松耦合全桥谐振变换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松耦合感应电能传输技术是一种基于电磁感应耦合理论、现代电力电子能量变换技术及控制理论于一体的新型能量传输技术。该技术实现了供电线路和用电设备之间无物理连接下的能量传输。本文选取全桥谐振变换器作为主电路拓扑对松耦合能量传输技术进行了理论分析及实验。
     首先,文中对松耦合感应能量传输方式的特点、研究现状和发展趋势予以介绍。并对这种新型传输方式在大功率汽车充电系统中的应用进行了介绍。
     然后对影响变换器性能、系统效率及功率传输能力的松耦合变压器进行了研究。提出了一种优化的松耦合变压器绕组绕制方案,并基于ANSYS仿真环境对这种优化绕法方案进行了仿真,同时给出实验测试结果,仿真和实验结果验证了以上分析。
     变压器原副边磁芯间大气隙的存在会增加开关管的电压电流应力,影响功率传输能力和系统效率。通过合理的补偿并辅以适当的控制可以很大弥补因气隙较大而造成的功率传输受限等问题,从而达到良好的功率传输的目的。但因补偿电路的加入,使系统为多阶系统,很可能出现频率分叉的不稳定现象,在频率分叉机理研究的基础上,本文给出避免系统出现分叉需满足的条件。
     除松耦合联接的变压器外负载的变化也是影响变换器性能及控制的重要因素之一。在对采用不同补偿拓扑时的负载特性进行研究的基础上,又给出对比分析,从而归纳出各种补偿拓扑的优缺点及适用场合。
     最后,制作了基于松耦合变压器的全桥谐振变换器样机,给出了各种情况下变换器的功率传输能力与系统效率的测试结果,并进行了对比说明,从而验证了文中的理论分析及结论。
Loosely coupled inductive power transmission is a novel power transfer technology, which is based on electromagnetism and coupling theory, modern power transform technology. And it realizes the non-contact power transfer between power source and load equipment.
     The paper selects full-bridge resonant converter as the main topology and gives theoretical analysis and experimental verification of this novel technology.
     Firstly, the characteristics, present status, and research direction of loosely coupled inductive power transfer technology are presented. And the application of this technology to high power electric vehicle charging is given.
     Secondly, the loosely coupled transformer, which acts as the interface between take-apart primary source and secondary load, is studied. The influence of loosely coupled transformer on power transfer capability, over all efficiency and system performance is analyzed. And a novel winding strategy is put forward, and it can provide a larger coupling factor than conventional winding strategy. The simulation analysis based on ANSYS Emulation environment and test results validate the feasibility of the novel winding strategy.
     The large gap in loosely coupled transformer brings a high stress on the switch, and impacts power transfer capability, and thus reduces the overall efficiency. Through analysis, proper compensation can reduce the above-mentioned influences of the large gap to an accepted level, and increases the feasibility of this novel power transfer means.
     Due to the addition of the compensation units, the bifurcation phenomenon probably appears, and the system goes into the unsteady state. Thus, the bifurcation is analyzed in detail, and the conditions avoided the bifurcation is deduced.
     Similar to loosely coupled transformer, the load change also has a great influence on system control and performance. Through comparison, the characteristics of full-bridge converter with load under different compensation strategies is revealed, and it provides a guideline to the proper choice of compensation topology for different applications.
     Finally, a prototype of full-bridge converter with loosely coupled transformer is fulfilled. The power transfer capabilities under different conditions are characterized, and the overall efficiency is also given, which verify the correctness of the analysis and the conclusion given in previous chapter.
引文
[1] Bitterly, J.G.,“Flywheel technology:past, present, and 21st century projections,”IEEE Aerospace and Electronic Systems Magazine, 1998:13-16
    [2] Chwei-Sen Wang,Grant A.Covic,Power Transfer Capabilityand Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems[J] IEEE transactions on industrial electronics, Vol.51, No.1,Feb 2004:148-156
    [3] H.Sakamoto, K.Harade, S.Washimiya, K, takehara. Large Air-Gap Coupler for Inductive Charger[J],IEEE transactions on power electronics, Vol 35,No.5 January 1999:3526-3528
    [4] Nasser H.Kutkut,Deepak M.Divan,Donald W.Novoty,Raymond H.Marion . Design Considerations and Topology Selection for a 120-kW IGBT Converter for EV Fast Charging[J],IEEE transactions on power electronics, Vol. 13, No. 1, January 1998:169-178
    [5] A. F. de Souza and I. Barbi.A new ZVS semi-resonant high powerfactor rectifier with reduced conduction losses[C], Proceedings of the Power Electronics Specialists Conference, 1996:203-209
    [6] 朱建华,罗方林.功率谐振变换器及其发展方向.电工电能新技术,2004,23(1):55~59
