六相永磁容错电机及其控制系统的设计和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着多电/全电飞机和混合/纯电动汽车的发展,对系统安全可靠性提出了很高的要求。希望即使电机驱动系统发生故障后,系统还能可靠地完成任务。因此设计一套具有容错功能的电机本体及其控制系统日益成为国内外的研究热点。在工程上容错技术指当系统一个或多个关键部件出现故障时,系统能够将发生故障的部件从系统中隔离开,并采取相应措施维持其规定功能,在可接受的性能指标变化下,继续稳定可靠运行。本文致力于研究和设计具有高可靠性的永磁容错电机(FTPMM)及其控制系统,保证系统出现一相及多相故障时,电机仍可输出规定功率,同时转速不变,实现电机驱动系统的强容错控制。
     本文详细分析了永磁容错电机的结构形式及特点,通过绕组单层集中隔齿绕制的方式实现了各绕组间的磁隔离、物理隔离及热隔离;采用H桥的供电方式实现了绕组间的电气隔离;利用增大槽口漏感达到抑制短路电流目的。研究了定子槽数与转子磁极对数的配合对绕组系数、齿槽脉动转矩、径向不平衡磁拉力以及功率管选取的影响。采用离心磁钢设计方案,提高空载反电势波形的正弦度,降低齿槽脉动转矩,便于实现高性能的电机控制。
     具备抑制短路电流能力是永磁容错电机与一般永磁无刷电机的主要区别,因此对电枢绕组的电感分析及其解析式求取成了永磁容错电机设计的主要问题之一。通过分析电机内的磁力线分布得出绕组自感由激磁感、谐波漏感、槽口漏感和槽内漏感组成。建立了电机磁阻网络,研究了不同电感组成分量之间的比例关系,并引入槽口磁压降参数和槽口计算厚度参数,推导出了具有高精度的非线性绕组自感及其组成分量的解析式。
     利用解析法对转子磁钢离心式的永磁容错电机进行电磁场分析,考虑槽口对气隙磁密的影响,得到了气隙处径向磁密和切向磁密的解析式,以此为基础,分别推导出空载反电势和齿槽脉动转矩的解析式,便于电机优化设计,并对其进行磁场有限元分析验证。
     依据航空用电力作动器的转矩及其动态响应要求,直接求出永磁容错电机的定子内径和轴向有效长度,推导了永磁容错电机的电磁参数设计的解析式。针对永磁容错电机的特点,以抑制短路电流和高输出性能(空载反电势波形正弦度高、齿槽脉动转矩小)为优化目标,建立了永磁容错电机的优化设计准则。设计并制造了一台航空用750W六相十极永磁容错电机的原理样机和一台7.5kW的工程样机,通过发电试验、磁隔离试验以及绕组短路试验验证电机设计合理性和正确性。
     建立了六相十极永磁容错电机的数学模型及其MATLAB系统仿真模型,并对电机驱动系统的正常态及故障态的电磁转矩进行分析。根据功率守恒原理,对各相绕组进行单独控制,提出了基于电流直接控制法的容错控制策略,无需具体的故障诊断类型信息和软件算法切换,通过补偿故障相的平均电磁转矩,实现了具备强容错性能的永磁容错电机及其控制系统,即当电机或变换器出现一相、两相甚至三相故障时,系统可以分别输出100%、80%及60%的额定功率,而输出转速不变。通过系统的多相组合故障试验对基于电流直接控制算法的容错系统进行了验证。
     电流直接控制的容错系统具备简单可靠的优点,但系统在故障态存在一定的周期脉动转矩,因此适合用于电机负载对转矩脉动不敏感的一般场合,特别是高速大惯量场合。为了将容错系统应用到高性能要求的驱动系统(如伺服驱动系统),本文利用相量叠加法,分析了不同故障态下电机输出脉动转矩的规律,提出了最优电流控制策略,通过补偿故障相的平均转矩和抵消故障态的脉动转矩,实现故障态下转矩脉动最小化控制,从而使电机驱动系统实现强容错的基础上,提高故障态的输出性能。MATLAB仿真和试验验证了该容错控制方案的有效性。
     为了体现本论文所提出的电机设计方案以及容错控制方案工程应用价值,本文针对航空用某机型的电力作动器,设计了一套7.5kW/9000rpm六相永磁容错电机及其控制系统的工程样机,并通过发电试验、短路能力测试试验以及单相故障态试验证明该工程样机达到预期的容错性能。
With the development of more electric aircraft and hybrid electric vehicles, the reliability and security of these systems are highly demanded in recent years. Hoping a system can still work reliable when the motor drive system encounter some failures. Therefore, the research of fault tolerant permanent magnet motor and its control system has become the focus research area all over the world. The words fault tolerant in engineering means that the whole system can not only operate stable and reliable under an acceptable performance by isolating the failure components from the system, but also take appropriate measures to maintain the function of its provisions when one or more key components failure. The main purpose of this thesis is to study and design a highly reliable fault-tolerant permanent magnet motor and its control system. The motor can output required power with little speed changes and minimize output torque ripple when one or more phases failures of the motor. Thus, the strong fault-tolerant ability of a motor drive system can be achieved.
