三相电机驱动系统中逆变器障诊断与容错控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代航空航天领域,电机系统作为执行部件其可靠性已经成为保障航空航天器安全运行的一项关键技术。为此,近年来高容错电机驱动系统的概念被提出并得到了研究者的关注。高容错电机驱动系统通过对故障进行实时诊断和分析,在发生故障后主动重构系统的软硬件结构,从而确保整个系统在不损失性能指标或部分性能指标有所降低的情况下安全运行。研究表明,在电机驱动系统中,功率变换环节尤其是逆变器中的电力电子器件及其驱动电路是容易发生故障的薄弱环节。通过在线实时诊断逆变器功率器件的故障,采取及时和适当的容错控制策略,是提高电机驱动系统可靠性的有效途径。因此,对电机驱动系统中逆变器的故障诊断和容错控制策略开展研究具有重要的理论意义和工程应用价值。
     故障诊断是实施容错控制策略的前提,诊断的可靠性和实时性直接关系到容错的效果。尽管采用解析模型是实现快速故障诊断的有效方法,但传统电机驱动系统的建模方法无法将电机和逆变器统一在一个解析模型下,因此传统模型不能准确揭示系统的状态特性,不适合于逆变器内部故障的分析和诊断。电机驱动系统包含连续状态变量和开关离散事件,是一个典型的混杂系统。因此,本文将混杂系统理论引入到其分析过程中,把逆变器的离散电压模型嵌入到电机的连续状态方程中,建立了电机驱动系统的混合逻辑动态模型。在此基础上对系统的故障特征与行为进行描述和分析,为有效诊断方法的提出提供理论基础。
     在建立电机驱动系统混合逻辑动态模型的基础上,构建了系统的状态残差方程,通过在两相静止坐标系中的残差评价来诊断和定位逆变器功率管的故障。混杂系统状态残差法可以克服系统闭环控制算法对诊断效果的影响,并将诊断时间缩小到四分之一个基波周期以内。在诊断实施过程中,通过设置残差阈值来抑制参数误差、测量误差、扰动和噪声等影响。为进一步缩短诊断时间、消除负载对诊断算法的影响,考虑逆变器的混合逻辑动态模型,分别提出了基于误差电压和桥臂中点电位监测的逆变器故障诊断方法。误差电压诊断法通过桥臂中点对地电压实测值与估计值之间的误差来诊断故障。该方法对误差电压的幅值及时间宽度进行双重判断,消除了功率管开关延时和死区的影响,提高了诊断方法的可靠性和鲁棒性,并且诊断时间在几个开关周期以内。桥臂中点电位监测法采用光耦监测桥臂中点电位,将其转化为逻辑信号,并与开关信号进行逻辑运算,在一个开关周期内完成对逆变器功率管开路故障的诊断。该方法省去了电压检测与比较环节,克服了电压检测带来的测量误差、测量噪声等对诊断方法的影响。同时,采用对开关信号上升沿延时后再进行逻辑运算的办法,消除了功率管开通延时造成的误诊断,保障了诊断的可靠性。所提出的诊断方法得到了仿真和实验验证。
     逆变器的容错控制策略通过重构软硬件结构来确保系统在故障后具有一定的降额运行能力。本文对开关冗余逆变器和级联两电平逆变器两种容错拓扑及其控制策略开展了研究。开关冗余逆变器结构简单,单管或单桥臂故障后运行在四开关三相状态,维持了故障前的电流输出能力。对四开关三相逆变器的控制策略进行研究,提出了基于补偿电压的四开关SVPWM过调制方法,来提高四开关逆变器的母线电压利用率。然后,将四开关逆变器应用于三相永磁同步电机和无刷直流电机系统中,研究了四开关三相永磁同步电机的矢量控制策略和四开关三相无刷直流电机的磁链跟踪控制策略。为提高故障后系统的电压输出能力,满足系统对电机转速指标的要求,具有良好容错性能的级联两电平逆变器被应用于开放式绕组电机驱动系统中。单电源级联两电平的容错策略归纳为故障相短接和故障相开路两种重构拓扑,与传统三相半桥逆变器具有同等的电压输出能力。结合级联两电平逆变器容错拓扑,提出了永磁同步电机的两相矢量控制和两相准矢量控制策略,以及无刷直流电机的两相直接电流控制策略,实现了电机系统的容错运行。
In modern aeronautic and astronautic fields, motor systems are used as actuators and their reliability has been a key technology for safe operation of aircraft and spacecraft systems. Therefore, highly fault-tolerant motor drive systems are recently proposed and concerned by researchers. Highly fault-tolerant motor drive systems can diagnose and analyze faults in real time, and then actively reconfigure hardwear and software structures so that the whole systems can operate safely with non-losing or partly derated performance. As research indicated, power semiconductors and their drives in power converters especially inverters are fragile parts of motor drive systems. By using on-line and real-time fault detection and tolerant control strategies, reliability of motor drive systems can be improved. Therefore, research on fault diagnostics and fault-tolerant control strategies of inverters in motor drive systems has great significance in theory and application.