    [7] Chwei-Sen Wang, Stielau, O.H., Covic, G.A. ,“ Design considerations for a contactlesselectric vehicle battery charger,”IEEE Transactions on Industrial Electronics, 2005,vol52, No.5:1308-1314
    [8] Myunghyo Ryu, Honnyong Cha, Yonghwan Park, et al,“Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,”inProc. IEEE IECON, 2005,:1036-1042
    [9] Pagano, M., Piegari, L.,“Supercapacitor flywheel for high power electrochemical sources,”in Proc. IEEE PESC, 2004, vol.1:718-723
    [10] Rufer, A., Hotellier, D., Barrade, P.,“A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks,”IEEE Transactions on PowerDelivery, 2004:629-636
    [11] 王诗恩,何仁,电动汽车的关键技术,江苏理工大学学报,1996,17(5):35~40
    [12] H,Jiang“,Steady state analysis of the series resonant converter based on loosely coupled inductive couplers,”PhD dissertation Vrije Universiteit Brussel (VUB) Belgium, 1996
    [13] Li, W, “Control aspects of fully automatic inductive charging system,”PhD dissertation Vrije Universiteit Brussel (VUB) Belgium, 2002
    [14] A.W.Green, J.T.Boys“,10 kHz inductively coupled power transfer-concept and control,”in Proc. fifth international conference on power electronics and variable-speed drives, 1994:694-699
    [15] J.T.Boys, G.A.Covic, A.W.Green,“Stability and control of inductively coupled power transfer systems,”in Proc. IEE Electric Power Applications, 2000:37-43
    [16] A.P.Hu, J.T.Boys,“Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies,”in Proc. international conference on power system technology, 2000:327-332
    [17] J.T.Boys, A.P.Hu, G.A.Covic,“Critical Q analysis of a current-fed resonant converter for ICPT applications,”in Proc. Electronics Letters, 2000:1440-1441
    [18] J.T.Boys, G.A.Covic,“Pick-up transformer for ICPT applications,”in Proc. Electronics Letters, 2002:1276-1278
    [19] Junji Hirai, Tae-Woong Kim, Atsuo Kawamura,“Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information,”IEEE Transactions on Power Electronics, 2000, vol15, No.2:335-345
    [20] Bieler,T., Perrottet, M., Nguyen, V., et al,“Contactless power and information transmission,”IEEE Transactions on Industry Electronics, 2002, vol.38, No.5:1266-1272
    [21] Yungtaek Jang, Jovanovic, M.M.,“A Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers,”IEEE Transactions on Industry Electronics, 2003, vol.50, No.3:520-527
    [22] 李宏,感应电能传输——电力电子及电气自动化的新领域,电气传动,2001 年第 2期:62-64
    [23] 秦海鸿,王慧贞,严仰光,非接触式松耦合感应电能传输系统原理分析与设计,第十五届全国电源技术年会论文集,2003:704-708
    [24] 戴欣, 孙跃,单轨行车新型供电方式及相关技术分析,重庆大学学报,2003, 26(1):50-53
    [25] 武瑛,严陆光,徐善纲,新型无接触能量传输系统,变压器,2003,24(5), pp.1-6
    [26] 武瑛,严陆光,黄常纲等,新型无接触电能传输系统的性能分析,电工电能新技术, 2003,22(4):10-14
    [27] 武瑛, 严陆光, 徐善纲, 新型无接触电能传输系统的稳定性分析,中国电机工程学报,2004, 24(5):63-66
    [28] 左文,杨民生,基 DSP 的非接触式供电技术及其应用前景,大众用电,2004 年第 8期:23-24
    [29] 刘维罡,董慧芬,串联谐振逆变器在无接触电能传输技术中的研究与应用,国外电子测量技术,2004年第5期:29-32
    [30] 韩腾,卓放,刘涛等,可分离变压器实现的非接触电能传输系统研究, 电力电子技术, 2004, 38(5):28-30
    [31] 韩腾, 卓放, 闫军凯等, 非接触电能传输系统频率分叉现象研究,电工电能新技术,2005, 24(2):44-48
    [32] Kutkut, N.H., Klontz, K.W.,“Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,”in Proc. IEEE APEC 1997,vol.2:.841-847
    [33] Stielau, O.H., Covic, G.A.,“Design of loosely coupled inductive power transfer systems,”in Proc. international conference on power system technology, 2000:85-90
    [34] Ayano, H., Yamamoto, K., Hino, N., et al,“Highly efficient contactless electrical energy transmission system,”in Proc. IEEE IECON, 2002,vol.2:1364-1369
    [35] Byeong-Mun Song, Kratz, R., Gurol, S.,“Contactless inductive power pickup system for Maglev applications,”in Proc. IEEE IAS, 2002, vol.3:1586-1591
    [36] 丁道宏,电力电子技术,北京,航空工业出版社,1999:135-292
    [37] 阮新波,严仰光,直流开关电源的软开关技术,北京,科学出版社,2000,pp.58-86
    [38] 赵修科,实用电源技术手册——磁性元器件分册,沈阳,辽宁科学技术出版社,2002:1-101
    [39] Steigerwald, R.L.,“A comparison of half-bridge resonant converter topologies,” IEEE Transactions on Power Electronics, 1988:174-182
    [40] Batarseh, I.,“Resonant converter topologies with three and four energy storageelements,”IEEE Transactions on Power Electronics, 1994:64-73
    [41] Robert W.Erickson, Dragan Maksimovic,“Fundamentals of power electronics,”Massachusetts, USA, Kluwer Academic Publication, 2001:1-883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700