     A detailed analysis of fault-tolerant permanent magnet motor structure and characteristics is established in this thesis. The magnetic isolation, physical isolation and thermal isolation between phases are realized by making each winding wounded around every other tooth of the FTPMM, and every winding is controlled by corresponding H-bridge inverter, which leads to electrical isolation between phases. Design a large harmonic leakage inductance and slot leakage inductance to inhibit the short-circuit current. A 12 slots 10 poles magnet FTPMM structure is identified after studying the winding factor, cogging torque ripple, radial magnetic pull and the selection of power devices effect which produced by the selection of the number of stator slots and rotor poles. In order to achieve a high-performance control of the system, a centrifugal magnetic steel structure is proposed in this thesis to obtain a low sine distortion rate of fundamental back-EMF waveform and reduce the cogging torque ripple value.
     The main difference between the general permanent magnet brushless motor and the FTPMM is whether it has the ability to inhibit the short-circuit current. Therefore, the analysis of the armature winding inductance and its analytic expression has become one of the major tasks of FTPMM design. By analyzing magnetic line distribution inside the motor, it is found that the winding inductance composed of magnetizing inductance, harmonic leakage inductance and slot leakage inductance. In this thesis, motor reluctance network is established and the relationship between different inductance proportional is obtained, also introduce both slot magnet voltage parameter and the calculated parameter of slot thickness, on the basis of these mentioned above, the precision analytic expression of nonlinear winding inductance and its components is achieved .
     Using the analytical method to analyze the electromagnetic field of the FTPMM with centrifugal rotor magnet and taking the effect on flux density produce by the slot into consideration to get the analytic expression of the radial flux density and tangential flux density of air gap. The analytic expression of no-load back-EMF and the cogging torque ripple has been derived respectively based on these mentioned above. The analytic expression is obtained to facilitate optimal design of the motor, also has been verified by magnetic field finite element analysis.
     According to the requirements of the load torque and dynamic response of electric actuator of the aircraft, this thesis not only calculate the effective length of stator's diameter and axial of FTPMM directly, but also derive the electromagnetic design analytic expression of FTPMM. An optimal design-criteria of FTPMM is proposed on the basis of the characteristics of FTPMM to inhibit short-circuit current and get high output performance (low sine no-load back-EMF distortion and the cogging torque ripple) as the optimization objective. A 750W 10 phase 6 poles fault tolerant permanent magnet principle prototype and a 7.5kW engineering prototype motor is built for aviation. The design of the motor is correct and reasonable through the generation test, magnetic isolation test and winding short circuit test respectively.
     Mathematical model and Matlab/Simulation model of the 10 phase 6 poles FTPMM are proposed in this thesis, also analyze the electromagnetic torque under normal state and fault state of motor drive system. A current direct control strategy is proposed based on the power conservation principle. The strategy is to control each phase winding separately and do not need the hardware identification signals or switching the software algorithm. The FTPMM and its control system achieved strong fault tolerance ability by compensating the average electromagnetic torque of the fault phase. The strong fault tolerance means that when one phase, two phases or three phases of motor or converter failure, the motor system can still output 100%,80% or 60% rated power respectively without speed changes. Multi-phase fault combination test have been taken to verify the fault tolerance ability of FTPMM system based on the current direct control strategy.
