电磁感应介质的量子干涉效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对量子干涉现象进行了系统的理论研究。量子干涉是激光物理和量子光学的重要前沿课题。近来研究已经发现诸如相干布居俘获,电磁感应透明,无吸收折射率增强,电磁感应左手效应等量子干涉效应。这些研究有潜在的应用价值,如能够控制介质相干性质,产生高频激光,信息存贮和高精密测量等等。
     本论文根据内容分为八个部分:第1章介绍研究背景和主要研究内容,第2章是研究光与物质相互作用的半经典理论的回顾,其余六个部分介绍作者的主要工作。
     第3章运用数值模拟的方法讨论了M型五能级原子与外场相互作用系统对探测场的吸收和色散等光学性质。发现改变控制场拉比频率时,系统的吸收和色散性质会发生规律性变化。在特定区域会呈现出EIT,当拉比频率减小时,EIT窗口变窄并且介质色散增强可获得慢光速光脉冲。
     第4章研究双∧型结构原子与四个光场相互作用的量子系统,探讨双驱动场下,系统量子效应如何通过双驱动场的配合来实现调控。
     第5章阐述了多能级系统中的Vacuum-Induced Coherence(VIC)效应是一种重要的量子干涉效应,并且研究发现VIC效应会使系统产生电磁感应透明现象、改变系统的吸收、增益和色散等性质,分析在VIC效应的条件下系统能级粒子数分布的动力学行为。另外,考虑复数拉比频率的相位变化时系统呈现出光学双稳态效应。
     第6章采用数值模拟方法,首先研究倒Y型四能级原子与三个光场相互作用系统对探测光的吸收和色散性质,然后研究了介质的相对介电常数和相对磁导率受电磁诱导发生显著变化,在合适的参数条件下它们同时出现负值,产生了左手效应,相应的介质转化为左手材料。随着系统参数的改变,左手效应频率范围等性质随之变化。
     第7章研究了具有超精细结构的四能级原子系统在电磁感应下的左手效应,讨论了由交叉耦合自发辐射路径引起的真空诱导相干对左手效应的影响。研究表明,真空诱导相干效应的强弱对介质的相对介电常数和相对磁导率实部负值的取值范围有显著影响,介质的左手效应随VIC效应的增大而增强。
     第8章研究了V型四能级原子系统在电磁诱导下的左手效应,结果显示系统不仅在弱探测场强耦合场情况下出现左手效应,还在探测光场与耦合光场相同数量级的条件下呈现出左手效应,增加探测场还使得负折射率取值范围增加,增强了左手效应。
     最后一章给出全文总结。
The thesis focused on the systematically theoretical study on some phenomena about atomic coherence and quantum interference. Quantum coherence and interference has become one of the important forward subjects in laser physics and quantum optics. Recent studies have shown a lot of quantum phenomena such as coherent population trapping, electromagnetically induced transparency, index enhancement without absorption, electromagnetically induced handedness, etc. These new effects have great potential for the control of the coherence properties of a medium, the production of high frequency lasers, the information storage and high precision measurements.
     This thesis is presented as eight sections according to the contents: Chapter 1 is an introduction of the research background and the research purpose of the thesis. Chapter 2 is a review on the semi-classical theory of light-matter interaction. The following six sections are the introductions of the author's work.
     In Chapter 3, the absorption-dispersion properties in a M- type five-level atomic system interacting with external fields system have been discussed. It is shown that changing the control fields can influence the absorption-dispersion properties regularly. The electromagnetically induced transparency (EIT) can be obtained if the parameters are taken appropriately. When control fields Rabi frequencies were decreased, the EIT windows would be narrow and slow-light would be realized.
     In Chapter 4, the quantum mechanics system of interacting between double∧type four-lever atoms and four light fields is studied, we investigates how to realize quantum effect manipulation under double cooperating drive light fields.
     In chapter 5, we report the effects of Vacuum-Induced Coherence in a laser-driven four-level atom consisting of three near-degenerate upper levels have an additional coherence term due to interaction with the vacuum of the radiation field. We show that such coherence preserves electromagnetically induced transparency and optical bi-stability phenomena. The dynamical behaviors of the population distribution via vacuum-Induced coherence was analyzed numerically too.
