葡萄cDNA文库构建及鲜食与酿酒葡萄果实发育相关基因的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄是世界性的重要果树,也是我国的重要果树树种之一,它在我国果树产业中占据重要地位,其栽培面积和产量位于世界水果的前列,特别是鲜食葡萄已连续多年稳居世界首位,但葡萄新基因的发掘和果实发育相关基因研究方面进展较慢。本研究在构建葡萄花和果实EST文库的基础上,进一步进行了EST-SSR标记的开发,同时还利用基因芯片技术对鲜食和酿酒葡萄果实发育相关基因的表达情况进行了初步分析。主要结果如下:
     1.构建葡萄花、果cDNA文库是开展葡萄花及果实发育的分子机理研究的重要工作基础,有助于重要相关基因的克隆、功能分析、调控及其利用。本研究以生产上广泛栽培、性状优良且极具代表性的‘夏黑’葡萄为试材,应用优化的Creator SMART cDNA Construction Kit技术,构建了‘夏黑’葡萄花和果实的cDNA文库。文库的滴度为1.2x106pfu/mL,库容为6.0×106pfu。从文库中随机挑取30个克隆进行菌落PCR鉴定的结果显示:插入片段大小为1.0-3.0kb,重组率为99%。研究结果表明,该葡萄cDNA文库具备较高的质量。
     2.本研究通过‘夏黑’花和果实cDNA文库的构建,获得了7,561个阳性克隆,有6,320个携带cDNA片段,进一步经序列拼接共获得3,582个unigenesi(登录号:GW836604-GW840185)。BLASTx比对结果表明,在所获得的3,582unigenes中,有913个为已知功能基因,主要涉及原料的运输与代谢、翻译与修饰、功能预测、能量代谢等;12个为功能未知基因;381个为新基因。基因定位结果表明,在所获得的381个新的EST序列中,有289个能够匹配到葡萄基因组的19条染色体上。
     3.本研究利用MISA软件对来自所构建文库的3,582个unigenes进行SSR位点的搜索,结果在459条序列中共发掘出SSR位点540个,候选SSR位点出现的频率为15.08%。二核苷酸、三核苷酸、四核苷酸、五核苷酸以及六核苷酸重复单元的SSR数目分别为135(3.77%)、270(7.54%)、59(1.65%)、29(0.81%)和47(1.31%)。利用Primer3.0Plus软件随机设计了47对引物用于PCR扩增,用6%的非变性聚丙烯酰胺凝胶分析这些SSR引物的PCR扩增产物多态性。47对引物中有20对引物能在20个葡萄品种中扩增出理想的PCR产物,占总引物的42.55%。其中,18对引物扩增条带具有多态性。
     4.为获取鲜食和酿酒葡萄果实发育过程中与品质形成有关基因的差异表达情况,本研究制备了一个含有15,403条EST序列的基因芯片对其进行分析。结果表明在果实的整个生长发育阶段,鲜食和酿酒葡萄之间共有2,493个差异表达基因,其中在鲜食葡萄中上调表达基因1,244个,下调表达基因1,249个。利用荧光定量PCR技术对随机选择的19个基因的表选情况进行验证分析,其中有18个基因的表达水平与芯片检测结果相一致。BLAST2G0分析结果显示:共有172个差异表达基因(52个上调,120个下调)具有功能注释,分属于生物过程、分子功能和细胞成分三类不同水平。差异表达基因主要参与代谢、细胞生理、应激反应等生物过程,与结合、催化活性等分子功能有关,作用空间分布在细胞或细胞器中。KEGG (Kyoto Encyclopedia of Genes and Genomes)pathway分析结果显示鲜食与酿酒葡萄差异表达基因主要参与碳水化合物代谢、次生代谢、脂代谢、能量代谢等多个代谢途径。
Grape is an important fruit tree in the word and is also one of the most important fruit crop in China. The planting area and output of the grape in China list top position in the world, especially for the table grape, the cultivate area and yield have been in the first place in the world for many years. But the discovery of novel genes and the study of genes related to the fruit quality of grapevine just start the first step. In this research, EST-SSR markers were developed and microarray was also used to analysis the different expression of genes related to the development of table and wine grape on the basis of a constructed cDNA library from flower and fruit of grapevine. The main results are as follows:
     1. Construction of the cDNA library of grape flower and berry is the importantly fundamental work for the study on the molecular mechanism of the development of grape flower and berry, in which it can facilitate the cloning, characterization and utilization of the important genes involved. In this research, a cDNA library of flower and berry of grapevine'Summer Black', a well known grape cultivar in its high popularity in cultivation and great berry quality, was constructed with Creator SMART cDNA Construction Kit. This library has a titer of1.2×106pfu/mL, and a capacity of6.0x106pfu. The recombination efficiency was about99%, and the insert sizes were about1.0-3.0kb based on PCR analysis of30randomly chosen clones, suggesting that the cDNA library of grape flower and fruit has been successfully constructed for the use in further study.
