基于增强现实的月面巡视器遥操作控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京工业大学BH2月球车原理样机为研究对象,以大时延条件下的月球车控制技术为研究重点,针对月地通讯时延对遥操作系统可操作性及稳定性的影响,提出了综合运用预测显示及双边无源控制的方法,并围绕增强现实遥操作环境的构建问题与无源控制技术展开研究。具体来说,主要成果有:
     1)设计了一套基于预测显示及双边无源控制的月球车遥操作系统方案。通过在地面控制站构建一个与月面环境一致的增强现实遥操作环境,在地面控制站形成一个闭环控制回路,操作员通过力反馈器在增强现实遥操作环境中对虚拟月球车进行控制,获取实时的视觉反馈,避免了通信时延对系统可操作性的影响;双边无源控制方法的运用则通过在遥操作主从端设置控制器,保证了系统的稳定性,并实现了主从端速度和航向角控制量的跟踪。
     2)实现了增强现实遥操作环境。通过采用实验室自主研制的激光立体识别系统对地形信息进行采集,得到了精确的地形模型。另外,ODE的采用则实现了对月面微重力环境的模拟。两者共同保证了增强现实遥操作环境与月面环境的一致性。
     3)为保证操作员在时延条件下对月球车的有效控制,通过使用拉格朗日方法,建立了遥操作主从端力反馈器和月球车的动力学模型,在此基础上,讨论了双边无源控制方法。
     4)搭建了基于预测显示及双边无源控制的月球车遥操作控制仿真系统。队列缓冲模拟了月地通信时延。通过在10s仿真时延条件下对该系统的性能进行研究,验证了方案的可行性。
In this paper, we took BH2 lunar rover prototype in Beijing University as the object of study, with the control technology for lunar vehicle under the condition of large time delay as the focus. In order to weaken the impact of communication delays on the operability and stability of the control system, we proposed a comprehensive use of forecasts and bilateral passive control, and did some in-depth investigations on the development of teleoperation environment based on augmented reality and passive control technology. Key results are as follow,
     Firstly, a novel teleoperation framework based on forecast and passive control was designed for lunar rover. By establishing an augmented reality environment consistency with the lunar environment, a closed loop control circuit on the ground station was formed, the operator got real-time visual feedback by controlling the virtual lunar rover in the augmented reality environment, which can avoid time delays in the communication channel and enhance the operability of the control system; By setting controllers on each side of the teleoperation system, passive control achieved stability of the control system and the coordination of speed and position.
     Secondly, an augmented reality teleoperation environment was established. Accurate modeling for the lunar terrain was achieved with self-made laser scanning system and ODE was used to simulate the microgravity environment on the lunar surface, which ensures the consistency of the augmented reality environment with the lunar surface.
     Thirdly, the dynamics models of phantom omni and lunar rover were derivated according to Lagrange method, on which passive control was discussed to ensure the effective control of lunar rover.
     Finally, simulation system based on forecast and passive control for teleoperation control of lunar rover was established. Queue buffer was used to simulate the communication delay between earth and lunar. The performance of the framework was studied with the simulation system under 10s time delay. Experimental results demonstrate the feasibility.
引文
1欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展. 2004, 19(3): 351-358
    2 W. R. Ferrel. Delayed force feedback. IEEE Trans on Human Factors. 1996, 9 (5): 449-454
    3宋爱国,蒋洪明等.临场感遥控作业机器人的力觉虚拟现实建模研究.测控技术. 2000, 19(9): 51-54
    4 G. J. Raju, G. C. Verghese, T. B. Sheridan. Design issues in 2-port network models of bilateral remote manipulation. IEEE International Conference on Robotics and Automation, 1989, 3: 1316-1321
    5 R. J. Anderson, M. W. Spong. Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control. 1989, 34 (5): 494-501
    6 G. Niemeyer, J. Slotine. Stable adaptive teleoperation. Proceedings of the 1990 American Control Conference, 1990, 2: 1186-1191
    7 T. B. Sheridan. Human supervisory control of robot systems. IEEE International Conference on Robotics and Automation, 1986, 2: 808-812
    8 L. Conway, R. A. Volz, M. W. Walker. Teleautonomous systems: Projecting and coordinating intelligent action at a distance. IEEE Transactions on Robotics and Automation, 1990, 6(2): 146-158
    9 A. Jayasiri, G. Mann, R. G. Gosine. Mobile robot behavior coordination using supervisory control of fuzzy discrete event systems. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 690-695
    10 A. Tsalatsanis, A. Yalcin, K. P. Valavanis. Automata-based supervisory controller for a mobile robot team. 3rd IEEE Latin American Robotics Symposium, 2006: 53-59
    11 B. Bicker, Ow Sin Ming. Shared control in bilateral telerobotic systems. The International Society for Optical Engineering, 1994, 2351: 200-206
    12 J. Funda, R. P. Paul, Teleprogramming: Overcoming communication delays in remote manipulation. IEEE International Conference on Systems, Man and Cybernetics, 1990, 873-875
    13董德尊.大时延遥操作机器人接触作业的遥编程技术研究.国防科技大学工学硕士论文. 2004:12-20
    14 K. Yerex, D. Cobzas, M. Jagersand. Predictive display models for tele-manipulation from uncalibrated camera capture of scene geometry and appearance. IEEE International Conference on Robotics and Automation, 2003: 2812-2817
    15 R. Marin, P. J. Sanz. A predictive interface based on virtual and augmented reality for task specification in web telerobotic system. International Conference on Intelligent Robots and Systems, Switzerland, 2002: 3005-3010