     The fault tolerant system which based on the current direct control strategy has lots of advantages like simple and reliable. But there is periodic pulsation when the system under fault state, as a result, the current direct control strategy can only applied to the situation that torque ripple is not sensitive, especially high speed and large inertia situation. In order to overcome this disadvantage, the torque pulsation of different fault states is analyzed using the vector method, and an optimal current control strategy is proposed to minimize the torque ripple under the fault state by compensating the average electromagnetic torque of fault phase and offsetting the torque ripple of fault state, the proposed strategy could not only achieve with strong fault tolerance but also improve the output performance under the fault state of the system. The simulation based on Matlab and experiments have been taken to verify its correctness.
     A 7.5kW 10 phase 6 poles fault tolerant permanent magnet prototype motor is built for aviation on a certain plane model to reflect the engineering application value of the motor design and fault tolerant control scheme proposed in the thesis. The design of the motor is correct and reasonable through the generation test, winding short circuit test and single-phase fault state test respectively. These tests show that the prototype and control strategy can achieve desired fault tolerance ability.
引文
[1]于黎明.全电飞机的技术改进及其发展状况[J].飞机设计, 1999, 9(3): 1-3.
    [2] J.S.Cloyd. Status of the United States air force’s more electric aircraft initiative[J]. IEEE Trasaction on arerospace and electronic system, 1998, 13(2): 17-22.
    [3] Anthony S. The development of a highly reliable power management and distribution system for transport aircraft[J]. AIAA, 1994, 12(8): 1-6.
    [4] Joseph A, Weimer A. Power technology for the more electrical aircraft[R]. Aerospace design conference,AIAA, 1993: 16-19.
    [5] Weimer. J Past. Present & Future of Aircraft[R]. Electrical Power Systems 39th Aerospace science Meeting & Exhibit. AIAA, 2001: 8-11.
    [6] Jack A G, Mecrow B C. Safety critical drives for aerospace applications[J]. ICEM Conf, 1994,1: 91-96.
    [7] Atallah K, Caparrelli F, Bingham C M. Permanent magnet brushless drives for aircraft flight control surface actuation[J]. London: Presented at the IEE Colloquium Electrical Machines and Systems for More-Electric Aircraft, 1999, 9(11): 99-103.
    [8] Joel R. F-18 systems research aircraft facility[R]. NASA Technical Memorandum 4433.
    [9]齐蓉,林辉,周素莹.多电飞机电气系统关键技术研究[J].航空计算机术, 2004, 34(1): 91-101.
    [10]李海波.电力作动器伺服控制器的研制[硕士学位论文].西安:西北工业大学, 2004.
    [11] Navarro R. Performance of an electro hydrostatic actuator on the F-18 system research aircraft[R]. NASA, 1997: 60-64.
    [12] D.R. Trainer, C.R. Whitley. Electric Actuation-Power Quality Management of Aerospace Flight Control systems[J]. Power Electronics, Machines and Drives, 2002:16-18
    [13]陈清泉.电动汽车——清洁有效的城交通工具[J].电工技术杂志, 1993(3): 5-7.
    [14] C.C.Chan. The state-of-the-art of electric, hybrid, and fuel cell vehicles[J]. Proc. IEEE,2007,95(4):704-718
    [15]梁龙,张欣,李国油.混合动力电动汽车驱动系统的开发与应用[J].汽车工程, 2001(2): 113-116.
    [16] P. H. Mellor, T. J. Allen, R. Ong, and Z. Rahman. Faulted behavior of permanent magnet electric vehicle traction drives[C] in Conf. Rec. of IEEE IEMDC’03,2003,1:554-558
    [17] Bianchi Nicola, Dai Pre Michele, Bolognani Silverio. Design of a fault-tolerant IPM motor for electric power steering[J]. IEEE transactions on vehicular technology, 2006, 55(4): 1102-1111.