     2. A total of6,230EST sequences were produced from7,561clones in a cDNA library generated from grapevine'Summer Black'(Vitis vinifera x V. labrusca.) flower and fruit tissues in this study. After cluster and assembly analysis of the datasets,3,582unigenes (GenBank accession numbers GW836604to GW840185) were established. The BLASTx result showed that all of the3,582unigenes including913unigenes with known function, mainly involved to material transport and metabolism, translation and modification category, general function prediction, energy production and conversion and so on,12unigenes with unknown function, and381new genes. The mapping result showed that289 new grapevine EST sequences could be mapped on the19grapevine chromosomes.
     3. A total of3,582grapevine EST sequences that were from the cDNA library were screened by the use of MISA software to search for SSR motifs and540SSR loci were identified from the459grape EST sequences. The frequency of EST-SSRs identified was15.08%. All the540SSR loci included135(3.77%) dinucleotides,270(7.54%) trinucleotides,59(1.65%) tetranucleotides,29(0.81%) pentanucleotides, and47(1.31%) hexanucleotides. Fourty-seven pairs of primers were designed against the some EST sequences by the software Primer3.0Plus, and the PCR products of these primers were detected by PAGE. Among the47pairs of EST-SSR primers,20pairs could amplify distinct PCR bands that were the anticipated products. Eighteen pairs of the EST-SSR primers could amplify polymorphic bands.
     4. A microarray system comprising15,403ESTs was used to obtain an overall view on the different expression profiles of quality formation-related genes involved in fruit development of table and wine grapes. The result showed that2,493genes exhibited at least2.0-fold differences in expression levels, with1,244genes being up-regulated and1,249being down-regulated during the entire fruit development stage. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of19selected genes of interest, and only18genes show patterns similar to the changes measured by microarray analysis. Following BLAST2GO analysis, only172differentially expressed genes (including52up-regulated and120down-regulated) got GO annotation, which belong to the different leves of molecular function, cellular component and biology process. According to annotation, the differently expressed genes were mainly involved in the metabolism process of metabolic, cellular and so on, related to binding, catalytic activity and so on, distributed in the whole cell or organelle. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differently expressed genes between table and wine grape were involved in several pathways primarily focused on Carbohydrates metabolism, Biosynthesis of secondary metabolism, Lipid metabolism and Energy metabolism.
引文
[1]Abdullahi I, Rott M. Microarray immunoassay for the detection of grapevine and tree fruit viruses. J Virol Methods,2009,160:90-100.
    [2]Adam-Blondon AF, Roux C, Claux D, et al. Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet,2004,109:1017-1027.
    [3]Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing:expressed sequence tags and human genome project. Science,1991,252:1651-1656.
    [4]Aharoni A, Keizer LC, Bouwmeester HJ, et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell,2000,12(5):647-662.
    [5]Aharoni A, Oconnell AP. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot,2002,53(377):2073-2087.
    [6]Aharoni A, Vorst O. DNA microarrays for functional plant genomics. Plant Mol Biol,2002,48: 99-118.
    [7]Alba R, Fei Z, Payton P, et.al. ESTs cDNA microarrays and gene expression profiling:tools for dissecting plant physiology and development. Plant J,2004,39:697-714.
    [8]Ali MB, Howard S, Chen S, et al. Berry skin development in Norton grape:Distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol,2011,11:7.
    [9]Altschul SF, Gish W. Local alignment statistics. Methods Enzymol,1996,266:460-480.
    [10]Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815.
    [11]Asamizu E, Nakamura Y, Sato S, et al. A large scale analysis of cDNA in Arabidopsis thaliana: Generation of 12,028 non-redundant expressed tags from normalized and sized-selected cDNA libraries. DNA Res,2000,7(3):175-180.
    [12]Atson MA, Perry A, Budhjara V, et al. Jene expression profiling with oligonucleotide microarrays disting gliomas. Cancer Res,2001,61 (5):1825-1829.
    [13]Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem,1991,196:80-83.
    [14]Bassil N, Postman JD. Identification of european and asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol,2010,57:357-370.
    [15]Bassil NV, Njuguna W, Slovin JP. EST-SSR markers from Fragaria vesca L. cv. Yellow Wonder. Mol Ecol Notes,2006,6:806-809.
