分子伴侣协助的基因工程药物重组人干扰素-γ体外重折叠研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素(Interferon,IFN)是一种高活性、多功能诱生蛋白,具有抗病毒、抗肿瘤及免疫调节等生理功能,因而在医药、临床医学等领域有着重要的应用。与IFN-α/β相比,IFN-γ具有更强的免疫调节和细胞抑制活性,因而更加受到人们的重视。目前,人们不仅成功地构建了能够大量表达IFN-γ的基因工程菌,而且利用该基因工程菌生产的IFN-γ已被批准为临床用药。但是,在利用E.coli进行大量表达IFN-γ时,往往形成无活性的包涵体,这就要求对其进行复性,使其重新具有生物活性。
     小分子伴侣sht GroEL 191-345是GroEL顶端区域氨基端残基191~345片段克隆表达产物。它是一种新型的协助蛋白质折叠体系。本文研究了在小分子伴侣的协助条件下,对由E.coli基因工程菌产生的重组人IFN-γ(rhIFN-γ)包涵体进行复性技术研究,探索较佳的复性条件,以期得到具有更高蛋白收率及活性的rhIFN-γ。
     首先建立了rhIFN-γ的生物活性检测方法,测定细胞为人羊膜细胞Wish株,攻击病毒为水泡性口炎病毒(VSV)株。对以细胞病变(CPE)效应为基础的结晶紫染色法进行了条件优化,考察了结晶紫染液的用量及作用时间、溶媒提取时间、孔板效应及边缘效应等条件的影响。结果表明结晶紫染液的加入量在30~50μL之间较适宜,同时应当与染液作用时间相关联,用量大时作用时间相对减少;有机溶液脱色30min后测定较好,此时细胞核中的结晶紫已被提取完全,而结晶紫在脱色液中尚能稳定存在;为了最大程度利用微量板,同时考虑到边缘效应和孔板效应的存在,第1和第12列加细胞对照,第6和第7列加病毒对照。
     其次在摇瓶的基础上进行了小分子伴侣sht GroEL 191-345的发酵罐培养。操作条件为:初始葡萄糖浓度为5g/L,接种量2.5%,转速为350r/min,通气量200L/h,装液量2.1L/3.7L,发酵温度33℃。经过超声波破碎、高速离心分离、亲和层析纯化及脱盐后得到sht GroEL 191-345 216.2mg/L发酵液。
     然后考察了游离和固定化小分子伴侣sht GroEL 191-345对rhIFN-γ体外重折叠复性的作用。sht GroEL191-345的加入有效地促进了rhIFN-γ的复性,用含脲1.0mol/L,pH7.7的复性缓冲液将rhIFN-γ包涵体稀释至初始蛋白浓度100μg/mL,15℃复性4h后,加入sht GroEL 191-345的一组(sht GroEL 191-345同rhIFN-γ的摩尔比为2:1)蛋白收率提高了2.2倍,总活性提高了近3倍;将小分子伴侣固定化在NHS-activated Sepharose Fast Flow凝胶后,不但能重复利用,而且进一步提高了rhIFN-γ复性效率,在初始蛋白浓度为400μg/mL时,仍使蛋白质收率达到46.29%和比活达到9.05×10~6IU/mg。
    