    [18] Bianchi Nicola, Bolognani Silverio. Fault tolerant pm motors in automotive application[J]. Presented at 2005 IEEE vehicle power and propulsion conference, 2005.
    [19] Yu-seok Jeong, Seung-Ki Sul, Schulz, S. E, Patel, N.R. Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle[J]. IEEE Transactions on Industry Applications, 2005, 41(2): 46-51.
    [20]刘卫国,马瑞卿.双余度无刷直流电机控制系统[J].电气技术, 2007, 7: 11~13.
    [21]李榕,刘卫国,马瑞卿等.双余度无刷直流电动机伺服系统电流均衡性研究[J].电工技术学报, 2005, 9(20): 77-81.
    [22]马瑞卿,刘卫国,解恩.双余度永磁无刷直流电机速度伺服控制系统[J].电气传动, 2006, 36(1): 41-44.
    [23]马瑞卿,刘卫国,杨永亮.双余度无刷直流电动机的建模与余度控制技术[J].微特电机, 2008, 7: 32-35.
    [24]马瑞卿,刘卫国,解恩.双余度无刷电动机位置伺服系统仿真与试验[J].中国电机工程学报, 2008, 28(18): 98-103.
    [25]周元钧,董慧芬,王自强.飞行控制用无刷直流电动机容错运行方式[J].北京航空航天大学学报, 2006, 32(2): 190-194.
    [26]周元钧,刘宇杰.双通道永磁同步伺服系统的容错性能[J].电工技术学报, 2005,20(9): 98-102.
    [27]刘宇杰,黄君,周元钧.航空双通道永磁同步电动机的控制[J].电力电子, 2004, 2(1): 45-48.
    [28]周元钧.双绕组无刷直流电机的数学模型与转矩特性[J].电工技术学报, 2004, 19(4): 12-16.
    [29]周元钧,赵运坤,葛云海.复合式余度机电作动系统容错控制与性能分析[J].北京航空航天大学学报, 2008, 34(3): 287-289.
    [30]董慧芬,周元均,顾福深.双通道无刷直流电动机控制系统的均衡问题[J].电气传动, 2005, 35(10): 35-39.
    [31]董慧芬,周元均,沈颂华.双通道无刷直流电动机容错动态性能分析[J].中国电机工程学报, 2007, 27(21): 89-94.
    [32] Richter E. High temperature, lightweight, switched reluctance motors and generators for future aircraft engine applications[C]. 1988 American Control Conference, 7th, Atlanta, GA, Proceedings. 15-17 June 1988, 3: 1846-1851.
    [33] E Richter. Switched reluctance machines for high performance operations in a harshenvironment-A review paper[R]. In Proc. Boston: ICEM Conf 1990: 677-681.
    [34] C M Stephens. Fault detection and management system for fault tolerant switched reluctance motor drives[J]. IEEE Trans Ind Applica, 1991, 11(27): 1098-1102.
    [35] Richter E, Radun A V E, Ferreira C. An integrated electrical starter/generator system for gas turbine application, design and test results[C]. Paris: In Proc ICEM conf, 1994: 713-719.
    [36] Ferreira A A, Jones S R, Drager B T. Design and implementation of a five-hp switched reluctance, fuel-lube, pump motor drive for a gas turbine engine[J]. IEEE Trans Power Electron, 1995, 1(10): 55-61.
    [37] Craig E, Mecrow B C, Atkinson D J. A fault detection procedure for single phase bridge converters[C]. Brighto: UPEA Conf 93, 1993, 4: 468-471.
    [38] Jack A G, Mecrow B C, and Haylock J. A Comparative Study of Permanent Magnet and Switched Reluctance Motors for High- Performance Fault-tolerant Applications[J]. IEEE Transitions on industry Applications, 1996, 32(4): 889-895.
    [39] Mecrow B C, Jack A G, Haylock J A. Fault Tolerant Permanent Magnet Machine Drives[J]. IEE Proceeding, Electrical Power Applications, 1996, 143(6): 437-442.
    [40] Haylock J A, Mecrow B C, Jack A G and Atkinson D J. Operation of fault tolerant machines with winding failures[J]. IEEE Tran Energy Consum, 1999, 14 (4): 1490-1495.
