductor photocatalysis[J]. Solid State Chem,1991,92(2):178-190.
    [25]Zhao Lei, Han Mand, Lian Jianshe. Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laserdeposition[J]. Thin Solid Films 516(2008):3394-3398.
    [26]Tada H, Hattori A, Tokihisa Y, et al. A patterned-Ti02/Sn02 bilayer type photocatalyst[J]. J Phys Chem B,2000,104(8):4585-4587.
    [27]Marci G, Augugliaro V, Lopez-Munoz M J, et al. Preparation characterization and photocatalytic activity of poly-crystalline ZnO/TiO2 systems surface, bulk characterization, and 4-nitrophenol photodegra dation in liquid-solid regime[J]. J PhysChem B,2001,105(5):1033-1040.
    [28]Ranjit K T, Willner I, Bossmann S B, et al. Iron(Ⅲ) phthalocyanine-modified titanium dioxide novel-photocatalyst for the enhanced photodegradation of organic pollu-tants[J]. J PhysChem B,1998,102(47):9397-9403.
    [29]Donia B, Ror A, Gary L, et al. Occurrence and prevention of photodissolution at the phase junction ofmagnetite and titanium dioxide[J]. Journal of Molecular Catalysis Chemical 2002,180(12):193-200.
    [30]Deng X Y, Yue Y H, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations[J]. Appl Catal B Environmental, 2002,39(2):135-147.
    [31]Ranijit K T. Iron phthalocyanine-midified titanium dioxide:anovel photocatalyst for the enhanced photodegradation of organic pollutants[J]. J Phys Chem B,1998,102(47): 9397-9412.
    [32]张丙华,李俊玲.纳米Ti02光催化降解技术在污水处理中的应用[J].四川环境,2006,25(5):56-60.
    [33]Chatterijee D, Mahata A. Visible light induced pho-todegradation of organic pollutants on dye adsorbed TiO2 surface[J].J Photochem Photobio A Chem,2002,153(1-3): 199-204.
    [34]尹晓敏,程永清.纳米二氧化钛光催化剂在废水处理中的应用研究[J].纳米材料与应用,2005,3(2):10-14.
    [35]Sandra G M, Renato S F, Nelson U. Degradation andtoxicity redution of textile effluentby combined photocatalytic and ozonation-process [J]. Chemosphere,2000(40): 369-373.
    [36]Irmak S, Kusvuran E, et al. Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide[J]. Applied Catalysis B: Environmental,2004(54):85-91.
    [37]Beata T, Antoni W, Michio I, et al. The kinetics of phenolde-composition under UV irradiation with and without H2O2 on Fe-TiO2 and Fe-C-TiO2 photocatalysts[J]. Applied CatalysisB:Environmental,2006(65):86-92.
    [38]黄佳木,赵国栋,蔡小平,等.非晶态Ti02-W薄膜的光催化性能研究[J].环境科学学报,2006,26(4):417-420.
    [39]郭红蕾,顾德恩,杨邦朝,等.光催化活性Ti02薄膜的研究进展[J].电子元件与材料,2006,25(3):1-4.
    [40]林莉,周毅,朱月香,等.碳含量对C/TiO2复合材料光催化活性的影响[J].催化学报,2006,27(1):45-49.
    [41]Carp C L, Huisman A, Reller. Photoinduced reactivity of titanium dioxide[J]. Prog Solid State Chem,2004,32:33-177.
    [42]牛新书,李红花,蒋凯,等.金属离子掺杂纳米TiO_2光催化研究进展[J].电子元件与材料,2004,23(8):39-45.
    [43]曹振娟,董帆,赵伟荣,等.锌掺杂纳米TiO_2光催化剂制备条件研究[J].电子元件与材料,2007,26(8):20-23.
    [44]赵清华,全学军,谭怀琴,等.La掺杂TiO_2光催化剂的制备与表征[J].催化学报,2008,29(3):269-274.
    [45]Sato S. Photocatalytic activity of NOx-doped TiCO2 in the visible light region[J]. Chem. Phys. Lett.,1986,123(1-2):126-128.
    [46]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photo catalysis in nitrogen-doped titanium dioxide[J]. Science 2001,293:269-271.
    [47]Liu G G, Zhang X Z, Xu Y J, et al. The preparation of Zn2+-doped TiO2 nanoparticle by solid phasereactio method srespective and their photocatalytic activities[J].Chemosphere, 2005,59:1367-1371.
    [48]杨保安.造纸工业废水污染防治的对策研究[J].西南造纸.2001(1):16-18.
    [49]高丹,王英刚,林静文.造纸工业废水治理技术进展[J].有色矿冶,2003,19(3):41-44.
    [50]徐纯芳,黄妙良,程应汉.沸石分子筛负载纳米TiO_2的研究进展[J].矿产保护和利用.2004,2(50):21-26.
    [51]中国造纸协会中国造纸年鉴[M].北京:中国轻工业出版社,2004.
    [52]马晓鸥,刘艳飞.废纸再生造纸废水的特性和处理工艺[J].工业水处理,1999,19(4):8.
    [53]于永丽,苏水渤.化学法处理制浆造纸废水的研究[J].工业水处理,2000,21(1):39-40.
    [54]施英乔,丁来保.国内废纸造纸废水处理技术新发展[J].林产化工通讯,2001,35(4):3-5.
    [55]王双飞,陈嘉翔.制浆造纸废水的生物处置[J].北方造纸,1994,4:27.