     Fault diagnosis is the precondition of implementing fault-tolerant control strategies, and reliability as well as immediacy of fault diagnosis is directly related to effects of the fault-tolerant strategies. Analytic model-based diagnostics is a fast and effective fault diagnostic method, but conventional modeling methods of motor drive systems cannot be used for analyzing and detecting faults inside inverters. It is because these models are incapable of unifying both the motor and inverter into one model and revealing state characteristic of the systems. Motor drive systems are a typical hybrid system including continuous state variables and discrete switching events. In this thesis, hybrid system theory will be adopted to analyze motor drive systems and build their mixed logical dynamic(MLD) models. The behavior and characteristic of motor drive systems with some faults are analyzed based on the proposed model, which is the fundamental of fault diagnostic methods.
     Based on the presented MLD model of motor drive systems, system state residual functions are built to detect and locate inverter switch faults by means of residual evaluation in the static two-phase coordinate system. The MLD model-based inverter fault diagnostic method can get rid of effects on the diagnostic performance of close-loop control algorithms, and reduce the detection time to a quarter of fundamental-wave period. In this method, a threshold value is set in order to restrain effects of parameter errors, measurement errors, disturbances and noises. To reduce detection time further and eliminate effects on the diagnostic algorithm of loads, the MLD model of inverters is considered, and hereby error voltage based and leg neutral-point potential supervising based fault diagnostic methods are proposed, separately. Error voltage based diagnostic method uses errors between measured leg neutral-point-to-ground voltages and estimated ones to detect open-switch fault. In this method, amplitude and time width are adopted as dual criteria to evaluate error voltages in order to improve reliability and robustness by eliminating effects of swiching delay and dead time. Detection time of error voltage based method is reduced within a couple of switching periods. Photocouplers are used to supervise leg neutral-point potentials and transfer them to logical signals in leg neutral-point potential based fault diagnostic method. Then, these logical signals are used for Boolean calculation with switching signals to detect open-switch fault during one switching period. This method can get rid of effects of measurement errors and noises because it eliminates voltage sense and comparison. Meanwhile, this method uses rising edge delay of switching signals to eliminate effect of switch turn-on delay so as to obtain high reliability. These proposed methods are validated by simulations and experiments.
     Fault-tolerant control strategies of inverters can ensure post-fault systems have such derated operation capability by reconfiguring software and hardware structures. Switch-redundant inverters and cascaded two-level inverters as well as their post-fault configurations and control strategies are studied in this thesis. Switch-redundant inverters have simple configuration, and can operate as four-switch three-phase inverters after single switch fault or single leg fault. Four-switch three-phase inverters retain the same current output capability. Then, control strategies of four-switch three-phase inverters are studied, and compensated voltage-based over-modulation four-switch space vector PWM is proposed in order to improve DC-link voltage utility. Four-switch inverters are applied in permanent magnet synchronous motor(PMSM) and brushless DC motor(BLDCM) drive systems, and vector control scheme of four-switch three-phase PMSMs and flux linkage tracking control strategy of four-switch three-phase BLDCMs are researched, separately. In order to improve voltage output capability of post-fault systems and achieve motor speed index, cascaded two-level inverters(CTLIs) with good fault-tolerant performance are applied in open-end winding motor drive systems. Fault-tolerant strategies of single-source CTLIs have two reconfigured topologies: faulty phase short-circuit connected and open-circuit connected two-phase full-bridge inverters, which have the same voltage output capability with three-phase self-bridge inverters. They are used in PMSM and BLDCM drive systems, and two-phase vector control and quasi-vector control schemes of PMSMs as well as two-phase direct current control scheme of BLDCMs are proposed to maintain operation of motor drive systems.
引文
[1]董慧芬,周元钧,沈颂华.双通道无刷直流电机容错动态性能分析[J].中国电机工程学报,2007,27(21):89-94.
    [2]齐容,陈明.多电飞机容错作动系统拓扑结构分析[J].航空计算技术,2005,35(1):82-85.
    [3] Nandi S, Toliyat H A, Li X. Condition Monitoring and Fault Diagnosis of Electrical Motors-a Review[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 719-729.
    [4] Dobrodeyev P N, Volokhov S A, Kildishev A V, et al. Method for Detection of Broken Bars in Induction Motors[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3608-3610.
    [5]陈理渊.多传感器数据融合及其在电机故障诊断中的应用研究[D].杭州:浙江大学,2005:15-26.
    [6]刘振兴.电机故障在线监测诊断新原理和新技术研究[D].武汉:华中科技大学,2004:62-86.
    [7]侯新国,吴正国,夏立,等.基于相关分析的感应电机定子故障诊断方法研究[J].中国电机工程学报,2005(4):85-88.
    [8]张含蕾,周洁敏,李刚.基于小波分析的感应电动机复合故障诊断[J].中国电机工程学报,2006(8):159-162.
    [9]侯新国,吴正国,夏立,等.瞬时功率分解算法在感应电机定子故障诊断中的应用[J].中国电机工程学报,2005(5):112-117.
