金属氧化物纳米结构的合成及物性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料学是近二十多年来科学家们一直潜心研究的学科。纳米材料的尺寸在100 nm之内,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,在光、电、力、磁、声等领域有着广泛应用和潜在价值。金属氧化物纳米材料是近年来人们研究的热点之一,其在光电、催化、气敏、磁性、污染物处理以及锂电池等领域有着广泛的应用前景,而形貌、尺寸、维度等的调控对纳米材料最终进入应用领域具有重要意义。本论文采用多种制备方法合成了尺寸、形貌、维度不同的纳米金属氧化物,并研究了其相关物性和应用,主要包括以下内容:1.氧化钛基纳米结构的合成与物性分析
     (1)采用水热方法合成了H2Ti307纳米管和Na2Ti307纳米线,通过XRD、SEM、TEM对产物的形貌、晶相、结构组成等进行了表征;使用光吸收、光催化、荧光实验和热重分析得出纳米管有更好的光吸收和光催化性能,纳米线具有更强的荧光发射和更好的热稳定性。电化学循环伏安曲线表明钛酸纳米管和钛酸钠纳米线在0-1.0v的电压范围内对H202没有电催化作用,对半胱氨酸都有电催化作用。此外利用在原水热反应体系中引入过渡金属离子(Zn2+、Co2+),对纳米管进行了锌源和钴源的掺杂,通过紫外可见光(UV-vis)吸收测试发现掺杂样品在一定程度上拓宽了光吸收范围,由紫外区向可见光区或红外区偏移。
     (2)通过一种低温常压的合成方法—复合氢氧化物媒介法(composite-hydroxide-mediated, CHM)合成出多层Ti02(B)纳米片,并进行了后处理:在450℃煅烧2h后多层Ti02(B)纳米片转变成方形Ti02(B)纳米粒子;在130℃水热反应3d后多层Ti02(B)纳米片变成了多层锐钛矿Ti02纳米片。通过XRD、SEM、TEM等表征对产物的形貌、尺寸、结构组成、晶相等变化进行了分析和比较;多层Ti02(B)纳米片在400℃之后发生形貌改变、450℃烧结后得到的方形Ti02(B)纳米粒子稳定性变得更好、锐钛矿Ti02纳米片在约650℃时会转变晶型;多层Ti02(B)纳米片用于吸附Cr(VI)达到一定的效果;锐钛矿Ti02纳米片在光吸收和光催化方面性能较优越。2.氧化铈纳米结构的合成与物性分析
     采用简单的溶剂热法合成了球状纳米Ce02,高分辨的透射电镜显示出球状纳米CeO2是由大量3-5 nm的小球团聚而成的,并且由于小球之间的空隙使得Ce02纳米球具有了多孔性。光学实验证明,带隙值为2.70 ev的多孔Ce02纳米球有着优于块体CeO2(Eg=3.19 ev)的光学吸收性能,并具有蓝光发射和红光发射的光致发光性能;光催化50mg/L的甲基橙降解率为44.55%;多孔Ce02纳米球在处理模拟废水中的Cr(Ⅵ)和罗丹明(RhB)时表现出优越的吸附性能,吸附效率分别达到了94%和85%以上;电催化实验显示,多孔Ce02纳米球在0-1.0 v电压范围内能电催化半胱氨酸。3.氧化铜纳米结构的合成与物性分析
     通过以无水的复合氢氧化钠和氢氧化钾为溶剂,三水硝酸铜为原料用复合氢氧化物媒介法在200℃反应24h合成了花状CuO纳米结构,由叶层叠组装而成,形似花状;叶形呈两头尖中间宽,单片叶的厚度小于50 nm,叶宽约200-500 nm,叶长约2μm在叶片上有许多凸起的微粒,使叶面呈现毛糙感。光学实验证明,花状CuO纳米结构的光吸收范围在红外光区;在吸附模拟污水中的RhB时显示为慢速的化学吸附过程,吸附效率约为53%。
Nanomaterials science is a discipline which has been extensively studied by scientists during the last twenty years. Nanomaterials is below 100 nm in size, with size effect, surface effect, quantum size effect, macroscopical quantum tunneling effect, and have extensive applications and potential value in optics, electrics, mechanics, magnetics, acoustics, and so on. Metal oxide nanomaterials have been a hot topic in recent years, which hold broad application prospect in photoelectricity, catalysis, gas sensor, magnetism, pollutant removal, lithium-ion battery, and so on. Howerver, the size, morphology, dimensionality, and so forth, have important impacts on such applications of metal oxide nanomaterials. In this dissertation, several metal oxide nanostructures were synthesized with different size, morphology, dimensionality by various preparation methods, and their properties and applications were also researched. The work mainly includes the following aspects:
     1. The synthesis and property of titanium oxide-based nanostructures
     (1) H2Ti3O7 nanotubes and Na2Ti3O7 nanowires were synthesized through hydrothermal method, and the morphology, crystalline phase, chemical component were analyzed by XRD, SEM and TEM. UV-vis absorption, photocatalysis, photoluminescence and TG-DTA experiments showed that the nanotubes had better optical properties and higher photocatalysis efficiency, whereas the nanowires had stronger fluorescence-emission and better thermal stability. Electrochemical cyclic voltammetry curves revealed that the nanotubes and nanowires could electro-catalyze cysteine, but could not electro-catalyze H2O2 in the voltage range of 0-1.0v. Moreover, by adding transition metal ions (Zn2+, Co2+) into primary hydro-thermal reaction solution, nanotubes were doped with zinc and Cobalt. And Uv-vis absorption test showed that the light absorption ranges of titanic acid nanotubes were broadened in a certain extent after doping transition metals, from ultraviolet region to visible region or infraredlight region.