     In chapter 6, the system of inverted Y-type four-level atoms interacted with multi-mode light fields is investigated. Firstly, the absorption-dispersion properties of the medium are discussed. Then the left handedness of the medium under the mechanism of quantum interference is discussed.
     In chapter 7, the electromagnetically inductive left-handedness in a four-level atomic system associated with a pair of upper excited hyperfine levels has been investigated. We also discussed the properties of left-handedness with vacuum-induced coherence arising from the cross coupling spontaneous emission pathways.
     In chapter 8, a V-type four-level atomic system has been investigated for realizing left handedness. It is shown that the negative refractive index can be achieved not only in the condition of weaker probe field and stronger coupling field, but also in the condition which the probe field and the coupling field are in the same order. The negative refractive index band is enlarged in the situation of stronger probe field and left handedness is enhanced.
     At last, the summary of the paper is presented.
     This project is supported by the National Natural Science Foundation of China (Grant No. 10464002, No. 60278016, No.60768001)
引文
[1] Alzetta G, Gozzini A, Moi L, Orriols G. An Experimental-Method for Observation of Rf Transitions and Laser Beat Resonances in Oriented Na Vapor[J]. Nuovo Cimento B, 1976, 36:5-20.
    [2] Arimondo E, and Orriols G. Non-Absorbing Atomic Coherences by Coherent 2-Photon Transitions in a 3-Level Optical-Pumping[J]. Nuovo Cimento Lett., 1976, 17: 333-338.
    [3] Harris S E. Lasers without inversion: interference of lifetime-broadened resonances [J]. Phys.Rev. Lett., 1989,62:1033-1036.
    [4] Jin Y G, Chuan G, Xiu Z G, et al. Observation of light amplification without population inversion in sodium[J]. Opt. Commun., 1993, 93(5): 323-327.
    [5] Zibrov A S, Lukin M D, Hollberg L, et al. Experimental demonstration of enhanced index of refraction via quantum coherence in Rb[J]. Phys. Rev. Lett., 1996, 76: 3935-2938.
    [6] Harris S E. Electromagnetically induced transparency [J]. Physics Today, 1997, 7: 36.
    [7] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency[J].Rev. Mod. Phys., 2005, 77: 633.
    [8] Lezama A, Barreiro S, Akulshin A M. Electromagnetically induced absorption [J]. Phys. Rev.A, 1999,59:4732.
    [9] Goren C, Wilson-Gordon A D, Rosenbluh M, Friedmann H. Electromagnetically induced absorption due to transfer of coherence and to transfer of population[J]. Phys. Rev. A, 2003,67:033807.
    
    [10] Harris S E, Hau L V. Nonlinear Optics at Low Light Levels [J]. Phys. Rev. Lett., 1999, 82:4611.
    
    [11] Resch K J, Lundeen J S, Steinberg A M. Nonlinear Optics with Less Than One Photon[J].Phys. Rev. Lett., 2001, 87: 123603.
    
    [12] Braje D A, Balic V, Yin G Y, Harris S E. Low-light-level nonlinear optics v/ith slow light[J].Phys. Rev. A, 2003, 68:041801(R).
    
    [13] Chang H, Wu H B, Xie C D, Wang H. Phys. Rev. Lett., 2004, 93: 213901.
    [14] Knappe S, Shah V, Schwindt P D D, et al. A micro-fabricated atomic clock[J]. Appl. Phys.Lett. 2004, 85: 1460.
    [15] Vanier J. Atomic clocks based on coherent population trapping: a review[J]. Appl. Phys. B,2005,81:421.
    [16] Kash M M, Scully M O, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Phys. Rev. Lett., 1999, 82: 5229.
    [17] Hau L V, Harris S E, Dutton Z, Behroozi C H. Light speed reduction to 17 meters per second in an ultracold atomic gas [J]. Nature, 1999, 397: 594-598.