    [10] Romary R, Jelassi S, Brudny J F. Stator-Interlaminar-Fault Detection Using an External-Flux-Density Sensor[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 237-243.
    [11] Khov M, Regnier J, Faucher J. Monitoring of Turn Short-Circuit Faults in Stator of PMSM in Closed Loop by on-Line Parameter Estimation[C]. IEEE International Symposium on Power Electronics and Drives (SDEMPED'2009), 2009: 1-6.
    [12] Rosero J A, Romeral L, Ortega J A, et al. Short-Circuit Detection by Means of Empirical Mode Decomposition and Wigner–Ville Distribution for PMSM Running under Dynamic Condition[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4534-4547.
    [13] Stefani A, Bellini A, Filippetti F. Diagnosis of Induction Machines' RotorFaults in Time-Varying Conditions[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4548-4556.
    [14] Yazidi A, Capocchi L, Henao H, et al. Comparative Study of Two Modelling Implementation Methods of a Wound-Rotor Induction Machine: Simulation, Fault Diagnosis and Validation[C]. IEEE International Symposium on Power Electronics and Drives(SDEMPED'2009), 2009: 1-7.
    [15] Bae H, Kim S, Bae J I. Fault Detection and Diagnosis of Winding Short in Electric Machine Based on Park's Vector[C]. The 7th Asian Control Conference, 2009: 870-874.
    [16] Ebrahimi B M, Faiz J, Roshtkhari M J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4727-4739.
    [17] Fuchs F W. Some Diagnosis Methods for Voltage Source Inverters in Variable Speed Drives with Induction Machines-a Survey[C]. IEEE Industrial Electronics Society Annual Conference, 2003: 1378-1385.
    [18] Tae-Sung K, Byoung-Gun P. Fault Tolerant Strategies for BLDC Motor Drives under Switch Faults[C]. The 41st IEEE Industry Applications Annual Meeting, 2006: 1637-1641.
    [19] Jacobina C B, Ribeiro R L A. Compensation Strategies in the PWM-VSI Topology for a Fault Tolerant Induction Motor Drive System[C]. SDEMPED'2003, 2003: 211-216.
    [20] Nabeel A O, Chia-Chou Y. Fault Tolerant Operations in Adjustable-Speed Drives and Soft Starters for Induction Motors[C]. IEEE Power Electronics Specialists Conference(PESC'2007), 2007: 1942-1949.
    [21] Welchko B A, Lipo T A, Jahns T M, et al. Fault Tolerant Three-Phase AC Motor Drive Topologies: A Comparison of Features, Cost, and Limitations[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 1108-1116.
    [22]张兰红,胡育文,黄文新.三相变频驱动系统中逆变器的故障诊断与容错技术[J].电工技术学报,2004,19(12):1-9.
    [23] Lu B, Santosh K S. A Literature Review of IGBT Fault Diagnostic and Protection Methods for Power Inverters[J]. IEEE Transations on Industry Applications, 2009, 45(5): 1770-1777.
    [24] Abrahamsen F, Blaabjerg F, Ries K, et al. Fuse Protection of IGBT against Rupture[C]. Proceedings of the Nordic Workshop on Power and Industrial Electronics, 2000: 64-68.
    [25] Iov F, Blaabjerg F, Ries K. IGBT Fuses in Voltage Source Converters[C]. Proceedings of the PCIM, 2001: 267-276.
    [26] Karimi S, Gaillard A, Poured P, et al. FPGA-Based Real-Time Power Converter Failure Diagnosis for Wind Energy Conversion Systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4299-4308.
    [27] Yu O K, Park N J, Hyun D S. A Novel Fault Detection Scheme for Voltage Fed PWM Inverter[C]. Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics, 2006: 2654-2659.
    [28] Guan Y F, Sun D, He Y K. Mean Current Vector Based Online Real-Time Fault Diagnosis for Voltage Source Inverter Fed Induction Motor Drives[C]. Proceedings of the IEEE International Electrical Machines and Drives Conference, 2007: 1114-1118.
    [29]孙丹,孟濬,管宇凡,等.基于相空间重构和模糊聚类的永磁同步电机直接转矩控制系统逆变器故障诊断[J].中国电机工程学报,2007,27(6):49-53.
    [30] Peuget R, Courtine S, Rognon J P. Fault Detection and Isolation on a PWM Inverter by Knowledge-Based Model[J]. IEEE Transactions on Industry Applications, 1998, 34(6): 1318-1326.
    [31] Mendes A M S, Cardoso A J M. Voltage Source Inverter Fault Diagnosis in Variable Speed AC Drives by the Average Current Park's Vector Approach[C]. Proceedings of the IEEE International Electric Machines and Drives Conference, 1999: 704-706.
    [32] Abramik S, Sleszynski W, Nieznanski J, et al. A Diagnostic Method for On-line Fault Detection and Localization in VSI-Fed AC Drives[C]. Proceedings of the 10th European Conference on Power Electronics and Applications, 2003: CD-ROM.