    [56]Pera M. Photocatalytic Treatment of Pulp Bleach Effluents Quim[J]. Anal,1997,16(3): 1193-1196.
    [57]全玉莲,姚淑霞,董亚荣,等.纳米二氧化钛光催化降解造纸废水的试验研究[J].环境工程,2011,29(1):55-56.
    [58]胡春.在光催化剂上苯酚的光催化氧化研究[J].环境保护学报,2005,16(4):473-479.
    [59]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2005:51-52.
    [60]毛娜.Ti02光催化在水处理中的应用[J].价值工程,2011,10(2):198-199.
    [61]Mahmood N M, Arami M, Limaeen Y, et al. Nanopho-tocatalysis using immobilized titanium dioxide nanoparticle degradation and mineralization of water containing organic pollutantcase sdudy of butachlor[J]. Mater Res Bull,2007,42(5):797-806.
    [62]Aungpradit T, Sutthivayakit P, Martens D, et al. Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension:indentification of intermediates and degradation pathways[J]. J Hazardous Mater,2007,146(1-2):204-213.
    [63]Bahamonde W, Muneer M, Haque M M. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions [J]. Catal Today, 2007,124(3-4):133-148.
    [64]王天喜,刘双枝,娄天军,等.铁镧复合氧化物纳米微粒的制备及其光催化性能[J].光谱实验室,2009,26(1):34-38.
    [65]杨华滨,段月琴,别利剑,等Fe3+, Zn2+共掺杂高效纳米Ti02光催化剂的制备表征及光催化性能[J].天津理工大学学报,2008,24(6):22-25.
    [66]Feng X H, Zu Y Q, Tan W F, et al. Arsenite oxidation by three types of manganese oxides[J]. Journd Environmental Sciences,2006,18(2):292-298.
    [67]娄向东,韩珺,楚文飞,等.锌,钴氧化物及复合氧化物光催化降解活性染料的研究[J].工业水处理,2008,28(3):36-38.
    [68]李晓辉,刘守新.N、F共掺杂TiO2可见光响应光催化剂的酸催化水解法制备及表征[J].物理化学学报,2008,24(11):2019-2024.
    [69]陈震宇,郭烈锦.Ni掺杂ZnS-ZnO复合光催化剂及光解水产氢性能[J].太阳能学报,2007,28(3):314-318.
    [70]Jiaguo yu, Xiujian Zhao, Qinnan Zhao. Effect of surface structure on Photocatalytic activity of TiO2 thin films prepared by sol-gel method[J]. Thin Solid Films2000,7(14): 7-11.
    [71]Zhang Q H, Gao L, Guo J K. Effeets of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis[J]. Applied Catalysis B Environmental,2000,26:207-210.
    [72]王景芸.纳米TiO2光催化剂的改性及其在废水处理中的应用进展[J].化学与粘合,2011,33(2):66-69.
    [73]黄冬根,廖世军,党志.锐钛矿型F-TiO2溶胶光催化剂的制备及表征[J].化工学报,2006,57(11):2778-2784.
    [74]Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compound in the presence of inorganic anions(Ⅰ):Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system[J]. Langmuir, 2000,16:2632-2641.
    [75]Yu J C, Yu J G, Ho W K, et al. Effect of doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem Mater,2002,14:3808-3816.
    [76]李发堂,赵地顺,郝勇静,等.氟掺杂纳米TiO2粉体的合成及光催化活性研究[J].化学工程,2009,37(2):54-57.
    [77]梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构[J].中国稀土学报,2002,20(1):74-76.
    [78]杨秋景,徐自力,谢超,等.铕掺杂对纳米TiO2的光催化活性的影响[J].高等学校化学学报.2004,25(9):1711-1714.
    [79]井立强,张新,屈宜春,等.掺杂镧的Ti02纳米粒子的光致发光及其光催化性能[J].中国稀土学报.2004,22(6):746-750.
    [80]赵玉翠,石建稳,郑经堂,等.V、La共掺杂纳米TiO2光催化活性研究[J].硅酸盐通报,2008,27(3):434-437.
    [81]周广阔,冯贵颖.B、Mo掺杂Ti02光催化剂降解苯酚的研究[J].西北农业学报,2006,15(6):85-89.
    [82]肖东昌,夏慧丽,张涛,等.镧硫共掺杂TiO2光催化剂的制备及其可见光活性研究[J].化工技术与开发,2007,36(3):4-7.
    [83]Luca D, Mardare D, Iacomi F, et al. Increasing surface hydrophilicity of titania thin films by doping[J]. Applied Surface Science,2006,2(52):6122-6126.
    [84]Ranjit K T, Willner I, Bossmann S H, et al. [J]. Catal,2001,204(2):305.
    [85]Xu A W, Gao Y, Liu H Q. [J]. Catal,2002,207(2):151-153.
    [86]水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16(5):459-463.
    [87]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanideoxide doping on the texture and properties of nano crystalline mesoprous TiO2[J]. Catal.2001(204):305-313.
    [88]Li F B, Li X Z, Hou M F. Appl Catal B,2004,48(3):185-187.
    [89]Zhao W, Man W H, Chen C C, et al. J. Am. Chem. Soc. [J]. Catal.2004,126: 4782-4783.
    [90]杨爱丽,钱晓良,刘石明.负载型光催化剂降解有机废水的研究进展[J].工业水处理,2003,23(3):1-5.
    [91]Saquib M, Muneer M. Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative acid orange in aqueous suspensions[J]. Desalination,2003,155: 255-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700