     (2) Through a synthetic method at low temperature and atmospheric pressure, namely composite-hydroxide-mediated method (CHM), multilayer TiO2(B) nanosheets were synthesized. Post-treatments of the multilayer TiO2(B) nanosheets were also carried out:multilayer TiO2(B) nanosheets changed into quadrate TiO2(B) grains after calcining for 2h at 450℃; multilayer TiO2(B) nanosheets turned into anatase titania nanosheets after hydrothermal treatment for 3 days at 130℃. For the three samples, the transformations of the morphology, size, structural component and crystalline phase were characterized and compared by XRD, SEM and TEM. The crystal structures and surface absorptions were observed and studied by FT-IR and Raman tests, and thermal stability was mensurated and contrasted by TG-DTA: multilayer TiO2(B) nanosheets held change of the morphology over 400℃, quadrate TiO2(B) grains got better thermal stability after calcining for 2h at 450℃, anatase titania nanosheets maybe had transformation of crystalline phase above 650℃. Then multilayer TiO2(B) nanosheets have definite effect in removal of Cr(VI), and anatase titania nanosheets have preferable optical properties such as light absorption and photocatalysis.
     2. The synthesis and property of cerium oxide nanostructures
     CeO2 nanospheres were synthesized through simple solvothermal method, high resolution TEM shows the as-prepared CeO2 consists of plenty of highly aggregated spheres of 3-5 nm, and is porous as a result of interspace between aggregated spheres. Porous CeO2 nanospheres have nicer optical performance in UV-vis light absorption with a optical band of 2.70 ev, which is smaller than that of the bulk CeO2(3.19 ev); they exhibited red and blue PL emission, and photocatalysis degrading efficency of 44.55% of 50 mg/L methyl orange. Porous CeO2 nanospheres showed predominant adsorbability in the removals of Cr(VI) and RhB in simulated waste water, and the adsorbent efficiency reached over 94% and 85%, respectively. Moreover, electrochemical experiments revealed that the porous CeO2 nanospheres could electro-catalyze cysteine but could not electro-catalyze H2O2 in the voltage range of 0-1.0 v.
     3. The synthesis and property of cupric oxide nanostructures
     Through nonaqueous synthetic method in low temperature and atmospheric pressure, namely composite-hydroxide-mediated method, flowerlike cupric oxide were synthesized with aquiferous cupric nitrate as raw materials after reacting for 24 h under 200℃. Cupric oxide nanostructures look like blooms composed of stromatolithic leafages which are acuate on two sides and wide in the middle with a thickness of below 50 nm, a width of 200-500 nm and a length of 2μm. The leaf surfaces is harsh because of some particulates on the surfaces. Optical experiments proved that the flowerlike cupric oxides have light absorption in infrared region. The cupric oxide undergoed a slow chemical process during adsorbing RhB in waste water, with an adsorbent efficiency of 53%.