    浙江大学硕士学位论文
    摘要
     最后初步研究了人工分子伴侣(cTAB+p一CD)系统对thIFN一丫体外重折叠
    复性的作用。实验结果表明,人工分子伴侣系统也可以提高thIFN一丫的复性效果,
    较优复性操作条件:复性体系中cTAB浓度1 00林mol几,15℃下复性30min后,
    加入p一CD(p一CD与cTAB的摩尔比为18:l),继续复性至4h终止,复性缓冲液
    pH7.7,脉浓度1.5 mol/L。在此操作条件下,当初始蛋白浓度为100林g/mL时,
    蛋白收率 29.76%,比活6.34、IO6IU/ing。
The interferons are Cytokines with antiviral, antiproliferative and imrnnnomodulatory activities. Among three major distinguished types, interferon-γ (IFN- γ) is more hailed for their specific properties in inhibition of cell growth and modulation of immune functions. Now the recombinant DNA techniques make it possible to mass express recombinant IFN-γ in E. coli; however, this may result in the formation of inclusion bodies, and the recovery of biologically active products becomes significant.
    Molecular chaperone GroEL-GroES is a ubiquitous class of proteins in E. coli that play an essential role in protein folding by helping other polypeptides reach a proper conformation or cellular location without becoming part of the final structure. As the minimal mechanism of GroEL-mediated protein folding, minichaperones, fragments encompassing the apical domain of GroEL, can facilitate the refolding of several proteins in vitro without requiring GroES, ATP, or the cage-like structure of multimeric GroEL.
    Here, we reported the minichaperone sht GroEL191-345 mediated refolding of recombinant human IFN- γ (rhIFN-γy) produced in E. coli. SDS-PAGE was performed with Laemmli's Tris-glycine buffer system for protein analysis. Protein concentrations and rhIFN-γ total activity were determined by a modification of Bradford's .method and cytopatic effect (CPE) method, respectly.
    Firstly, the colorimetric CPE method has been optimized to measure the biological activity during the refolding of rhIFN-γ inclusion bodies.The dosage and the absorbance of crystalline violet, the extraction time of the solvent, plate effect and marginal effect were investigated.
    Secondly, we successfully transferred a batch culture from a 500ml shaldng flask to a 3.7L bioreactor and explored the soluble expression and efficient purification of recombinant sht GroEL191-345, and 216.2 mg/L homogeneous protein was obtained. Control parameters: operating volume 2.1L, inoculation percent 2.5%, temperature 33℃, the stirred speed 350 r/mih and the airflow rate 200 L/h.
    Thirdly, we optimized the refolding condition of rhIFN-γ assisted by sht GroEL191-345. Compared with the conventional method, such as dilution and dialysis, the presence of sht GroEL191-345 in the refolding buffer not only enhanced the specific activity, but also raised the refolding efficiency. With the initial protein concentration of 100μg/mL, the protein yield and specific activity, of rhIFN- γ
    
    
    
    
    assisted by sht GroEL191-345 was 2.2 and 3 folds of that under spontaneous condition respectively. Optimal operating parameters in refolding of rhlFN-γy assisted by sht GroEL191-345 were as follows: refolding temperature 15 ℃, refolding time 4 h, pH 7.7, initial concentration of IFN- y 100-200μg/mL and the mol ratio of sht GroEL191-345 versus IFN- y 1:1-2:1. Furthermore, the immobilization of sht GroEL191-345 on NHS-activated sepharose fast flow made it possible to be recycled. The protein yield and the specific activity of rhlFN- y were 46.29% and 9.05 x 106 IU/mg even the initial protein concentration was up to 400μg/mL.
    Finally, preliminary results were obtained in the refolding of rhlFN- y assisted by artificial chaperone system (CTAB and P-CD). Optimal operating parameters in refolding of rhlFN- y assisted by CTAB and P-CD were as follows: refolding temperature 15℃, refolding time 4 h, pH=7.7, urea concentration 1.5mol/L, CTAB concentration 100μmol/L, the mol ratio of P-CD versus CTAB 18:1 and the point of adding beta-CD 30 min after the refolding process began. With the initial protein concentration of 100 μg/mL, the protein yield and specific activity of rhlFN- y assisted by CTAB and p-CD was 29.76% and 6.34 x106 IU/mg correspondingly.
引文
[1]Isaacs A & Lindenmann J. Virus interference. I. The interferon. Proc. R. Soc. Ser. B 1957, 147:258-267
    [2]Lockart RZ Jr. Criteria for acceptance of a viral inhibitor as an interferon and a general description of the biological properties of known interferons. In NB Finter (Ed.): Interferons and Interferon Inducers. North Holland, Amsterdam,1973
    [3]Stewart WE. The Interferon System. Springer Verlag, Berlin, 1979
    [4]Kontsek P & Kontsekov E. Forty years of interferon. Acta virologica 1997, 41: 349-353
    [5]Imanishi J. Basis and clinical applications of interferon. Japan Medical Association Journal 2004, 47:7-12
    [6]Wheelock EF. Interferon-like virus inhibitor induced in human leukocytes by phytohemagglutinin. Science 1965, 141, 310-311
    [7]Youngner JS & Salvin SB. Production. and properties of migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. J. Immunol. 1973, 111: 1914-1922.
    [8]Nagata S, Taira T H, Hall A, Johnsrud L, Streuli M, Escodi J, Ball W, Cantell K & Weissmann C. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 1980, 284:316-320
    [9]Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14: 778-809
    [10]Shtrichman R & Samuel CE. The role of gamma interferon in antimicrobial immunity. Curr Opin Microbiol. 2001, 4:251-259
    [11]Walter MR, Windsor WT, Nagabhushan TL, Lundell DJ, Lunn CA, Zauodny PJ & Narula SW. Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 1995, 376: 230-235
    [12]Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP & Bugg CE. Three dimensional structrue of recombinant human interferon-γ. Science 1991, 252:698-702
    [13]Sen GC & Lengyel P.The interferon system. A bird's eye view of its biochemistry. J. Biol. Chem. 1992, 267:5017-5020
    [14]Van Weyenbergh J, Lipinsld P, Abadie A, Chabas D, Blank U, Liblau R &
    