    [16]Bausher M, Shatters R, Chaparro J, et al. An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci, 2003,165:415-422.
    [17]Beekwilder J, Alvarez-Huerta M, Neef E, et al. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol,2004,135:1865-1878.
    [18]Belitz HD, Grosch W, Schieberle P. In:Food Chemistry 3rd Revised Ed Springer Berlin,2004, pp. 821. New York:Heidelberg.
    [19]Belyavsky A, Vinogradova T, Rajewsky K. PCR-based cDNA library construction:general cDNA libraries at the level of a few cells. Necleic Acids Res,1989,17:2919-2932.
    [20]Blanchard AP, Keiser RJ, Hood LE. Synthetic DNA arrays. Bioelectron,1998,20(1):111-123.
    [21]Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol,1996,111:1059-1066.
    [22]Boss PK, Vivier M, Matsumoto S, et al. A cDNA from grapevine(Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol,2001,45:541-553.
    [23]Bouchez D, Hofte H. Functional genomics in plants. Plant Physiol,1998,118:725-732
    [24]Bowtell DD, Options available for mstart to finish for obtaining expression data by microarray. Nat Genet,1999,21:25-32.
    [25]Calhoon EB, CarlsonTJ, Ripp KQ, et al. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying olis intransgenic soybean embryos. PNAS, 1999,96:12935-12940.
    [26]Camps C, Kappel C, Lecomte P, et al. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. J Exp Bot,2010, 61:1719-1737.
    [27]Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics,2000,156:847-854.
    [28]Carlier JD, Sousa NH, Santo TE, et al. A genetic map of pineapple (Ananas comosus (L.) Merr.) including SCAR, CAPS, SSR and EST-SSR markers. Mol Breeding,2012,29:245-260.
    [29]Carninci P, Kvam C, Kitamura A, et al. High efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics,1996,37(3):327-336.
    [30]Caruso M, Federici CT, Rosse ML. EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breeding,2008,21:195-204.
    [31]Chabane K, Ablett GA, Cordeiro GM, et al. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol,2005,52:903-909.
    [32]Chen C, Bowman KD, Choi YA, et al. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliate. Tree Genet Genomes,2008,4:1-10.
    [33]Chen L, Zhao L, Gao Q. Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Sci,2005,168:359-363.
    [34]Cheung F, Haas BJ, Goldberg SMD, et al. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics,2006,7:272.
    [35]Cheung F, Win J, Lang JM, et al. Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics,2008,9:542.
    [36]Cho YG, Ishii T, Temnykh S, et al. Diversity of microsatellite deried from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:713-722.
    [37]Choi SS, Yun JW, Choi EK, et al. Construction of a gene expression profile of a human fetal liver by single-pass cDNA sequencing. Mamm Genom,1995,6:653-657.
    [38]Chu ZL, McKinsey TA, Liu L, et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proe Natl Acad Sci USA.1997,94: 10057-10062.
    [39]Clarke JD, Zhu T. Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems:practical considerations and perspectives. Plant J,2006,45: 630-650.
    [40]Conesa A, Gotz S, Garcia-Gomez JM, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21,3674-3676.
    [41]Cordeiro G M, Casu R, McIntyre C L, et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci,2001,160:1115-1123.
    [42]Cramer GR, Ergul A, Grimplet J, et al. Water and salinity stress in grapevines:early and late changes in transcript and metabolite profiles. Funct Integr Genomics,2007,7:111-134.
    [43]Cui GH, Huang LQ, Tang XJ. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep,2011,38:2471-2478.
    [44]Cushman JC, Bohnert H. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol,2000, 3:117-124.
    [45]Cuzin M. DNA chips:a new tool for genetic analysis and diagnostics. Trnasfus Clin Biol,2001,8: 291-296.
    [46]Daldoul S, Guillaumie S, Reustle GM, et al. Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci,2010,179:489-498.
    [47]Decroocq V, Fare MG, Mgen L, et al. Development and transfer ability of Apricot and Grape EST microsatellite markers across taxa. Theor Appl Genet,2003,106:912-922.
    [48]Deluc LG, Grimplet J, Wheatley MD, et al. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics,2007,8:492.
    [49]Diatchenko L, Lau YC, Campbeu AP, et al. Proc Nail Acad Sci USA,1996,93(12):6025-6030.
    [50]Dong QH, Cao X, Yang G, et al. Discovery and characterization of SNPs in Vitis vinifera and genetic assessment of some grapevine cultivars. Sci Hortic,2010,125:233-238.
    [51]Drivenes O, Taranger GL, Edvardsen RB. Gene expression profiling of atlantic cod (Gadus morhua) embryogenesis using microarray. Mar Biotechnol,2012,14:167-176.