    [33] Rothenhagen K, Fuchs F W. Performance of Diagnosis Methods for IGBT Open Circuit Faults in Voltage Source Active Rectifiers[C]. Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference, 2004: 4348-4354.
    [34] Sleszynski W, Nieznanski J, Cichowski A. Open-Transistor Fault Diagnostics in Voltage-Source Inverters by Analyzing the Load Currents[J]. IEEE Transations on Industrial Electronics, 2009, 56(11): 4681-4688.
    [35] Sleszynski W, Nieznanski J. Open-Transistor Fault Diagnostics in Voltage-Source Inverters by Analyzing the Load Current[C]. Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2007: 70-73.
    [36] Gilreath P, Singh B N. A New Centroid Based Fault Detection Method for 3-Phase Inverter-Fed Induction Motors[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 2005: 2663-2669.
    [37] Diallo D, Benbouzid M E H, Hamad D, et al. Fault Detection and Diagnosis in an Induction Machine Drive- A Pattern Recognition Approach Based on Concordia Stator Mean Current Vector[J]. IEEE Transactions on Energy Conversion, 2005, 20(3): 512-519.
    [38] Park J H, Kim D H, Kim S S, et al. C-ANFIS Based Fault Diagnosis for Voltage-Fed Pwm Motor Drive Systems[C]. Proceedings of the IEEE Annual Meeting of the Fuzzy Information, 2004: 379-383.
    [39] Zidani F, Diallo D, Benbouzid M E H, et al. A Fuzzy-Based Approach for the Diagnosis of Fault Modes in a Voltage-Fed Pwm Inverter Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics, 2008, 52(2): 586-593.
    [40] Kral C, Kafka K. Power Electronics Monitoring for a Controlled Voltage Source Inverter Drive with Induction Machines[C]. Proceedings of the IEEE Power Electronics Specialist Conference, 2000: 213-217.
    [41] Charfi F, Sellami F, Al-Haddad K. Fault Diagnostic in Power System Using Wavelet Transforms and Neural Networks[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 2006: 1143-1148.
    [42] Awadallah M A, Morcos M M. Diagnosis of Switch Open-Circuit Fault in PM Brushless DC Motor Drives[C]. Proceedings of the Large Engineering Systems Conference on Power Engineering, 2003: 68-73.
    [43] Awadallah M A, Morcos M M. Automatic Diagnosis and Location of Open-Switch Fault in Brushless DC Motor Drives Using Wavelets and Neuro-Fuzzy Systems[J]. IEEE Transactions on Energy Conversion, 2003, 21(1): 104-111.
    [44] Mamat M R, Rizon M, Khanniche M S. Fault Detection of 3-Phase VSI Using Wavelet-Fuzzy Algorithm[J]. American Journal of Applied Sciences, 2006, 3(1): 1642-1648.
    [45] Khanniche M S, Mamat M R. Wavelet-Fuzzy-Based Algorithm for Condition Monitoring of Voltage Source Inverter[J]. Electronics Letters, 2004, 40(4): 267-268.
    [46]杨忠林,吴正国,李辉.基于直流侧电流检测的逆变器开路故障诊断方法[J].中国电机工程学报,2008,28(27):18-22.
    [47] Chang G W, Chen S K. An Analytical Approach for Characterizing Harmonic and Interharmonic Currents Generated by VSI-Fed Adjustable Speed Drives[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2585-2593.
    [48] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault-Tolerant Reversible AC Motor Drive System[J]. IEEE Transactions on Industrial Electronics, 2004, 51(2): 439-446.
    [49] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault-Tolerant Voltage-FedPWM Inverter AC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(2): 439-446.
    [50] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault Detection of Open-Switch Damage in Voltage-Fed PWM Motor Drive Systems[J]. IEEE Transactions on Power Electronics, 2003, 18(2): 587-593.
    [51] Brouji H E, Poure P, Saadate S. A Fast Reliable Fault Diagnosis Method for Fault Tolerant Shunt Three-Phase Active Filter[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 2006: 1688-1693.
    [52] Cruz S M A, Ferreira M, Cardoso A J M. Output Error Voltages- A First Method to Detect and Locate Faults in Matrix Converters[C]. Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, 2009: 1319-1325.
    [53] Cruz S M A, Ferreira M, Cardoso A J M. A New Method for the Detection and Location of Faults in Matrix Converters[C]. Proceedings of the IEEE International Electric Machines and Drives Conference, 2009: 165-170.
    [54] Kwak S, Kim T. Fault Detection and Location of Open-Circuited Switch Faults in Matrix Converter Drive Systems[C]. Proceedings of the IEEE Vehicle Power and Propulsion Conference, 2009: 1476-1481.
    [55] Rothenhagen K, Fuchs F W. Performance of Diagnosis Methods for IGBT Open Circuit Faults in Three Phase Voltage Source Inverters for AC Variable Speed Drives[C]. Proceedings of the 11th European Conference on Power Electronics and Applications, 2005: 1-10.