    [18] Liu C, Dutton Z, Behroozi C H, Hau L V. Observation of coherent optical information storage in an atomic medium using halted light pulses [J]. Nature, 2001, 409: 490-493.
    [19] Dutton Z, Hau L V. Storing and processing optical information with ultraslow light in Bose-Einstein condensates[J]. Phys. Rev. A, 2004, 70: 053831.
    
    [20] Yanik M F, Fan S. Stopping and storing light coherently[J]. Phys. Rev. A, 2005, 71: 013803.
    [21] Kang H, Hernandez G, Zhu Y. Slow-Light Six-Wave Mixing at Low Light Intensities [J].Phys. Rev. Lett. 2004, 93: 073601.
    [22] Kang H, Hernandez G, Zhu Y. Nonlinear wave mixing with electromagnetically induced transparency in cold atoms[J]. J. Mod. Opt., 2005, 52: 2391.
    [23] Xue Yan, He Qiongyi, La Rocca G C, et al. Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms [J]. Phys. Rev. A, 2006, 73: 013816.
    [24] Kang H, Zhu Y. Observation of Large Kerr Nonlinearity at Low Light Intensities [J]. Phys.Rev. Lett., 2003, 91:093601.
    [25] Wang H, Goorskey D, Xiao M. Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System [J]. Phys. Rev. Lett. 2001, 87: 073601.
    [26] Van der Wal C H, Eisaman M D, Andre A, et al. Atomic Memory for Correlated Photon States[J]. Science, 2003, 301: 196.
    [27] Kang H, Hernandez G, Zhang J, Zhu Y. Phase-controlled light switching at low light levels [J]. Phys. Rev. A, 2006, 73: 011802.
    [28] Scully M S, Zubairy M S. Quantum Optics [M]. Cambridge: Cambridge University Press,1997:222-225.
    [29] Zanon T, Guerandel S, de Clercq E, et al. High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system[J]. Phys. Rev. Lett.,2005,94: 193002.
    [30] Kocharovskaya O A, Khanin Y I. Coherent amplification of an ultra-short pulse in a 3-level medium without a population-inversion [J]. Jetp Letters, 1988,48: 630.
    [31] Boiler K J, Imamoglu A, Harris S E. Observation of electromagnetically induced transparency[J]. Phys. Rev. Lett., 1991, 66: 2593.
    
    [32] Field J E, A. Imamoglu A, Harris S E. Observation of electromagnetically induced transparency in collisionally broadened lead vapor[J]. Phys. Rev. Lett., 1991, 67:3062-3065.
    [33] Lukin M. D. Yelin S F, Fleischhauer, et al. Quantum interference effects induced by interacting dark resonances[J]. Phys. Rev. A, 1999, 60(4): 3225-3228.
    [34] Serapiglia G B, Paspalakis E, Sirtoriet C, et al. Laser-Induced Quantum Coherence in a Semiconductor Quantum Well [J]. Phys. Rev. Lett. 2000, 84: 1019-1022.
    
    [35] Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas[J]. Phys. Rev. Lett., 1999,82:5229-5232.
    [36] Harris S E, Field J E, Imamoglu A. Nonlinear optical process using electromagnetically induced transparency[J]. Phys. Rev. Lett., 1990,64:1107-1110.
    [37] Wang L J, Kuzmch A, Dogariu A. Gain-assisted superluminal light propagation [J]. Nature,2000, 406: 77.
    [38] Dogariu A, Kuzmch A, Wang L J. Transparent anomalous dispersion and luminal light-pulse propagation at a negative group velocity[J]. Phys. Rev. A, 2001, 63, 053806.
    [39] Sumanta D and Agarwal G S. Photon-photon correlations as a probe of Vacuum-induced coherence effect[J]. Phys. Rev. A, 2008, 77:033850.
    [40] Zhu S Y, Chan R C F, Lee C P. Spontaneous emission from a three-level atom[J].Phys. Rev.A, 1995,52:710-716.
    [41] Agarwal G S. Physical picture for spontaneous-mission cancellation [J]. Phys. Rev. A, 1997,55: 2457.