    [52]Duggan DJ, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nat Genet, 1999,21:10-14.
    [53]Edery I, Chu LL, Sonenberg N, et al. An eficient strategy to isolate full-length cDNAs based on an mRNA capretention procedure(CAPture). Mof Celf Biof,1995,15(6):3363-3371.
    [54]Efimov VA, Chakhmakhcheva OG, Archdeacon J, et al. Detection of the 5'-cap structure of messenger RNAs with the use of the capjumping approach. Nucl Acids Res,2001,29(22): 4751-4759.
    [55]Espley RV, Hellens RP, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. Plant J,2007,49:414-427.
    [56]Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res,1998,8:175-185.
    [57]Ewing RM, Kahla AB, Poirot O, et al., Large-scal statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Res,1999,9:950-959.
    [58]Feng SP, Li WG, Huang HS, et al. Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breeding,2009,23: 85-97.
    [59]Fodor SPA, Rava RP, Huang XL, et al. Multiples biochemical assays with biological chips. Nature, 1993,364(6437):555-556.
    [60]Fodor SPA, Read JL, Pinung ML, et al. Light-directed, Spatially addressable parallel chemical synthesis. Science,1991,251 (4995):767-773.
    [61]Fonseca S, Hackler LJR, Zvara A, et al. Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays. Plant Sci,2004,167(3):457-469.
    [62]Frohman MA, Dush MK, Martin CR. Rapid production of full-length cDNA from rare transcripts; Amplication using a single-specific oligonucleotide primer. P Natl Acad Sci USA,1988,85:8998.
    [63]Fujita Y, Fukuoka H, Yano H. Identification of wheat cultivars using EST-SSR markers. Breeding Sci,2009,59:159-167.
    [64]Gao LF, Tang JF, Li HW, et al. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breeding,2003,12:245-261.
    [65]Goff SA, Ricer D, Lan TH, et al. A draft sequence of the rice genome(Oryza astiva L. ssp.japonica), Science,2002,296:92-100.
    [66]Goodwin SB, Sutter TR. Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plantarum,2009,53(1):85-99.
    [67]Green P, Lipman D, Hillier L, et al. Ancient conserved regions in new sequences and the protein databases. Science,1993,259(5102):1171-1176.
    [68]Gubler U, Hoffman BJ. A simple and very efficient method for generating cDNA libraries. Gene, 1983,25(2-3):263-269.
    [69]Hakvoort TBM, Spijkers JAA, Vermeulen JLM, et al. Nucleic Acids Res,1996,24:3478-3480.
    [70]Hanania U, Velcheva M, Or E, et al. Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Res,2007,16:515-525.
    [71]Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2,275 markers using a single F2 Population. Generics,1998,148:1-16.
    [72]Hatey F, Tosser-Klopp G, Clouseard-martinato C, et al. Expressed sequeneed tags for genes:a review. Genet Sel Evol,1998,30:521-541.
    [73]Hernandez-Suarez M, Rodriguez-Rodriguez E, Diaz-Romero C. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol,2008,226:423-435.
    [74]Ho TY, Hsiang CY, Wu K, et al. Rapid screening of pseudorabies virus-specific cDNAs from a cDNA library. J Virol Methods.1996,58:187-192.
    [75]Hoffmann P, Vaclavicek A, Blaich R, et al. A SNP Marker Can Differentiate Loose Clustered Clones of 'Pinot Noir'. Acta Hort (ISHS).2009,827:471-474.
    [76]Hofstetter H, Schambock A, Van DBJ, et al. Specific excision of the inserted DNA segment from hybrid plasmids constructed by the poly (dA). poly (dT) method. Biochim Biophys Acta,1976, 454(3):587-591.
    [77]Hofte H, Desprez T, Amselem J, et al. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J,1994,4:1051-1061.
    [78]Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell,1995,7: 1071-1083.
    [79]Hu W, Wang Y, Christian B,et al. isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol,2003,53:545-563.
    [80]Huan X, Madan A. A DNA sequence assembly program. Genome Res,1999,9:868-877.
    [81]Huang H, Lu J, Ren ZB, et al. Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping. Mol Breeding,2011,28:241-254.
    [82]Igarashi M, Abe Y, Hatsuyama Y, et al. Linkage maps of the apple (Malus xdomestica Borkh.) cvs 'Ralls Janet' and 'Delicious' include newly developed EST markers Mol Breeding,2008, 22:95-118.
    [83]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:344-356.
    [84]Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature,2007,449:463-467.
    [85]Jia XP, Shi YS, Song YC, et al. Development of EST-SSR in foxtail millet (Setaria italica). Genet Resour Crop Ev,2007,54:233-236.