    [56] Bolognani S, Zordan M, Zigliotto M. Experimental Fault-Tolerant Control of a PMSM Drive[J]. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1134-1141.
    [57]周元钧,刘宇杰.双通道永磁同步伺服系统的容错性能[J].电工技术学报,2005,20(9):98-102.
    [58] Shamsi-Nejad M A, Nahid-Mobarakeh B, Pierfederici S, et al. Fault Tolerant and Minimum Loss Control of Double-Star Synchronous Machines under Open Phase Conditions[J]. IEEE Transactions on Industrical Electronics, 2008, 55(5): 1956-1965.
    [59] Zhu J W, Ertugrul N, Soong W L. Fault Remedial Strategies in a Fault-Tolerant Brushless Permanent Magnet AC Motor Drive with Redundancy[C]. The 6th IEEE International Power Electronics and Motion Control Conference, 2009: 423-427.
    [60]周元钧,董慧芬,王自强.飞行控制用无刷直流电动机容错运行方式[J].北京航空航天大学学报,2006,32(2):190-194.
    [61]郝振洋,胡育文,黄文新.电力作动器中永磁容错电机及其控制系统的发展[J].航空学报,2008,29(1):149-158.
    [62]胡文祥,程明,朱孝勇,等.驱动用微特电机及其控制系统的可靠性技术研究综述[J].电工技术学报,2007,22(4):38-46.
    [63] Mendes A M S, Cardoso A J M. Fault-Tolerant Operating Strategies Applied to Three-Phase Induction-Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2006, 53(6): 1807-1817.
    [64]孙丹,何宗元,I Y Blanco,等.四开关逆变器供电永磁同步电机直接转矩控制系统转矩脉动抑制[J].中国电机工程学报,2007,27(21):47-52.
    [65]符强,林辉,贺博.四开关三相无刷直流电机的直接电流控制[J].中国电机工程学报,2006,26(4):149-153.
    [66]符强,林辉,贺博,张海涛.无电流传感器的四开关三相无刷直流电机驱动控制新策略[J].中国电机工程学报,2006,26(17):148-153.
    [67] Correa M B R, Jacobina C B, Silva E R C, et al. An Induction Motor Drive System with Improved Fault Tolerance[J]. IEEE Transactions on Industry Applications, 2001, 37(3): 873-879.
    [68] Ribeiro R L A, Jacobina C B, Lima A M N, et al. A Strategy for Improving Reliability of Motor Drive Systems Using a Four-Leg Three-Phase Converter[C]. The 16th Annual IEEE Applied Power Electronics Conference and Exposition, 2001: 385-391.
    [69] Wallmark O, Harnefors L, Carlson O. Control Algorithms for a Fault-Tolerant PMSM Drive[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1973-1980.
    [70] Bianchi N, Bolognani S, Zigliotto M, et al. Innovative Remedial Strategies for Inverter Faults in IPM Synchronous Motor Drives[J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 306-314.
    [71] Liu T H, Fu J R, Lipo T A. A Strategy for Improving Reliability of Field-Oriented Controlled Induction Motor Dirves[J]. IEEE Transactions on Industry Applications, 1993, 29(5): 910-918.
    [72] Mendes A M S, Cardoso A J M. Continuous Operation Performance of Faulty Induction Motor Drives[C]. IEEE International Electric Machines and Drives Conference, 2003:547-553.
    [73] Naidu M, Gopalakrishnan S, Nehl T W. Fault-Tolerant Permanent Magnet Motor Drive Topologies for Automotive X-by-Wire Systems[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 841-848.
    [74] Welchko B A, Jahns T M, Lipo T A. Short-Circuit Fault Mitigation Methods for Interior PM Synchronous Machine Drives Using Six-Leg Inverters[C]. The35th Annual IEEE Power Electronics Specialists Conference, 2004: 2133-2139.
    [75] Welchko B A, Wai J, Jahns T M, et al. Magnet-Flux-Nulling Control of Interior PM Machine Drives for Improved Steady-State Response to Short-Circuit Faults[J]. IEEE Transactions on Industry Applications, 2006, 42(1): 113-120.
    [76] Lillo L, Wheeler P W, Empringham L, et al. A Power Converter for Fault Tolerant Machine Development in Aerospace Applications[C]. The 13th International Power Electronics and Motion Control Conference, 2008: 388-392.
    [77] Lillo L, Empringham L, Wheeler P W, et al. Multiphase Power Converter Drive for Fault-Tolerant Machine Development in Aerospace Applications[J]. IEEE Transactions on Industrial Electronics, 2008, 57(2): 575-583.
    [78] Corzine K A, Sudhoff S D, Whitcomb C A. Performance Characteristics of a Cascaded Two-Level Converter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 433-439.
    [79] Welchko B A, Nagashima J M. The Influence of Topology Selection on the Design of EV/HEV Propulsion Systems[J]. IEEE Power Electronics Letters, 2003, 1(2): 36-40.
    [80] Choi G, Jahns T M. Development of a High Power Density Integrated Traction Drive[C]. 2010 WEMPEC Annual Review Poster Presentations, 2010: 23.