    16 A. K. Bejczy, W. S. Kim, S. C. Venema. The phantom robot: predictive displays for teleoperation with time delay. IEEE International Conference on Robotics and Automation, 1990, 1: 546-551
    17李群智,贾阳,陈建新.月球探测器遥操作系统初步研究.机器人技术与应用. 2008, (3)
    18 R. Washington, K. Golden, J. Bresina, D. Smith, C. Anderson, T. Smith.Autonomous roversfor mars exploration.IEEE Aerospace Applications Conference Proceedings, 1999, 1: 237-251
    19 J. J. Biesiadecki, E. T. Baumgartner, R. G. Bonitz, B. K. Cooper, F. R. Hartman, P. C. Leger, M. W. Maimone, S. A. Maxwell, A. Trebi-Ollenu, E. W. Tunstel, J. R. Wright. Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum. The International Conference on System, Man and Cybernetics, 2005, 2: 1823-1830
    20 S. Norris, W. Powell, A. Vona, G. Backes, V. Wick. Mars exploration rover operations with the science activity planner. IEEE International Conference on Robotics and Automation, 2005: 4618-4623
    21”中华牌”月球车制造完毕自力更生发展航天技术具备独自探测火星能力[EB/OL]. http://www.cnr.cn/allnews/201004/t20100414_506281175.html, 2010-04-14
    22孙宏金.月球车沙洲漫步.太空探索. 2006, 12: 6-7
    23李群智,宁远明,申振荣,贾阳.行星表面巡视探测器遥操作技术研究.航天器工程. 2008, 17(3): 29-35
    24 J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell, J. Yen, J. Morrison. Terrain modeling for in-situ activity planning and rehearsal for the mars exploration rovers. IEEE International Conference on Systems, Man and Cybernetics, 2005, 2: 1372– 1377
    25 L. Edwards, M. Sims, C. Kunz, D. Lees, J. Bowman. Photo-realistic terrain modeling and visualization for Mars Exploration Rover science operations. IEEE International Conference on Systems, Man and Cybernetics, 2005, 2: 1389-1395
    26 Zi-xing Cai, Jin-xia Yu, Xiao-bing Zou, Zhou-hua Duan. A 3-D perceptual method based on laser scanner for mobile robot. IEEE International Conference on Robotics and Biomimetics, 2005: 658–663
    27 Yuki. Tarutoko, Kajiro. Watanabe, Kazuyuki. Kobayashi. A study of topological map generation method for cruise-assist system by mobile robot. Proceedings of the SICE Annual Conference, 2005: 3594-3598
    28 V. Koivunen, J. M. Vezien. Multiple representation approach to geometric model construction from range data. Proceedings of the 1994 Second CAD-Based Vision Workshop, 1994: 132-139
    29 S. Betge-Brezetz, P. Hebert, R. Chatila, M. Devy. Uncertain map making in natural environments. IEEE International Conference on Robotics and Automation, 1996, 2: 1048-1053
    30 R. Mandelbaum, L. McDowell, L. Bogoni, B. Reich, M. Hansen. Real-time stereo processing, obstacle detection, and terrain estimation from vehicle-mounted stereo cameras. Proceedings Fourth IEEE Workshop on Applications of Computer Vision, 1998, 288-289
    31 S. B. Goldberg, M. W. Maimone, L. Matthies. Stereo vision and rover navigation software for planetary exploration. IEEE Aerospace Conference Proceedings, 2002, 5: 2025-2036
    32 I. S. Kweon, T. Kanade. High resolution terrain map from multiple sensor data. IEEE International Workshop on Intelligent Robots and Systems, 1990, 1: 127-134
    33 E. Krotkov, R. Hoffman. Terrain mapping for a walking planetary rover. IEEE Transactions on Robotics and Automation. 1994, 10 (6): 728-739
    34 C. M. Shoemaker, J. A. Bornstein. The Demo III UGV program: a test bed for autonomous navigation research IEEE International Symposium on Intelligent Control, 1998: 644-651
    35居鹤华,马岩,王亮.月球车高速三维激光成像雷达系统以及成像方法.中国,发明, 200810227681. 2009
    36 P. Lamon, A. Krebs, M. Lauria, R. Siegwart, S. Shooter. Wheel torque Control for a rough terrain rover. IEEE Conference on Robotics and Automation, New Orleans, LA, 2004, 4: 4682~4687
    37 G. Sohl, A. Jain. Wheel-terrain contact modeling in the roams planetary rover simulation. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005, 6A: 89-97
    38 G. Greg. An introduction to fuzzy control systems [DB/ OL]. http://www.faqs.org/docs/fuzzy/, 2003-06-01
    39 A. El-Shenawy, A. Wagner, E. Badreddin. Dynamic model of a holonomic mobile robot with actuated caster wheels. International Conference on Control, Automation, Robotics and Vision, 2006
    40 V. Nabat, O. Company, F. Pierrot, P. Poignet. Dynamic modeling and identification of Par4, a very high speed parallel manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 496-501
    41 W. Khalil, G. Gallot, F. Boyer. Dynamic modeling and simulation of a 3-D serial ee1-like robot. IEEE Transactions on Systems, Man, and Cybernetics-Part C. 2007, 37(6): 1259-1268
    42 M. Vakil, Reza. Fotouhi, P. N. Nikiforuk, H. Salmasi. A constrained Lagrange formulation of multilink planar flexible manipulator. Journal of Vibration and Acoustics. 2008, 130(3)
    43洪嘉振.计算多体系统动力学.高等教育出版社, 1999: 63-65
    44 R. J. Anderson, M. W. Spong. Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control. 1989, 34 (5): 494-501
    45 G. Niemeyer, J. -J. E. Slotine. Telemanipulation with time delays. International journal of robotics research. 23 (9): 873-890
    46 D. Lee, M. W. Spong. Passive bilateral teleoperation with constant time delay. IEEE Transactions on Robotics. 2006, 22(2):269-281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700