    [41] Haylock J A, Mecrow B C, Jack A G. Enhanced current control of high-speed PM machine drives through the use of flux controllers[J]. IEEE Trans Industry Applications, 1999, 35(5): 1030-1038.
    [42] Mecrow B C, Jack Alan G.. Design and Testing of a Four-phase Fault-tolerant Permanent-magnet machine for an engine fuel pump[J]. IEEE Transaction on Energy Conversion, 2004, 19(2): 132-137.
    [43] Green S, Atkinson D J, Jack A G, Mecrow B C. Senseless operation of a fault tolerant PM drive[J]. IEE Proc-Electr Power Appl, 2003, 150(2): 1030-1038.
    [44] Jason D Ede, Kais Atallah, Jiabin Wang, David Howe. Effect of optimal torque control on rotor loss of fault-tolerant permanent magnet brushless machines[J]. IEEE transaction on magnetic, 2002, 38(5): 312-320.
    [45] Jia Wang, Kais Atallah, David Howe. Optimal Torque Control of Fault-Tolerant Permanent Magnet Brushless Machines[J]. IEEE Transaction on magnetic, 2003, 39(5): 2962-2964.
    [46] Kais Atallah, Jiabin Wang, David Howe. Torque ripple minimization in modular permanent brushless machines[J]. IEEE on magnetic, 2003,45(3): 370-375.
    [47] Zhigang Sun, Jiabin Wang, Geraint W. Jewell, David Howe. Enhanced optimal torque control of fault-tolerant PM machine under flux weakening operation[J]. IEEE Trans Industry Applications, 2010, 57(1): 344-353..
    [48] T. Gobalarathnam, H. A. Toliyat, and J. C. Moreira. Multi-phase fault-tolerant brushless DC motor drives[J] in Proc. World Congr. IndustrialApplications of Electrical Energy and 35th IEEE-IAS Annu. Meeting, Rome, Italy, 2000: 1683–1687.
    [49]郝振洋,胡育文,黄文新.电力作动器中永磁容错电机及其控制系统的发展[J].航空学报, 2008, 29(1): 65-74.
    [50]郝振洋,胡育文,黄文新,余文涛,李勇.电力作动器中永磁容错电机的电感和谐波分析[J].航空学报, 2009, 30(6): 1063-1069.
    [51]郝振洋,胡育文,黄文新,余文涛.具有高精度的永磁容错电机非线性电感分析及其解析式的求取[J].航空学报, 2009, 30(11): 143-149.
    [52] Zhengyang Hao, Yuwen Hu, Wenxin Huang. The analyses and prediction of an high accurate no linear inductance analysis formulation of six-phase ten-pole fault-tolerant permanent magnet machine[C]. the 11th International Conference on Electrical Machines and Systems, Wuhan, China, 2008:17-20.
    [53] Zhengyang Hao, Yuwen Hu, Wenxin Huang. The research on key technologies of fault-tolerant permanent magnet motor in the drive system of electric vehicle[C]. IEEE Vehicle Power and Propulsion Conference, Herbin, China, 2008:3-5,.
    [54]余文涛,胡育文,郝振洋,黄文新,许顺.一种改进型永磁电机数字电流滞环控制方法[J].电气传动, 2010, 40(244): 29-32.
    [55]许顺,黄文新,郝振洋,胡育文,余文涛.新型六相永磁容错电机系统及其故障诊断方法的研究[C].中国电源学会第十八届学术年会(CPSSC’2009).
    [56]齐蓉,陈明.多电飞机容错作动系统拓扑结构分析[J].航空计算机术, 2005, 35(1): 82-85.
    [57]齐蓉,陈明.永磁容错电机及容错驱动结构研究[J].西北工业大学学报,2005, 25(4): 475-478.
    [58]吉敬华,孙玉坤,朱纪洪等.新型定子永磁式容错电机的工作原理和性能分析[J].中国电机工程学报, 2008, 28(21): 96-101.