引文
[1]朱光明,秦华宇.材料化学[M].北京:机械工业出版社,2009.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]廖代伟.催化科学导论[M].北京:化学工业出版社,2006.
    [4]Zhao Y, Jiang L. Hollow Micro/Nanomaterials with Multilevel Interior Structures [J].Adv. Mater.,2009,21(36):3621-3638.
    [5]Xia X H, Luo Y S, Wang Z, et al. Ultrasonic synthesis and photocatalytic activity investigation of TiO2 nanoarrays[J]. Mater. Lett.,2007,61(11-12):2571-2574.
    [6]Zhou X M, Yang H C, Wang C X, et al. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles[J]. J.Phys.Chem.C,2010,114(40): 17051-17061.
    [7]Xi Y, Hu C G, Gao P X, et al. Morphology and phase selective synthesis of Cu2O (x= 1,2) nanostructures and their catalytic degradation activity[J]. Mate. Sci. Eng., B,2010,166: 113-117.
    [8]Jiang Y H, Sun Y M, Liu H, et al. Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2-ZnO[J]. Dyes Pigm.,2008,78(1):77-83.
    [9]尹衡.纳米材料制备方法研究[J].现代商贸工业,2009,15:274-275.
    [10]黄映恒,童张法,廖森等.前躯体固相反应合成LiCoP04纳米晶过程反应动力学[J].高校化学工程学报,2010,24(6):967-973.
    [11]刘厚凡,高长华,邹海平.固相法合成纳米氧化镧[J].无机盐工业,2007,39(6):33-35.
    [12]刘少友,唐文华,冯庆革.N、Fe共掺杂TiO2纳米材料的固相合成及其对喹啉的可见光降解[J].无机材料学报,2010,25(9):921-926.
    [13]张月,高艳阳.室温固相法合成ZnO纳米棒及其光学特性[J].功能材料与器件学报,2006,4(12):343-346.
    [14]周生刚,竺培显,黄子良等.气相法制备纳米材料的研究新进展[J].中国粉体工业,2008,5:10-15.
    [15]闫晋东,李俊寿,王建江等SnO2纳米线的合成及应用动态[J].新工工艺新技术·加热工艺技术与材料研究,2009,1:81-84.
    [16]刘新利,王世良,张泉等MoO2微/纳米片的气相合成和光学性能[J].材料研究学报,2010,24(1):17-24,
    [17]乔海军,王丹军,郭莉.化学气相沉积法合成梳状纳米ZnO及其发光性能研究[J].西北师范大学学报(自然科学版),2009,45(5):74-78.
    [18]程易,陈家琦,丁石.高温气相法可控制备纳米TiO2[J].化工学报,2007,58(8):2103-2109.
    [19]刘辉,朱梅英,魏雨.纳米金属氧化物粉体的液相制备和表征进展[J].纳米材料与结构,2004,11:17-24.
    [20]唐波,葛介超,王春先等.金属氧化物纳米材料的制备新进展[J].化工进展,2002,21(10):707-712.
    [21]张学俊,付立业,张萌萌等.液相法合成纳米金属氧化物晶体[J].材料工程,2008,10:53-59.
    [22]Xiao H Y, Ai Z H, Zhang L Z. Nonaqueous Sol-Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment[J]. J.Phys.Chem.C, 2009,113(38):16625-16630.
    [23]李艳花,傅毛生,危亮华等.直接沉淀法制备纳米氧化铈及其抛光硅晶片的性能与影响因素[J].中国稀土学报,2010,28(3):316-321.
    [24]郭志峰,田硕,王凌勇等.直接沉淀法制备纳米氧化锌晶体及其光催化降解性能研究[J].硅酸盐通报,2009,29(2):329-333.