    [42] Zhu S Y, Scully M O. Spectral Line Elimination and Spontaneous Emission Cancellation via Quantum Interference [J]. Phys. Rev. Lett., 1996, 76, 388 -391.
    [43] Argarwal G S. Quantum Optics [M]. Springer Tracts in Modern Physics Vol. 70, Springer,Berlin, 1974,p:95.
    [44] Patnaik Anil K, Agarwal G S. Cavity-induced coherence effects in spontaneous emissions from pre-selection of polarization [J]. Phys. Rev. A, 1999, 59: 3015.
    [45] Li Gao-xiang, Li Fu-li, Zhu Shi-yao. Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium, Phys. Rev. A, 2001, 64: 013819.
    [46] Berman P R. Analysis of dynamical suppression of spontaneous emission [J]. Phys. Rev. A,1998,58:4886-4891.
    [47] Hui R X, Cen Y Y, Zhu S Y. Experimental Observation of Spontaneous Emission Cancellation [J]. Phys. Rev. Lett., 1996, 77: 1032-1034
    [48] Sunish M , Agarwal G S. Effects of spontaneously generated coherence on the pump-probe response of a A system[J]. Phys. Rev. A, 1997, 57: 4014-4018.
    [49] Wu J H, Zhang H F, Gao J Y. Opt. Lett., 2003, 28: 654.
    [50] Li Fu-li, Zhu Shi-Yao. Effects of quantum interference on coherent population trapping states of a four-level atom interacting with coherent fields [J]. Opt. Common., 1999, 162: 155-161.
    [51] Oktel M O, Mustecaphoglu O E Electromagnetically induced left-handedness in a dense gas of three-level atoms[J]. Phys. Rev. A, 2004, 70: 053806.
    [52] Shen J Q, Ruan Z C, He S L. How to realize a negative refractive index material at the atomic level in an optical frequency range[J]? J Zhejiang Univ. SCI, 2004,5(11):1322-1326.
    
    [53] Shen J Q. Photonic-resonant left-handed medium[J]. Phys. Lett., A, 2006, 357: 54-60.
    [54] Thommen Q, Mandel P. Electromagnetically Induced Left Handedness in Optically Excited Four-Level Atomic Media [J]. Phys. Rev. Lett., 2006, 96: 053601.
    
    [55] Zhang H J, Gong S Q, Niu Y P, et al. Negative refractive index in a four-level atomic system[J]. CHIN. PHYS. LETT., 2006, 23(7): 1769-1772.
    [56]Zhang H J,Niu Y P,Gong S Q.Electromagnetically induced negative refractive index in a V-type four-level atomic system[J].Phys.Lett.A,2007,363:497-501.
    [57]Veselago V G.The electrodynamics of substances with simultaneously negative values of εandμ[J].Soviet Physics Uspekhi,1968,10(4):509-514.
    [58]周萧明,蔡小兵,胡更开.左手材料设计及透明现象研究进展[J].力学进展,2007,37(4):517-536.
    [59]聂秋华,洪俊,徐键,董建峰.负折射率材料研究进展[J].材料导报,2007,21(12):6-11.
    赵伟,赵晓鹏.左手材料研究进展[J].材料导报,2006,20(2):26-28.
    [60]Pendry J B,Holden A J,Stewart W J,et al.Extremely Low Frequency Plasmons in Metallic Mesostructures.Phys.Rev.Lett.1996,76:4773-4776.
    [61]Pendry J B,Holden A J,Robbins D J,et al.Magnetism from conductors and enhanced nonlinear phenomena.1EEE Trans.Microwave Yheo.and Tech.,1999,47:2075-2084.
    [62]Shelby R A,Smith D R,Schultz S.Experimental Verification of a Negative Index of Refraction[J].Science,2001,292:77-79.
    [63]Smith D R,Pendry J B.Reversing Light with Negative Refraction[J].Physics Today,2004,57(6):37.
    [64]Huangfu J T,Ran L X,Chen H S,et al.Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns[J].Appl.Phys.Lett.,2004,84(9):1537
    [65]Chen H J,Ran L X,Huangfu J T,et al.J Appl Phys Lett.,2004,96(9):5338.