    [81] Wang F. High Power Density Integrated Traction Machine Drive[C]. 2010 DOE Hydrogen and Vehicle Technologies Programs Annual Merit Review Meeting, 2010: 1-16.
    [82] Brown N R, Jahns T M, Lorenz R D. Power Converter Design for an Integrated Modular Motor Drive[C]. The 42nd IEEE Industry Applications Society Annual Meeting, 2007: 1322-1328.
    [83] Zhao W, Cheng M, Zhu X, et al. Analysis of Fault-Tolerant Performance of a Doubly Salient Permanent-Magnet Motor Drive Using Transient Cosimulation Method[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1739-1748.
    [84] Ouyang W, Lipo T A. Multiphase Modular Permanent Magnet Drive System Design and Realization[C]. IEEE International Electric Machines and Drives Conference, 2007: 787-792.
    [85] Abolhassani M T, Toliyat H A. Fault Tolerant Permanent Magnet Motor Drives for Electric Vehicles[C]. IEEE International Electric Machines and Drives Conference, 2009: 1146-1152.
    [86] Parsa L, Toliyat H A. Fault-Tolerant Interior-Permanent-Magnet Machines for Hybrid Electric Vehicle Applications[J]. IEEE Transactions on VehicularTechnology, 2007, 56(4): 1546-1552.
    [87] Bennett J W, Mecrow B C, Jack A G, et al. A Prototype Electrical Actuator for Aircraft Flaps[J]. IEEE Transactions on Industry Applications, 2010, 46(3): 915-921.
    [88] Casadei D, Mengoni M, Serra G, et al. Optimal Fault-Tolerant Control Strategy for Multi-Phase Motor Drives under an Open Circuit Phase Fault Condition[C]. The 18th International Conference on Electric Machines, Vilamoura, Algarve, Portugal, 2008: 1-6.
    [89] Dwari S, Parsa L, Lipo T A. Optimum Control of a Five-Phase Integrated Modular Permanent Magnet Motor under Normal and Open-Circuit Fault Conditions[C]. IEEE Power Electronics Specialists Conference, Orlando, Florida, USA, 2007:1639-1644.
    [90] Wolmarans J J, Gerber M B, Polinder H, et al. A 50kW Integrated Fault Tolerant Permanent Magnet Machine and Motor Drive[C]. IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008: 345-351.
    [91] Wolmarans J J, Polinder H, Ferreira J A, et al. Selecting an Optimum Number of System Phases for an Integrated, Fault Tolerant Permanent Magnet Machine and Drive[C]. The 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 2009: 1-10.
    [92] Cancelliere P, Colli V D, Stefano R D, et al. Modeling and Control of a Zero-Current-Switching DC/AC Current-Source Inverter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 2106-2119.
    [93] Lennartson B, Tittus M, Egardt B, et al. Hybrid System in Process Control[J]. IEEE Control System Magazine, 1996, 16(5): 45-56.
    [94]郑刚,谭民,宋永华.混杂系统的研究进展[J].控制与决策,2004,19(1):7-11.
    [95]吴峰,刘文煌,郑应平.混杂系统方法及其在过程控制中的应用[J].清华大学学报(自然科学版),1997,37(11):77-81.
    [96]赵洪山,米增强,牛东晓,等.利用混杂系统理论进行电力系统建模的研究[J].中国电机工程学报,2003,23(1):20-25.
    [97] Antsaklis P J, Stiver J A, Lemmon M D. Hybrid System Modeling and Autonomous Control Systems[C]. Lecture Notes in Computer Science, LNCS 736, Springer-Verlag, 1993: 366-392.
    [98] Alur R, Dill D. A Theory of Timed Automata[J]. Theoretic Computer Science,1994, 126(2): 183-235.
    [99] Zurawski R, Zhou M C. Petri Nets and Industrial Applications: A Tutorial[J].IEEE Transactions on Industrial Electronics, 2001, 41(6): 567-583.
    [100]王寿光,严钢锋,蒋静坪.混合Petri网及其在混合系统中的应用探讨[J].控制与决策,2003,18(2):240-246.
    [101]Kolmanovsky I, Gilbert E G. Multimode Regulators for Systems with State and Control Constraints and Disturbance Inputs[C]. Control Using Logic-Based Switching, Lecture Notes in Control and Information Science, 1997: 104-117.
    [102]Bemporad A, Morari M. Control of Systems Integrating Logic, Dynamics, and Constraints[J]. Automatica, 1999, 35(3): 407-427.
    [103]Schaft A V, Schumacher H. An Introduction to Hybrid Dynamical Systems[C]. Lecture Notes in Control and Information Sciences, LNCIS 251, Springer-Verlag, 1999: 91-116.
    [104]Branicky M S. Studies in Hybrid Systems: Modeling, Analysis, and Control[D]. Boston: Massachusetts Institute of Technology, 1995: 49-68.
    [105]Lee J S, Zhu M C, Hsu P L. Multiparadigm Modeling for Hybrid Dynamic Systems Using a Petri Net Framework[J]. IEEE Transactions on System, Man, and Cybernetics, 2008, 38(2): 493-498.