    [25]王唯诚,李硕,温怡芸等TiO2/YFeO3复合光催化剂的制备、表征及其对气相苯的降解[J].物理化学学报,2008,24(10):1761-1766.
    [26]李秀珍,潘湛昌,肖楚民等.纳米二氧化铈的制备方法研究[J].化工装备技术,2002,23(6):20-22.
    [27]赵玉宝,黄传敬,陈陆千等.湿化学法制备纳米氧化镱的研究[J].化学学报,2004,62(18):1845-1848.
    [28]Wang C Y, Zhou Y, Mo X, Chen Z Y, et al. Synthesis of Fe3O4 powder by a novel arc discharge method[J]. Mater. Res. Bull,2000,35(5):755-759.
    [29]刘小丽.纳米线的制备、电学特性测试及应用[D].中北大学,2010.
    [30]许书城.包裹型缓释/控制释放肥料专题报告[J].磷肥与复肥,2000,(4):5-8.
    [31]姜奉华.沉淀法制备纳米级Fe203和NiO粉体的正交试验研究[J].兵器材料科学与工程,2006,29(5):31-33.
    [32]陈华桂,杨辉,梁华定等.钛醇盐水解-沉淀法制备纳米二氧化钛粉体[J].稀有金属材料工程,2010,39(2):69-72.
    [33]申晓毅,翟玉春.单分散球形SiO2粉体的制备及生长机理[J].化工学报,2010,61(12):3296-3301.
    [34]周晓明,张培新,刘剑洪等.微波法合成纳米TiO2及Fe3+掺杂纳米Ti02粉体的研究[J].化工新型材料,2004,32(7):16-19.
    [35]李冬梅,徐光亮.制备超顺磁性Fe304纳米粒子的研究进展[J].中国粉体技术,2008,14(4):55-58.
    [36]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11(2)193-206.
    [37]Zhang H G, Zhu Q S, Wang Y, et al. Low-cost synthesis of hollow Cu2O octahedra with more than one shell[J]. Mater. Lett.,2007,61(23-24):4508-4511.
    [38]李伊荇,李明辉,杜方.钛酸钠纳米线的制备及其性能[J].吉林大学学报,2010,48(1):121-123.
    [39]何溥,刘小娟,贺军辉,张林.二氧化钛纳米棒在空心微球表面的定向生长[J].化学学报,2010,68(23):2482-2486.
    [40]李廷龙,张云,陶伟.TiO2纳米管的制备及其光催化降解甲基橙的研究[J].四川有色金属,2010,4:20-23.
    [41]梅山孩.锥状ZnO纳米结构薄膜的制备及其场发射特性[J].液晶与显示,2010,25(6):780-783.
    [42]赵金博,吴莉莉,吴佑实等.六边形多孔NiO纳米片的合成与表征[J].人工晶体学报,2010,39(6):1451-1455.
    [43]王成云,苏庆德,钱逸泰.[J].化学研究与应用,2001,13(4):402-405.
    [44]陈洁,王象,戚红玲.简单溶剂热法制备纳米氧化铁[J].安徽师范大学学报,2009,32(5):452-455.
    [45]彭登峰,拜山·沙德克,杨世才.溶剂热法制备翠玉状Fe304微晶及表征[J].人工晶体学报,2009,38(2):497-500.
    [46]刘小娣,陈书阳,闫家伟.复合溶剂热法可控合成ZnO半导体纳米材料[J].南阳师范学院学报,2010,9(9):31-33.
    [47]许平昌,柳阳,魏建红.溶剂热法制备Ag/TiO2纳米材料及其光催化性能[J].物理化学学报,2010,26(8):2261-2266.
    [48]胡荣,陈超,麦凯光.从零维到一维递变氧化锡纳米材料的可控制备[J].材料科学与工程学报,2010,28(6):907-911.
    [49]刘军枫.功能氧化物纳米材料的也想合成与性质研究[D].2007,清华大学.
    [50]范方强,余林,孙明.反相单微乳液法制备纳米二氧化铈及其形貌和分散性研究[J].无机盐工业,2009,41(3):22-24.
    [51]冯国栋.反相微乳液法制备核壳型磁性SiO2微球及其表征[J].宝鸡文理学院学报,2009,30(3):30-33.