    [66]Lagarkov A N,Kissel V N.Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate[J].Phys Rev Lett,2004,92:077401(1-4).
    [67]Grbic A,Eleftheriades G V.Overcoming the diffraction limit with a planar left-handed transmission-line lens[J].Phys Rev Lett,2004,92:117403(1-4).
    [68]Pendry J B.Science,2004,306:1353.
    [69]Paremi P V,Lu W,Vodo P,et al.Negative refraction and left-handed eletromagnetism in microwave photonic crystals[J].Phys.Rev.Lett.,2004,92:127401(1-4).
    [70]Moussa R,Foteinopoulou S,Zhang Lei,et al.Negative refraction and superlens behavior in a two-dimensional photonic crystal[J].Plays.Rev.B,2005,71:085106(1-5).
    [71]Walls,D F,Milburn,G J,Quantum optics[M].Springer-Verlag,1994.
    [72]Mandel,Leonard,Wolf,Emil.Optical coherence and quantum optics[M].Cambridge University Press,1995.
    [73]M.Sargent Ⅲ,Scully M O,Lamb W E,Laser Physics[M].Addison - Wesley,NY,1987.
    [74]孔令波.原子介质中激光诱导量子相干效应的研究[D].中国科学院武汉物理与数学研究所,2007.
    徐卫华.量子相干系综中吸收及折射率性质的研究[D].吉林大学,2004.
    [75]Xu Wei-hua and Gao Jin-yue.Absorption mechanism in a four-level system[J].Phys.Rev.A,2003,67:033816.
    [76]Li Gao-xiang,Li Fuli,and Zhu Shiyao,Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium[J].Phys.Rev.A,2001,64:013819.
    [77]王振华,胡响明.修饰态布居的选择性激发对无反转激光的作用[J].物理学报,2004,53:2569.
    [78]李永放、孙建锋.梯型四能级系统中超窄电磁感应透明与无反转增益[J].物理学报,2003,52:547.
    [79]张丽英,刘正东.Y型四能级原子系统对探测场的吸收和色散[J].物理学报,2005,54:3641-3645.
    [80]Zhang Liying,Liu Zhengdong,Chen Jun.The Electromagnetically Induced Transparency in the Y-type four-level atom system at low light levels[J].Science in China Ser.G,2005,48(5):593-599.
    [81]刘正东,武强.被三个耦合场驱动的四能级原子的电磁感应透明[J].物理学报,2004,53:2970-2973.
    [82]张丽英,刘正东,陈峻.弱光场下Y型四能级原子系统的电磁感应透明[J].中国科学G 辑,2005,35(6):566-572.
    [83]张丽英,刘正东,陈峻.准∧型四能级原子系统在弱场中的增益及电磁感应透明[J].光学学报,2006,26(9):1419-1423.
    [84]陈峻,刘正东,尤素萍.准∧型四能级原子系统中的烧孔和光学双稳现象[J].物理学报,2006,55(12):6410-6414.
    [85]Ottaviani Carlo,Rebic Stojan,Vitali David,and Tombesi Paolo.Cross phase modulation in a five-level atomic medium:Semiclassical theory[J].arXiv:physics/0510200 v2(2006).
    [86]Kosachiov D,Rozhdestvensky Y,Olsen M,et al.Sub-Doppler cooling of three-level A atoms in space-shifted standing light waves.Phys.Rev.A,1994,Vol.50(2):1508-1512.
    [87]Wallis H.Multiphoton Raman resonances in three-level A atoms in two bichromatic fields.Phys.Rev.A,1995,Vol.52(2):1441-1449.
    [88]Korsunsky E A,Kosachiov D V.Phase-dependent nonlinear optics with double-A atoms.Phys.Rev.A,1999,60(6):4996-5009.
    [89]Agarwal G S.Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches,Springer Tracts in Modern Physics:Quantum Optics (Berlin:Springer-Verlag),1974,Sec.15.