    [59]任元,孙玉坤,朱纪洪.四相永磁容错电机的SVPWM控制[J].航空学报, 2009, 30(8): 1490-1496.
    [60]赵文祥,程明,花为,杨正专.双凸极永磁电机故障分析与容错控制策略[J].中国电机工程学报, 2009, 24(4): 71-77.
    [61]杨正专,程明,赵文祥. 8/6极双凸极永磁电动机驱动系统容错拓扑结构[J].中国电工技术学报, 2009, 24(7): 34-40.
    [62] L Parsa, HA Toliyat. Fault-tolerant five-phase permanent magnet motor drives[C]. In Proc. IEEE Industry Applications Conference. (IAS), 2004: 1048-1058..
    [63] Nicola Bianchi, Silverrio Bolognani. Strategies for the fault-tolerant current control of a five-phase permanent-magnet motor[J]. IEEE Transactions on Industry Applications, 2007, 43(4): 960-970
    [64] Nicola Bianchi, Silverrio Bolognani. Impact of Stator Winding of a Five-Phase Permanent-Magnet Motor on Postfault Operations[J]. IEEE Transactions on Power Electronics, 2008, 55(3): 1978-1987.
    [65]王海南,赵争鸣,刘云峰.新型高容错电机集成系统的设计[J].电工电能新技术, 2001, 3: 29-32.
    [66]欧阳红林,周马山,童调生.多相永磁同步电动机不对称运行的矢量控制[J].中国电机工程学报, 2004, 24(7): 145-150.
    [67]刘大勇,李殿璞.多相永磁同步电动机电力推进系统缺相运行分析[J].船舶工程, 2000, 1: 56-58.
    [68]刘维亭,庞科旺,李文秀.舰船多相永磁同步电机推进系统容错控制研究[J].电气传动自动化, 2004, 26(2): 19-22.
    [69]张兰红,胡育文,黄文新.容错型四开关三相变换器异步发电系统的直接转矩控制研究[J].中国电机工程学报, 2005, 25(18): 140-145.
    [70]张兰红,胡育文,黄文新.采用瞬时转矩控制策略的异步发电系统的容错研究[J].航空学报, 2005, 26(5): 567-573.
    [71]张兰红,胡育文,黄文新.基于直接转矩控制技术的异步电机调速系统两种容错方案研究[J].南京航空航天大学学报, 2005,1: 36-41.
    [72]孙丹,贺益康,何宗元.基于容错逆变器的永磁同步电机直接转矩控制[J].浙江大学学报, 2007, 41(7): 1101-1106.
    [73]孙丹,何宗元, Ivonne Yznaga Blanco,贺益康.四开关逆变器供电永磁同步电机直接转矩控制系统转矩脉动抑制[J].中国电机工程学报, 2007, 21(7): 1101-1106.
    [74]郭宇婕,黄立培,姜建国. PWM变频器供电对异步电机绝缘的影响[J].大电机, 2001, 1: 40-45.
    [75] J. Cros and P. Viarouge. Synthesis of high performance PM motors with concentrated windings[J]. IEEE Trans. on Energy Conversion, 2002, 17(2): 248-253.
    [76] Magnussen F., Sadarangani C. Winding factors and Joule losses ofpermanent magnet machines with concentrated windings[C]. Proc. IEEEInternational Electric Machines and Drives Conference, Madison, USA, 2003:1-4.
    [77] Bianchi, N., Bolognani S., Pre, M.D., Grezzani G.. Design considerations for fractional-slot winding configurations of synchronous machines[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 997-1006.
    [78] Z.Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanentmagnet machines[J]. IEEE Trans. on Energy Conversion, 2000, 15(4): 407-412.
    [79] Sang-Moon Hwang, Jae-Boo Eom, et al. Cogging torque and acousticnoise reduction in permanent magnet motors by teeth pairing [J]. IEEETrans Magnetics, 2000, 36(5): 3144-3146.
    [80] Zhu, Z.Q., Ruang sinchaiwanich S., Howe D. Synthesis of cogging torque waveform from analysis of a single stator slot[J]. IEEE Transactions on Industry Applications, 2006, 42(3): 650-657.