    [52]朱文庆,许磊,马瑾.粒径可控纳米CeO2的微乳液法合成[J].物理化学学报,2010,26(5):1284-1290
    [53]高嵩,王桂萍,樊明杰.微乳液法制备纳米TiO2及其结构表征[J].沈阳化工大学学报,2010,24(4):294-298.
    [54]王志琰,毋伟,张魁Pickering乳液法原位制备载药磁性SiO2空心球及缓释性能[J].北京化工大学学报,2010,37(3):110-114.
    [55]Louie S G. Thermodynamics-Nano particles behaving oddly[J]. Nature,1996,384(6610): 612-613.
    [56]Bethell D, Schiffrin D J. Supramolecular chemistry-Nanotechnology and nucleotides[J]. Nature,1996,382(6592):581-581.
    [57]Grassian V H. When size Really Matters:Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments [J]. J.Phys. Chem.C,2008,112:18303-18313.
    [58]Wang H K, Shao W, Gu F. Synthesis of Anatase TiO2 Nanoshuttles by Self-Sacrificing of Titanate Nanowires[J]. Inorg.Chem.,2009,48:9732-9736.
    [59]唐芳琼,李琳琳,黄兴禄等.不同形貌二氧化硅纳米材料在肿瘤治疗上的应用[J].生物物理学报(增刊),2009,25:57-58.
    [60]黄云霞,曹全喜,卫云鸽等.零维纳米Fe203粉体的制备与吸波性能的研究[J].功能材料与器件学报,2004,10(2):251-254.
    [61]沈兆存,刘英军,孙亮等.金属氧化物一维纳米材料的制备及其应用[J].应用化工,2010,39(10):1557-1559.
    [62]王培义,张晓丽,徐甲强.表面活性剂辅助纳米SnO2合成及其机理的研究进展[J].郑州轻工业学院学报,2007,22(2/3):11-14.
    [63]Beuvier T, Plouet M R, Le Granvalet M M. TiO2 (B) Nano-ribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance[J]. Inorg. Chem.,2010,49: 8457-8464.
    [64]Yang C, Yang Z M, Gu H W. Facet-Selective 2D Self-Assembly of TiO2 Nanoleaves via Supramolecular Interactions[J]. Chem.Mater.,2008,20:7514-7520.
    [65]Sokolov S, Paul B, Ortel E. Template-Assisted Electrostatic Spray Depositionasa New Routeto Mesoporous, Macroporous, and Hierarchically Porous Oxide Films[J]. Langmuir, 27(5):1972-1977.
    [66]薛斌.分等级三维金属氧化物纳米结构和竹节状碳纳米管的制备和表征[D].浙江大学,2009.
    [67]Guo Z Y, Du F L, Cui Z L. Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2[J]. Mater. Chem. Phys., 2009,113:53-56.
    [68]Xi Y, Hu C G, Feng B. Synthesis of ZnS Nanoflowers by Composite-Hydroxide-Mediated Approach[J]. J Supercond Nov Magn,2010,2010,23:901-903.
    [69]Qian L w, Zhu J, Du W M. Solvothermal synthesis, electrochemical and photocatalytic properties of monodispersed CeO2 nanocubes[J]. Mater. Chem. Phys.,2009,115:835-840.
    [70]Lu X W, Li X Z, Chen F. Hydrothermal synthesis of prism-like mesocrystal CeO2[J]. J. Alloys Compd.,2009,476:958-962.
    [71]Zhang D E, Wu W, Cao X Y. Fabrication of three-dimensional dendrite-like CeO2 crystallites via simple template-free solution route[J]. J. Phys. Chem. Solids,2009,70:1348-1352.
    [72]董祥,陶杰,李莹滢.水热法制备三维网状TiO2纳米线薄膜及其光电化学性能[J].物理化学学报,2009,25(9):1874-1882.
    [73]Yang H X, Qian J F, Chen Z X, et al. Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment[J]. J. Phys.Chem. C,2007,111:14067-14071.