    Wietzerbin J. Antagonistic action of IFN-β and IFN- γ on high affinity Fc-γ receptor expression in healthy controls and multiple sclerosis patients. J. Immunol. 1998, 161: 1568-1574.
    [15]Abbas AK, Murphy KM & Sher A. Functional diversity of helper T lymphocytes. Nature 1996, 383: 787-793
    [16]Lee HO, Miller SD, Hurst SD, Tan LJ, Cooper CJ & Barrett TA. Interferon gamma induction duringoral tolerance reduces T-cell migration to sites of inflammation. Gastroenterology 2000, 119:129-138
    [17]Hobeika AC, Etienne W, Torres BA, Johnson HM & Subramaniam PS. IFN-gamma induction of p21(WAF1) is required for cell cycle inhibition and suppression of apoptosis. J Intetferon Cytokine Res. 1999, 19:1351-1361
    [18]Knupfer MM, Knupfer H, Van Gool S, Domula M, Wolff JEA. Interferon gamma inhibits proliferation and hyaluronic acid adhesion of human malignant glioma cells in vitro. Cytokine 2000, 12:409-412
    [19]Golab J. Interleuldn 18-interferon γ inducing factor-a novel player in tumour immunotherapy? Cytokine 2000,12:332-338
    [20]Stuehr DJ & Nathan CF.Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 1989, 169:1543-1555
    [21]Harris N, Buller RM & Karupiah G. Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J. Virol. 1995, 69: 910-915
    [22]Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T & Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science ,1992, 256:225-228.
    [23]吕梅冰.IFN-γ的临床研究应用进展.广东药学院学报 2000,16:221-223
    [24]Rudolph E, Bhm G, Lilie H and Jaenicke R. Folding proteins. In Protein Function. A Practical Approach, 2nd ed. Edited by Creighton TE. New York: IRL Press, 1997, pp. 57-99
    [25]De Bernardez Clark E. Refolding of recombinant of proteins. Curr: Opin. Biotechnol. 1998, 9:157-163
    [26]Maachupalli-Reddy J, Kelley BD & De Bernardez Clark E. Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnol. Prog. 1997, 13:144-150
    [27]Zhao QY. Irreversible thermodynamic theory for protein folding and protein
    
    thermodynamic structures. Prog. Biochem. Biophys. 2001, 28: 429-435
    [28]Lilie H, Schwarz E & Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol, 1998, 9:497-501
    [29]Kiefhaber T, Rudolph R, Kohler HH & Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/Technology, 1991, 9:825-829
    [30]Yeh SR & Rousseau DL. Folding intermediates in cytochrome c. Natu. Stru. Biol. 1998, 5:222-228
    [31]Creighton TE: How important is the molten globule for correct protein folding? Trends Biochem. Sci. 1997, 22:6-10
    [32]Kohno T, Carmichael DF, Sommer A & Thompson RC. Refolding of recombinant proteins. Methods Enzymol.1990, 185: 187-195
    [33]Kung H, Sugino H & Susumu H. Immune interferon, US Patent, 1994, 5, 593, 667
    [34]郭立安,梁国栋&孙瑛.使用疏水作用色谱研究蛋白质的构象变化.分析化学 1993,21:808-810
    [35]郭立安.高效液相色谱法纯化蛋白质理论与技术 西安:陕西科技出版社,1993
    [36]Gonzales T, Awade A, Besson C & Robert-Baudouy J. Purification and characterization of recombinant pyrrolidone carboxyl peptidase of Bacillus subtilis. J. Chromatogr., 1992, 584:101-107
    [37]耿信笃,冯文科,常建华,常晓青,马凤,殷剑宁,李华儒 & 边六交.用制备型高效疏水色谱复性和预分离重组人干扰素-Gamma.高技术通讯 1991,7:1-4
    [38]郭立安 & 朱宝泉.高效疏水作用色谱填料的合成及其在重组人干扰素纯化中的应用.高等学校化学学报 1997,18:1462-1464
    [39]Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY & Wang DI. Polyethylene glycol enhanced protein refolding. Bio/Technology 1992, 10: 1013-1019
    [40]Tandon S & Horowitz PM. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent. J Biol Chem, 1987, 262:4486-4491
    [41]Sadana A. Protein refolding and inactivation during bioseparation: bioprocessing implications. Biotech. Bioeng.1995, 48:481-489
    [42]郑平华,陈富国,王正旺,潘学工 & 陆德如.聚乙二醇提高重组人的γ-干
    