    [81] N. Bianchi and S. Bolognani. Design techniques for reducing cogging torque insurface-mounted PM motors[J]. IEEE Transactions on Industry ApplicationSociety, 2002, 38(5): 1259-1265.
    [82] Y.S.Chen, Z.Q.Zhu, and D. Howe. Vibration of permanent magnet brushless machines having a fractional number of slots per pole[J]. IEEE Trans. on Magnetics, 2006, 42(10): 3395-3397.
    [83] C. Bi, Z. J. Liu, and T. S. Low. Analysis of unbalanced magnetic pull in hard disk drive spindle motors using a hybrid model[J]. IEEE Transaction on Magnetics, 1996, 32(5): 4308-4310.
    [84] D. Ishak, Z.Q. Zhu, D. Howe. Permanent Magnet Brushless Machines with Unequal Tooth Widths and Similar Slot Pole Numbers[C]. IEEE Industry Applications Society Annual Meeting, Oct., 2004.
    [85] D. Ishak, Z.Q. Zhu and D. Howe. Unbalanced magnetic forces in permanentmagnet brushless machines withdiametrically asymmetric phase windings[C]. Proc. of IEEE Industry Applications Society Conf., 2005, 2: 1037-1043.
    [86] U.M. Hoefer, A.G. Jack and B.C. Mecrow. Unbalanced magnetic pull in high-speedbrushless permanent magnet motors -experimental observations and results[C]. Proc.of Int. Conf. on Electrical Machines, (ICEM), 2006:426.
    [87]白晖宇,荆建平,孟光.电机不平衡磁拉力研究现状与展望[J].噪声与振动控制, 2009, 12(6): 5-7.
    [88] S. M. Hwang, et. al. Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors[J]. IEEE Transactions on Magnetics, 2001,37(1):2806-2809.
    [89] K. Han, C. Han-Sam, C. Dong-Hyeok, J. Hyun-Kyo. Optimal Core Shape Design for Cogging Torque Reduction of Brushless DC Motor Using GeneticAlgorithm[J]. IEEE Transactions on Magnetics, 2000,36(4):1927-1931.
    [90] L. Yong, J. Zou, L. Youngping. Optimum design of magnet shape in permanent magnet synchronous motors[J]. IEEE Transaction on Magnetics, 2003,39(6):3523-3526.
    [91] K. Dong-Hun, P. Il-Han, L. Joon-Ho, K. Cheng-Eob. Optimal shape design of iron core to reduce cogging torque of IPM motor[J]. IEEE Transaction onMagnetics, 2003,39(3):1456-1459.
    [92] Z.Q.Zhu, D.Howe. Winding inductances of brushless machines with surface-mounted magnets[C]. IEEE, 1997.
    [93]刘陵顺,胡育文,黄文新.定子双绕组异步发电机漏电抗计算的研究[J].航空学报, 2006, 27 (1): 109-114.
    [94] Huang Pinglin, Hu Qiansheng, Yu Li, HUANG Yunka. Analytical prediction of the armature reaction and winding inductances of permanent magnet brushless dc motor with concentrated coils[J]. Proceedings of the CSEE, 2005, 25(12): 127-132.
    [95] Hamid A. Toliyat, Thomas A. Lipo, J.Coleman White. Analysis of a Concentrated Winding Induction Machine for Adjustable Speed Drive Applications Part 1 (Motor Analysis)[J]. IEEE Transactions on Energy Conversion, 1991, 6(4):679-683.
    [96] D.W.Novotny, T.A.Lipo. Vector Control and Dynamics of AC Drives[B]. Calderon Press Oxford, 1981.
    [97] Zhu Z Q, Howe D, Mitchell J K. Magnetic field analysis and inductances of brushless dc machines with surface-mounted magnets and non-overlapping stator windings[J]. IEEE Trans. on Magnetics, 1995, 18(3): 115-121.
    [98] H.A.Demerdash, Hijazi, A.Arkadan. Computation of inductances of permanent magnet brushless dc motors with damper windings by energy[J]. IEEE Transaction on Energy Conversion,1988,3(3):705-713.