    [74]LU X J, Huang F Q, Wu J J. Intelligent Hydrated-Sulfate Template Assisted Preparation of Spheresand Their Visible-Light Application NanoporousTiO2[J]. ACS Appl. Mater Interface. 2011,3(2):566-572.
    [75]李勇,郭晓玲,王向东.掺氮纳米Ti02可见光催化材料的研究进展[J].印染助剂,2010,27(4):8-13.
    [76]梁宏,廖斌,马芙蓉.Zn离子注入增强Ti02纳米管光电效应[J].核技术,2010,33(12):903-907
    [77]孙爱玲.纳米TiO2光催化材料的改性研究[J].潍坊学院学报,2010,10(6):9-12.
    [78]晏爽,江学良,蔡盛臻.钇掺杂改性纳米二氧化钛及其光催化性[J].武汉工程大学学报,2010,32(12):65-68.
    [79]李泽彬,聂丽,姚有峰.氧化钐掺杂氧化铈纳米材料的导电性[J].河北师范大学学报,2010,24(3):300-303.
    [80]陈海珍.表面修饰对TiO2/PET纳米复合材料结构和热性能的影响[J].宁波大学学报,2010,32(1):123-127.
    [81]朱传高,褚道葆.Ti基表面NiO修饰纳米TiO2电极材料的制备及电催化活性[J].无机化学学报,2006,22(2):223-227.
    [82]卫应亮,邵晨,李超.碳纳米管-TiO2修饰电极伏安法测定维生素K3[J].化学研究与应 用,2010,22(10):1231-1235.
    [83]孙彤,翟玉春,马培华.银、氟双元素改性TiO2光催化材料的性能[J].过程工程学报,2009,9(2):368-372.
    [84]邹克华,翟增秀,冯炜.微波辅助法制备负载型纳米Ti02的实验研[J].环境卫生工程,2010,18(6):7-10.
    [85]柏琳,李长波,张洪林.多孔矿物负载纳米TiO2光催化降解高浓度有机废水的研究进展[J].化学与生物工程,2010,27(8):8-10.
    [86]陈志刚,郭亭亭,李霞章.凹凸棒土负载CeO2催化氧化处理亚甲基蓝染料废水[J].功能材料,2009,40(10):1709-1712.
    [87]Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode[J]. Nature,1972,238:37-38.
    [88]容学德.纳米科技及纳米在环保领域的应用[J].科技促进发展,2008,(40):7-9.
    [89]Popov A P, Priezzhev A V, Lademann J, et al. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens [J]. J.Phys.D:Appl.Phys.2005,38:2564-2570.
    [90]Sirghi L, Aoki T, Hatanaka Y. Friction Force Microscopy Study of the Hydrophilicity of TiO2 Thin Films Deposited by Radio Frequency Magnetron Sputtering [J]. Surf. Rev. Lett.,2003, 10:345-349.
    [91]Wang C X, Yin L W, Zhang L Y, et al. Large Scale Synthesis and Gas-Sensing Properties of Anatase TiO2 Three-Dimensional Hierarchical Nanostructures[J]. Langmuir,2010,26 (15):12841-12848.
    [92]Tacconi N D, Chanmanee W W, Rajeshwar K. Photoelectro chemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells[J]. J. Phys. Chem. C,2009,113:2996-3006.
    [93]Kawahara K, Suzuki K, Ohko Y, et al. Electron transport in silver semiconductor nanocom-posite films exhibiting multicolour photochromism[J]. Phys. Chem. Chem. Phys.,2005,7: 3851-3855.
    [94]Aarthi T, Madras G. Photocatalytic Degradation of Rhodamine Dyes with Nano-TiO2 [J]. Ind. Eng. Chem. Res.,2007,46:7-14.
    [95]Abe R, Sayama K, Sugihara H. Development of New Photocatalytic Water Splitting into H2 and O2 using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO3-/I-[J]. J. Phys. Chem. B,2005,109(33):16052-16061.
    [96]Andersson M, Oesterlund L, Ljungstroem S, et al. Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol[J]. J. Phys. Chem. B,2002,106(41):10674-10679.
    [97]Chae S Y, Park M K, Lee S K, et al. Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films[J]. Chem. Mater.,2003,15(17): 3326-3331.