    扰素复性的研究.高技术通讯 1993,10:23-26
    [43]Arora D & Khanna N. Method for increasing the yield of properly- folded recombinant human gamma interferon, from inclusion bodies. J. Biotech. 1996, 52:127-133
    [44]Thirumalai D & Lorimer GH. Chaperonin-mediated protein refolding. Annu. Rev. Biophys. Biomol. Struct. 2001.30:245-269
    [45]张佳艺,关怡新&姚善泾.分子伴侣及其在蛋白质复性中的应用.化学通报 2002,65:w052
    [46]Bulleid NJ & Freedman RB. Defectuve co-translational formation of disulphide bonds in protein disulphide isomerase-deficient microsomes. Nature 1990, 335: 649-657
    [47]Freedman RB. Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Syrup. 1989, 55:167-192
    [48]Lang K, Schmid FX and Fisher G. Catalysis of protein folding by prolyl isomerase. Nature 1987, 329:268-270
    [49]Rozema D & Gellman SH. Artificial chaperone-assisted refolding of carbonic anhydrase B. J. Biol. Chem. 1996, 271:3478-3487
    [50]Rozema D & Gellman SH. Artificial chaperone-assisted refolding of denatured-reduced loysozyme: Modulation of the competition between renaturation and aggregation. Biochemistrty 1996, 35:15760-15771
    [51]Mayer M & Buchner J. Refolding of inclusion body proteins. Methods Mol. Med. 2004, 94:239-254
    [52]阎哲.原核细胞表达的重组蛋白质复性研究进展.国外医学:预防.诊断.治疗用生物制品分册 1997,20:10-14
    [53]Uversky VN. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 1993, 32:13288-13298
    [54]Allen PT & GironDJ. Rapid. sensitive assay for interferons based on the inhibition of MM virus nucleic acid synthesis. Appl. Microbiol. 1970; 20: 317-322
    [55]Familleti PC, Rubinstein S & Pestka S. A convenient and rapid cytopathic effect inhibition assay for interferon. Methods Enzymol. 1987, 78:387-392
    [56]Self CH & Cook DB. Advances in immunoassay technology. Curr: Opin. Biotechnol. 1996, 7:60-65
    [57]Arakawa T, Alton NK & Hsu YR. Preparation and characterization of
    
    recombinant DNA-derived human interferon. J. Biol. Chem. 1985, 260: 14435-14439
    [58]Zlateva T, Boteva R, Salvato B & Tsanev R. Factors affecting the dissociation and aggregation of human interferon gamma. Inter. J. Biol. Macromolecules 1999, 26:357-362
    [59]康建,刘亚革,孟璐露 & 孙亦红.γ-干扰素在反相高效液相色谱柱上色谱行为与分离的研究.色谱 1997,15:18-21
    [60]Lewis JA. A sensitive biological assay for interferons. J. Immunol. Methods 1995, 185:9-17
    [61]童葵培,金梅,钱春宏 & 张智清.重组人干扰素γ的分子结构及其生物活性.中国生物制品学杂志 2002,15:79-80
    [62]Kelder B, Rashidbaigi A & Pestka S. A sandwich radioimmunoassay for human IFN-gamma. Methods Enzymol. 1986, 119:582-587
    [63]Chang TW, McKinney S, Liu V, Kung PC, Vilcek J & Le J. Use of monoclonal antibodies as sensitive and specific probes for biologically active human γ-interferon. Proc. Natl. Acad. Sci . USA 1984, 81:5219-5222
    [64]Oda S, Akinaga S, Kumagai A, Inoue A, Nakamizo N & Yoshida H. Generation of a new monocolonal, antibody and its application for determination and purification of biologically active human gamma-interferon. Hybridoma 1986, 5: 329-338
    [65]Gibson UEM & Kramer SM. Engzyme-linked bio-immunoassay for IFN- γ by HLA-DR induction. J. Immunol. Methods 1989, 125: 105-113
    [66]缪晓辉,潘卫,吴请进,杜平,陈士葆 & 戚中田.ABC-ELISA检测人天然及重组γ-干扰素.中华微生物学和免疫学杂志 1994,14:58-61
    [67]额尔敦,郭美香,韩玲,其其格,刘士山,张丽民,陈根&张庆荣.γ-干扰素时间分辨免疫荧光分析方法的建立.生物化学与生物物理进展 1999,26:388-391
    [68]Zahn R, Buchle AM & Fersht AR. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl. Acad Sci. USA 1996, 93:15024-15029
    [69]Golbik R, Zahn R, Harding SE & Fersht AR. Thermodynamic stability and folding of GroEL minichaperones. J. Mol, Biol, 1998,276:505-515
    [70]Buckle AM, Zahn R & Fersht AR. A structural model, for GroEL-polypeptide recognition. Proc.,Natl. Acad. Sci. USA 1997, 94:3571-3575
    [71]Tanaka N & Fersht AR. Identification of substrate binding site of GroEL
    