    [99] T.J.E.Miller, M.I.McGilp, D.A.Staton, J.J.Bremner. Calculation of inductance in permanent-magnet DC motors[J]. IEE Proc.-Electr. Power AppL, 1999,146(2):129-137.
    [100] A.M. EL-Refaie, T. Jahns, P.J. McCleer, J.W. McKeever. Experimental verificationof optimal flux weakening in surface PMmachines using concentrated windings[J]. IEEE Trans. on Industry Applications, 2006,42(2):443-453.
    [101] A.M. El-Refaie, T.M. Jahns, D.W. Novotny. Analysis of surface permanent magnet machineswith fractional-slot concentrated windings[J]. IEEE Transactions on Energy Conversion,2006, 21(1):34-43.
    [102]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社, 1989.
    [103] Z. Q. Zhu and D. Howe. Improved analytical model of predicting the magnetic field distribution in brushless permanent magnet[J]. IEEETrans. Magn,2002,38(1):229-238.
    [104] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann. Instantaneous magneticfield distribution in brushless permanent magnet DC motors: PartIII: Effect of stator slotting[J]. IEEE Trans. Magn., 1993,29(1):152-157.
    [105] X.Wang, Q. Li, S.Wang, Q. Li. Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brush-less dcmotors[J]. IEEE Trans. Energy Conv.,2003,18(3):424-432.
    [106] U. Kim and K. Lieu. Magnetic field calculation in permanent magnetmotors with rotor eccentricity: With slotting effect considered[J]. IEEETrans. Magn, 1998,34(4):2253-2266.
    [107] Z. J. Liu, J. T. Li. Accurate prediction of magnetic field and magnetic forces inpermanent magnet motors using ananalytical solution[J]. IEEE Trans. on Energy Conversion, 2008,23(3):717-726.
    [108] Damir Zarko, Drago Ban, Thomas A. Lipo. Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping[J]. IEEE Trans. on Magnetics, 2008,40(1):52-65.
    [109]戴文进译.电机原理与设计的MATLAB分析[M].北京:电子工业出版社, 2006.
    [110]陈世坤.电机设计(第2版)[M].北京:机械工业出版社, 2005.
    [111]唐任远.现代永磁电机[M].北京:机械工业出版社, 1997.
    [112]李钟明,刘卫国.稀土永磁电机[M].北京:国防工业出版社, 2001.
    [113]邱关源.电路[M].北京:高等教育出版社, 1999.
    [114] B. A.Welchko, T. A. Lipo, T.M. Jahns, S. E. Schulz. Fault tolerant three-phase ac motor drive topologies; a comparison of features, cost, and limitations[J]. IEEE Transactions on Power Electronics,2004,19( 4):1108-1116.
    [115]张兰红.异步电机起动/发电系统的研究,博士学位论文].南京:南京航空航天大学, 2005.
    [116]高景德等.交流电机及其系统的分析(第二版)[M].北京:清华大学出版社, 2005.
    [117] F. Taegen, J. Kolbe. Vibrations and noise produced by special purpose permanent-magnet synchronous motors in variable frequency operation[C]. IEEE International Conference on Power Electronics and Drive Systems,2001,2:583-588.
    [118] S. M. Hwang, D. K. Lieu. Reduction of torque ripple in brushless dc motors[J]. IEEE Transactions on Magnetics, 1995,31(2):3737-3739.
    [119] Paolo Mattavelli, Luca Tubiana, Mauro Zigiliotto. Torque-Ripple Reduction in PM Synchronous Motor Drives Using Repetitive Current Control[J]. IEEE Transactions on Power Electronics, 2005,20(6):1423-1431.
    [120] Parsa L., Toliyat H. A., Goodarzi A.. Five-Phase Interior Permanent Magnet Motors With Low Torque Pulsation[J]. IEEE Transactions on Industry Applications, 2007,43(1):40-46.
    [121]陈志勇.基于DSP的永磁同步电动机伺服系统研究[硕士学位论文].武汉:华中科技大学, 2006.
    [122]陈福龙.基于DSP的永磁同步电动机伺服控制系统研究[硕士学位论文].武汉:华中科技大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700