    [98]Du G H, Chen Q, Che R C, et al. Preparation and structure analysis of titanium oxide nanotubes [J]. Appl. Phys. Lett.,2001,79:3702-3704.
    [99]Du G H, Chen Q, Han P D, et al. Potassium titanatena nowires:Structure, growth, and optical properties[J]. Phys. Rev. B,2003,67:035323-1-035323-7.
    [100]Wen P H, Itoh H S, Tang W P, et al. Single Nanocrystals of Anatase-Type TiO2 Prepared from Layered Titanate Nanosheets:Formation Mechanism and Characterization of Surface Properties[J]. Langmuir,2007,23:11782-11790.
    [101]zawa H L, Kikawa S, Koizymi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9[J]. J. Phys. Chem.,1982,68:5023-5026.
    [102]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium Oxide Nanotube[J]. Langmuir,1998,14:3160-3163.
    [103]Hu W B, Li L P, Li G S, et al. Synthesis of Titanate-Based Nanotubes for One Dimensionally Confined Electrical Properties[J]. J. Phy. Chem. C,2009,113(39):16996-17001
    [104]Chen Q. Zhou W Z, Du G H, et al.Trititanate Nanotubes Made via a Single Alkali Treatment [J]. Adv.Mater,2002,14(17):1208-1211.
    [105]Han X G, Kuang O, Jin M S, et al. Synthesis of Titania Nanosheets With a High percentage of Exposed (001) Facets and Related Photocatalytic Properties[J]. J. Am. Chem. Soc.,2009, 131(9):3152-3153
    [106]Soler-IIIia G de A A, Louis A, Sanchez C. Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly [J]. Chem. Mater., 2002,14(2):750-759.
    [107]Yu J M, Zhang L Z, Zheng Z, et al. Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity [J]. Chem. Mater.,2003, 15(11):2280-2286.
    [108]Crepaldi E L, Soler-IIIia G J deA A, Grosso D, et al. Controlled Formation of Highly Organized Mesoporous Titania Thin Films:From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2[J]. J. Am. Chem. Soc.,2003,125(32):9770-9786.
    [109]姜洪泉,王鹏,线恒泽等.Zn2+掺杂TiO2纳米粉体的结构特性及光催化活性[J].哈尔滨工业大学学报,2007,39(8):1270-1275.
    [110]曹振娟,董帆,赵伟荣等.锌掺杂纳米TiO2光催化剂制备条件研究[J].电子元件与材料,2007,26(8):20-23.
    [111]刘志海,李澄,贾丽萍.钴离子置换钛酸盐纳米管的制备和光催化活性[J].陶瓷学报,2007,28(2):93-98.
    [112]Hirata T, Kitajima M, Nakamura K G, et al. Infrared and Raman spectra of solid solutions Ti1-xZrxO2(x=0.1)[J]. J. Phys. Chem. Solids,1994,55(4):349-355.
    [113]Falaras P, Hugot-Le Goff A, Bernard M C, et al. Characterization by resonance Raman spectroscopy of sol-gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application [J]. Sol. Energy Mater. Sol. Cells,2000,64(2):167-184.
    [114]Xu A W, GaoY, Liu H Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles[J]. J.Catal.,2002,207(2):151-157.
    [115]Tapia M J, Burrows H D. Cation Polyelectrolyte Interactions in Aqueous Sodium Poly(vinyl sulfonate) as Seen by Ce3+ to Tb3+ Energy Transfer[J]. Langmuir,2002,18(5):1872-1876.
    [116]Palmer M S, Nearock M, Olken M M. Periodic Density Functional Theory Study of Methane Activation over La2O3:Activity of O2-,O-, O22-, Oxygen Point Defect, and Sr2+-Doped Surface Sites[J]. J. Am. Chem. Soc.,2002,124(28):8452-8461.
    [117]You H, Hong G, Wu X, et al. A New Type of Highly Efficient Luminescent Material-The System Al2O3-B2O3 Containing Ce3+ and Tb3+ Ions[J]. Chem. Mater.,2003,15(10):2000-2004.