    minichaperone in solution. J. Mol. Biol. 1999, 292:173-180
    [72]Fenton WA, Kashi Y, Furtak K & Horwich AL. Functional analysis of the chaperonin GroEL: identification of residues involved in polypeptide binding and release. Nature 1994, 371:614-619
    [73]Kobayashi N, Freund SMV, Chatellier J, Zahn R & Fersht AR. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution. J.. Mol. Biol. 1999, 292:181-190
    [74]Wang GH, Buckle AM & Fersht AR. From minichaperone to GroEL 1:Information on GroEL-polypeptide interactions from crystal packing of minichaperones. J. Mol. Biol. 2000, 304:873-881
    [75]Chatellier J, Hill F, Lund PA & Fersht AR. The in vivo activities of GroEL minichaperones. Proc. Natl. Acad. Sci. USA 1998, 95:9861-9866.
    [76]Wang JD, Michelitsch MD & Weissman JS. GroEL-GroES-mediated protein folding requires an intact central cavity.Proc. Natl. Acad. Sci. USA 1998, 95: 12163-12168
    [77]Altamirano MM, Golbik R, Zahn R, Buckle AM & Fersh AR. Refolding chromatography with immobilized mini-chaperones. Proc. Natl. Acad. Sci. USA 1997, 94:3576-3578
    [78]Altamirano MM, Garcia C, Possani LD & Fersh AR. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nature Biotechnol. 1999, 17(2):187-191
    [79]Gillies RJ, Didier N & Denton M. Determination of cell number in monolayer cultures. Anal. Biochem. 1986, 159:109~113
    [80]邱淑华,欧泽惠&孙明.水泡性口腔炎病毒增殖的初步探讨.广西药学 1999,21:974-975.
    [81]杜平.医用干扰素(第一版).济南:解放军出版社,1985
    [82]中华人民共和国卫生部.中国生物制品规程(一部).北京:中国人口出版社,1995
    [83]刘长暖,刘兰,王军志,郭莹&丁锡申.应用结晶紫染色法测定干扰素效价,中国生物制品学杂志 1999,12:36-38
    [84]张佳艺,关怡新&姚善泾.Expression and culture optimization of mini-chaperone GroEL(191-345) by E.coli.浙江大学学报:农业与生命科学版 2003,29:603-608
    [85]Goeddel DV, Leung DW, Dull TJ, Gross M, Lawn RM, McCandliss R, Seeburg PH, Ullrich A, Yelverton E, Gray PW. The. structure of eight distinct cloned
    
    human leukocyte interferon cDNAs. Nature 1981,290:20-26
    [86]Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL, Levinson AD, Goeddel DV. Expression of human immune interferon cDNA in E.coli and monkey cells. Nature 1982, 295:503-508
    [87]刘沪丽.重组人γ干扰素的纯化和稳定性研究进展.国外医学:预防.诊断.治疗用生物制品分册 1990,13:61-64
    [88]靳挺,关怡新 & 姚善泾.人γ-干扰素基因工程菌培养条件的研究.浙江大学学报:工学版 2003,37:92-96
    [89]Guisc AD, West SM & Chaudhuri JB. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol. Biotech. 1996, 6:53-64
    [90]Seckler R & Jaenicke R. Protein folding and protein refolding. FASEB J. 1992, 6:2545-2552
    [91]郭立安,朱宝全 & 陈代杰.使用三态模型选择基因重组蛋白质的复性条件.中国医药工业杂志 1999,30:141-144
    [92]Goldberg ME, Rudolph R & Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry 1991; 30:2790-2797
    [93]Brems DN. Solubility of different folding conformers of bovine growth hormone. Biochemistry 1988, 27:4541-4546
    [94]董晓燕,杨晖,甘一如,白姝&孙彦.固定化分子伴侣GroE促进变性溶茵酶复性的研究.生物工程 2000,16:169-172
    [95]Gu ZY, SU ZG & Janson JC. Urea gradient size exclusion chromatography enhanced the yield of lysozyme refolding, J. Chromatogr. 2001, 918:311-318
    [96]Guise AD & Chaudhuri JB. Recovery and reuse of the molecular chaperone GroEL for in vitro protein refolding. Biotechnol. Prog. 1998, 14:343-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700