    [106]Branicky M S. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.
    [107]Branicky M S, Borkar V S, Mitter S K. A Unified Framework for Hybrid Control: Model and Optimal Control Theory[J]. IEEE Transactions on Automatic Control, 1998, 43(1): 31-45.
    [108]Ye H, Michel A N, Hou L. Stability Theory for Hybrid Dynamical Systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4): 461-474.
    [109]Hou L, Michel A N. Stability Preserving Mappings for Stochastic Dynamical System[J]. IEEE Transactions on Automatic Control, 2001, 46(6): 933-938.
    [110]Hu T, Z Lin. Absolute Stability Analysis of Discrete-Time Systems with Composite Quadratic Lyapunov Functions[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 781-797.
    [111]Ma S, Boukas E K. Stabilization of Robust Stabilisation for Uncertain Discrete Stochastic Hybrid Singular Systems with Time Delay[J]. IET Control Theory and Applications, 2009, 3(9): 1217-1225.
    [112]Flieller D, Riedinger P, Louis J P. Computation and Stability of Limit Cycles in Hybrid Systems[J]. Hybrid Systems and Applications, 2006, 64(2): 352-367.
    [113]俞新贞,武澄.混合动态系统的稳定性[J].控制与决策,2002,16(3):311-314.
    [114]张伟,孙优贤.混合系统的稳定性分析[J].自动化学报,2002,28(3):100-104.
    [115]Sabatini A M. A Hybrid Genetic Algorithm for Estimating the Opetimal Time Scale of Linear System[J]. Journal of Computational and Applied Mathematics, 2002, 141(1-2): 227-235.
    [116]Shorten R N, Narendra K S, Mason O. A Result on Common Quadratic Lyapunov Functions[J]. IEEE Transactions on Automatic Control, 2003, 48(1): 110-113.
    [117]Mignone D, Ferrari-Trecate G, Morari M. Stability and Stabilization of Piecewise Affine and Hybrid Systems: An LMI Approach[C]. The 39th IEEE Conference on Decision and Control, 2000: 504-509.
    [118]李卫东,刘曰锋.混杂系统研究综述[J].自动化技术与应用,2007,27(1):1-4.
    [119]翟海峰.混杂系统分析与控制设计研究[D].杭州:浙江大学,2001:35-50.
    [120]Zhang J, Johansson K H, Lygeros J, et al. Dynamical Systems Revisted: Hybrid Systems with Zeno Executions[C]. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 1790, 2000: 451-464.
    [121]尹增山.混杂系统优化控制理论研究[D].杭州:浙江大学,2001:19-31.
    [122]Riedinger P, Kratz F, C Iung, et al. Linear Quadratic Optimization for Hybrid Systems[C]. The 38th IEEE Conference on Decision and Control, 1999: 3059-3064.
    [123]Hedlund S, Rantzer A. Convex Dynamic Programming for Hybrid Systems[J]. IEEE Transactions on Automatic Control, 2002, 47(9): 1536-1540.
    [124]Johannesson L, Asbogard M, Egardt B. Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(1): 71-83.
    [125]Lazar M, Heemels W P M H, Weiland S, et al. Stabilizing Model Predictive Control of Hybrid Systems[J]. IEEE Transactions on Automatic Control, 2006, 51(11): 1813-1818.
    [126]Ocampo-Martinez C, Puig V. Piece-Wise Linear Functions-Based Model Predictive Control of Large-Scale Sewage Systems[J]. IET Control Theory Applications, 2010, 4(9): 1581-1593.
    [127]Bemporad A, DiCairano S. Model Predictive Control of Discrete Hybrid Stochastic Automata[J]. IEEE Transactions on Automatic Control, 2011, 56(6): 1307-1321.
    [128]Bemporad A, Heemels W P M H, Schutter B D. On Hybrid Systems andClosed-Loop MPC Systems[J]. IEEE Transactions on Automatic Control, 2002, 47(5): 863-869.
    [129]郑雪生,李春文,戎袁杰. DC/AC变换器的混杂系统建模及预测控制[J].电工技术学报,2009,24(7):87-92.
    [130]Pepyne D L, Cassandras C G. Optimal Control of Hybrid Systems in Manufacturing[J]. Proceedings of the IEEE, 2000, 88(7): 1108-1123.
    [131]Beydoun A, Wang L Y, Sun J, et al. Hybrid Control of Automotive Powertrain System: A Case Study[C]. Lecture Notes in Computer Science 1386, 1998: 33-48.
    [132]Ferrari-Trecate G, Mignone D, Castagnoli D. Mixed Logic Dynamical Model of a Hydroelectric Power Plant[C]. International Conference Automation of Mixed Processes Hybrid Dynamic Systems, 2000: 1-6.
    [133]Mobus R, Baotic M, Morari M. Multi-Object Adaptive Cruise Control[D]. Stuttgart: Swiss Federal Institute of Technology, 2003: 359-374.