    [118]Reddy B M, Khan A, akshmanan P L. Structural Characterization of Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Catalysts by XRD, Raman, and HREM Techniques[J]. J. Phys. Chem. B,2005,109(8):3355-3363.
    [119]Guzman J, Carrettin S, Corma A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2[J]. J. Am. Chem. Soc.,2005,127(10):3286-3287.
    [120]Ramesh R, Jagannathan R. Optical Properties of Ce3+in Self-Assembled Strontium Chloro (hydroxy) apatite Nanocrystals[J]. J. Phys. Chem. B,2000,104(35):8351-8360.
    [121]Saha S, Chowdhury P S, Patra A. Luminescence of Ce3+ in Y2Si05 Nanocrystals:Role of Crystal Structure and Crystal Size[J]. J. Phys. Chem. B,2005,109(7):2699-2702.
    [122]Adachi G Y, Imanaka N, Tamura S. Ionic Conducting Lanthanide Oxides[J]. Chem. Rev. 2002,102(6):2405-2430.
    [123]Jacobs G, Williams L, Graham U, et al. Low-Temperature Water-Gas Shift:In-Situ DRIFTS-Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications [J]. J. Phys. Chem. B,2003,107(38):10398-10404.
    [124]Sohlberg K, Pantelides S T, Pennycook S J. Interactions of Hydrogen with CeO2[J]. J. Am. Chem. Soc.,2001,123(27):6609-6611.
    [125]Guo Z Y, Du F L, Cui Z L. Hydrothermal synthesis of single-crystalline CeCO?OH flower-like nanostructures and their thermal conversion to CeO2 [J]. Mater. Chem. Phys., 2009,113:53-56.
    [126]Song Z X, Liu W, Nishiguchi H, et al.The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor[J]. Appl. Catal. A:General.,2007,329:86-92.
    [127]McBride J R, Hass K C, Poindexter B D, et al. Raman and x-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd Eu, Gd,and Tb [J]. J. Appl. Phys.,1994,76(4):2435-2441
    [128]Zhang D E, Wu W, Cao X Y, et al. Fabrication of three-dimensional dendrite-like CeO2 crystallites via simple template-free solution route[J]. J. Phys. Chem. Solids,2009,70(10): 1348-1352.
    [129]Hu C G, Zhang Z W, Liu H, et al. Direct synthesis and structure Characterization of ultrafine CeO2 nanoparticles[J]. Nanotechnology,2006,17:5983-5987.
    [130]Wang Z L and Feng X D. Polyhedral Shapes of CeO2 Nanoparticles[J]. J. Phys. Chem. B, 2003,107(49):13563-13566.
    [131]Lu X W, Li X Z, Chen F, et al. Hydrothermal synthesis of prism-like mesocrystal CeO2[J]. J. Alloys Compd.,2009,476:958-962.
    [132]Guo Z Y, Du F L, Cui Z L. Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2[J]. Mater. Chem. Phys.,2009,113: 53-56.
    [133]Cui M Y, Yao X Q, Dong W J, et al. Template-free synthesis of CuO-CeO2 nanowires by hydrothermal technology[J]. J. Cryst. Growth,2010,312:287-293.
    [134]Du G H, VanTendeloo G. Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts [J]. Chem. Phys. Lett.,2004,393:64-69.
    [135]Lu C H, Qi L M, Yang J H, et al. Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures[J]. J. Phys. Chem. B,2004,108(46):17825-17831.
    [136]Zou G F, Li H, Zhang D W, et al. Well-Aligned Arrays of CuO Nanoplatelets[J]. J. Phys. Chem. B,2006,110:1632-1637.
    [137]Wang X, Hu C G, Liu H, et al. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing[J]. Sens. Actuators, B,2010,144:220-225.
    [138]Guan L, Pang H, Wang J J, et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors[J]. Chem.Commum.,2010,46:7022-7024.
    [139]Sun C, Sun J, Xiao G, et al. Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres[J]. J. Phys. Chem. B,2006,110(27):13445-13452.
    [140]Zou G F, Li H, Zhang D W, et al. Well-Aligned Arrays of CuO Nanoplatelets[J]. J. Phys. Chem. B,2006,110(4):1632-1637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700