    [90]Hou B P,Wang S J,Yu W L,et al.Effect of vacuum-induced coherence on single- and two-photon absorption in a four-level Y-type atomic system[J].Phys.Rev.A,2004,69053805(1-5).
    [91]Imamoglu A,Harris S E.Lasers without inversion:interference of dressed lifetime-broadened states[J].Opt.Lett.,1989,14:1344-1346.
    [92]Yang G J,Xie M,Zhang Z et al.Effect of vacuum-induced coherences on coherent population trapping of moving atoms[J].Phys.Rev.A,2008,77:063825(1-8).
    [93]Zhu S Y,Chan R C,Lee C P.Spontaneous emission from a three-level atom[J].Phys.Rev.A,1995,52:710-716.
    [94]Anton M A,Calderon O G,Carreno F.Spontaneously generated coherence effects in a laser-driven four-level atomic system[J].Phys.Rev.A,2005,72:023809(1-12).
    [95]Wei X G,Wu J H,Wang H H.et al.First-principles experimental observation of coherent hole burnings in atomic rubidium vapor[J].Phys.Rev.A,2006,74:063820(1-5).
    [96]Yang Lijun,Zhang Liangshui,Li Xiaoli.Autler-Townes effect in a strongly etectromagnetically induced transparency resonance[J].Phys.Rev.A,2005,72:053801.
    [97]Pendry J B.Negative Refraction Makes a Perfect Lens[J].Phys,Rev.Lett,2000,85(18):3966-3969.
    [98]Joshi A,Xiao Min.Phase gate with a four-level inverted-Y system[J].Phys.Rev.A,2005,72:062319.
    [99]曾福华、刘正东、郑军、方慧娟.量子调控中介质的左手效应[J].物理学报,2008,57(4):2218-2221.
    [100]Xue Yan,He Qiongyi,La Rocca G C,et al.Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms[J].Phys.Rev.A,2006,73:013816.
    [101]Fu C,Zhang Z M,First P N.Appl.Opt.,2005,44:3716.
    [102]Grzegorcayk T M,Thomas Z M,Kong J A.Inversion of critical angle and Brewster angle in anisotropic left-handed metamaterials[J].Appl.Phys.Lett.,2005,86:251909.
    [103]Berman P R.Goos-H(a|¨)nchen shift in negatively refractive media[J].Phys.Rev.E,2002,66:067603.
    [104]Gollub J N,Smith D C,Vier D C,Perram T,Mock J J.Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability[J].Phys.Rev.B,2005,71:195402(1-7).
    [105]Liu H,Zhu S N,Dong Z G,Zhu Y Y,Chen Y F,Ming N B.Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice:Creation of a polariton through the piezomagnetic effect[J].Phys.Rev.B,2005,71:125106(1-5).
    [106]Wei H,Li J H,Zhan Z M,Peng J C.Absorption-dispersion properties in a four-level atomic system with vacuum-induced coherence[J].Commun.Theor.Phys.,2005,44:146-150.
    [107]Alitalo P,Maslovski S,Tretyakov S.Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens[J].Journal of Applied Physics,2006,99(12):124910.
    [108]Wu B,Wang W J,Pacheco J.Anisotropic metamaterials as antenna substrate to enhance directivity.[J]Microwave and Optical Technology Letters,2006,48(4):680-683.
    [109]Kim K Y.Photon tunneling in composite layers of negative- and positive- index media[J].Phys.Rev.B,2005,72(7),075116.
    [110]Schurig D,Mock J J,Justice B J,et al.Metamaterial electromagnetic cloak at microwave frequencies[J].Science,2006,314:977-980.
    [111] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative Permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4148.
    [112] Pendry J B. A chiral route to negative refraction [J]. Science, 2004, 306(19):1353.
    [113] Cheng Q, Cui T J. Negative refractions and backward waves in biaxially anisotropic chiral media[J]. Opt. Express, 2006, 14(13):6322.
    [114] Li J H, Yang W X, Luo J M, Peng J C. Large enhancement of probe amplification with population inversion in a four-level atomic system with vacuum-induced coherence[J].Commun. Theor. Phys. (Beijing, China), 2005, 43,905-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700