    [134]刘家庆,洪军,卢强.东北电网混杂自动电压控制的研究[J].电力系统自动化,2004,28(1):69-73.
    [135]张志学,马皓,毛兴云.基于混杂系统模型和事件辨识的电力电子电路故障诊断[J].中国电机工程学报,2005,25(3):49-53.
    [136]马皓,毛兴云,徐德鸿.基于混杂系统模型的DC/DC电力电子电路参数辨识[J].中国电机工程学报,2005,25(10):50-54.
    [137]张志学.基于混杂系统理论的电力电子电路故障诊断[D].杭州:浙江大学,2005:25-39.
    [138]Geyer T, Papafotiou G, Morari M. Hybrid Model Predictive Control of the Step-Down DC-DC Converter[J]. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1112-1124.
    [139]张志学,马皓,何湘宁.基于残差分析的电力电子电路拓扑辨识[J].中国电机工程学报,2006,26(18):47-53.
    [140]Cavalier T M, Pardlos P M, Soyster A L. Modeling and Integer Programming Techniques Applied to Propositional Calculus[J]. Computers and Operations Research, 1990, 17(6): 561-570.
    [141]Lipo T A. Analysis of Synchronous Machines[M]. Boca Raton: CRC Press, 2008: 57-73.
    [142]陈玉东,汤伟,翁正新,施颂椒.基于参考模型的线性时不变系统的故障诊断[J].系统工程与电子技术,2001,23(5):18-21.
    [143]Chung W H, Speyer J. A Game Theoretic Fault Detection Filter[J]. IEEE Transactions on Automatic Control, 1998, 42(2): 143-161.
    [144]Wang H, Daley S. Actuator Fault Diagnosis: An Adaptive Oberver-Based Technique[J]. IEEE Transactions on Automatic Control, 1996, 41(7): 1073-1078.
    [145]Hofling T, Isermann R. Adaptive Parity Equations and Advanced Parameter Estimation for Fault Detection and Diagnosis[C]. Proceedings of IFAC World Congress, San Francisco, USA, 1996: 55-60.
    [146]Isermann R. Model Base Fault Detection and Diagnosis Methods[C]. Proceedings of the 1995 American Control Conference, Seattls, Washington, USA, 1997: 1605-1609.
    [147]Patton R J, Chen J. A Review of Parity Space Approaches to Fault Diagnosis[J]. Journal of Guidance, Control and Dynamics, 1994, 17(2): 278-285.
    [148]Hwang D S, Changb S K, Hsu P L. A Practical Design for a Robust Fault Detection and Isolation System[J]. International Jouranl of System Science, 1997, 28(3): 265-275.
    [149]蒋志坚,徐殿国,朱香娟.感应电动机四开关低成本逆变器的磁链轨迹改进控制研究[J].中国电机工程学报,2003,23(11):74-79.
    [150]杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [151]Correa M B R, Jacobina C B, Silva E R C, Lima A M N. A General PWM Strategy for Four-Switch Three-Phase Inverters[J]. IEEE Transactions on Power Electronics, 2006, 21(6): 1618-1627.
    [152]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J].电机与控制学报,2003,7(2):87-91.
    [153]Lee B K, Kim T H, Ehsani M. On the Feasibility of Four-Switch Three-Phase BLDC Motor Drives for Low Cost Commercial Applications: Topology and Control[J]. IEEE Transactions on Power Electronics, 2003, 18(1): 164-172.
    [154]沈艳霞,纪志成,姜建国.基于四开关逆变器的无刷直流电机控制[J].电力电子技术,2003,37(6):4-6.
    [155]Corzin K A, Sudhoff S D, Whitcomb C A. Performance Characteristics of a Cascaded Two-Level Converter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 433-439.
    [156]Baiju M R, Mohapatra K K, Kancha R S, et al. A Dual Two-Level Inverter Scheme with Common Mode Voltage Elimination for an Induction Motor Drive[J]. IEEE Transactions on Power Electronics, 2004, 19(3): 794-805.
    [157]Shamsi-Nejad M A, Nahid-Mobarakeh B, Pierfederici S, et al. SeriesArchitecture for Fault Tolerant PM Drives: Operating Modes with One or Two DC Voltage Source(s)[C]. 2010 IEEE International Conference on Industrial Technology, 2010: 1525-1530.
    [158]Srinivas S, Somasekhar V T. Space-Vector-Based PWM Switching Strategies for a Three-Level Dual-Inverter-Fed Open-End Winding Inducton Motor Drive and Their Comparative Evaluation[J]. IET Electric Power Applications, 2008, 2(1): 19-31.
    [159]Somasekhar V T, Srinivas S, Kumar K K. Effect of Zero-Vector Placement in a Dual-Inverter Fed Open-End Winding Induction-Motor Drive with a Decoupled Space-Vector PWM Strategy[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2497-2505.
    [160]Raminosoa T, Gerada C, Othman N. Rating Issues in Fault Tolerant PMSM[C]. IEEE International Electric Machines and Drives Conference, 2009: 1592-1599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700