    [86]Jiang YQ, Ma RC. Generation and analysis of expressed sequence tags from almond (Prunus dulcis Mill.) pistils. Sex Plant Reprod,2003,16:197-207.
    [87]Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res,2008,36:D480-D484.
    [88]Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics:new developments in KEGG. Nucleic Acids Res,2006,34:D354-D357.
    [89]Kanehisa M, Goto S. KEGG:Kyoto Encyclopaedia of Genes and Genomes. Nucleic Acids Res, 2000,28:27-30.
    [90]Karatas H, Degirmenci D, Velasco R, et al. Microsatellite fingerprinting of homonymous grapevine (Vitis vinifera L.) varieties in neighboring regions of South-East Turkey. Sci Hort,2007,114: 164-169.
    [91]Kennedy JA, Hayasaka Y, Vidal S, et al. Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem,2001,49:5348-5355.
    [92]Keyser ED, Riek JD, Bockstaele EV. Discovery of species-wide EST-derived markers in Rhododendron by intron-flanking primer design. Mol Breeding,2009,23:171-178.
    [93]Kikuch IS, Satoh K, Nangat AT, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from Japonica rice. Science,2003,301:376-379.
    [94]Kim M. Determining citrate in fruit juices using a biosensor with citrate lyase and oxaloacetate decarboxylase in a flow injection analysis system. Food Chem,2006,99:851-857.
    [95]Kimt H, Kimn S, Lim D, et al. Generati on and Analysis of large-scale expressed sequence tags (ESTs) froma full-length enriched cDNA library of porcine backfat tissue. BMC Genomics,2006, 7(1):36-40.
    [96]Kong Q, Xiang C, Yu Z. Development of EST-SSRs in Cucumis sativus from sequence database. Mol Ecol Notes,2006,6:1234-1236.
    [97]Kota R, Varshney RK, Thiel T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley(Hordeum vulgare L.). Hereditas,2001,135:145-151.
    [98]Kota R, Varshney RK, Prasad M, et al. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics,2008,8: 223-233.
    [99]Lai Z, Livingstone K, Zou Y, et al. Identification and mapping of SNPs from ESTs in sunflower, Theor Appl Genet,2005,111:1532-1544.
    [100]Lee DJ, Zeevaart JA. Regulation of gibberellin 20-oxidase 1 expression in spinach by photoperiod. Planta,2007,226(1):35-44.
    [101]Lee YP, Yu GH, Seo YS, et al. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep,2007,26:917-926.
    [102]Legay G, Marouf E, Berger D, et al. Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur J Plant Pathol,2011,129:281-301.
    [103]Lewers KS, Saski CA, Cuthbertson BJ, et al. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers. BMC Plant Biol,2008,8:69.
    [104]Li C, Yan XH, Zhou X. Construction of a normalized full-length cDNA library of soybean seed at different developmental stages. China Agriculture Sci,2010,43(3):462-467.
    [105]Li FX, Jin ZP, Qu WQ, et al. Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol Biochem,2006,44(7-9):455-461.
    [106]Li XY, Shangguan LF, Song CN, et al. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genetics,2010,11:66.
    [107]Liang X, Chen X, Hong Y, et al. Utility of EST derived SSR in cultivated peanut (Arachis hypogaea L) and Arachis wild species. BMC Plant Biol,2009,9:35
    [108]Lin JT, Jogenananda P, Wang CR, et al. Study on construction of cDNA library of the treated chang liver cell and quality analysis. Indian J Clin Bioch,19(2):181-183.
    [109]Ling P, Wang M, Chen X, et al. Construction and characterization of a full length cDNA library for the wheat stripe rust pathogen (Puccinia striiformisf.sp.tritici). BMC Genomics,2007,8:145.
    [110]Lippert D, Zhuang J, Ralph S, et al. Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics,2005,5:461-473.
    [111]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2△△C(T) method. Methods,2001,25:402-408.
    [112]Lodhi MA, Ye GN, Weeden NF, et al. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep,1994,12(1):6-13.
    [113]Lund ST, Peng FY, Nayar T, et al. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol,2008,68:301-315.
    [114]Luo M, Liang XQ, Dang P, et al. Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci,2005,169: 695-703.
    [115]Manganaris GA, Ziliotto F, Rasori A, et al. A comparative transcriptomic approach to elucidate common and divergent mechanisms involved in apricot and peach fruit development and ripening. Acta Hort,2010,862:577-582.
    [116]Marshall A, Hodgson J. DNA Chips:an array of possibilities. Nat Biotechnol,1998,16(1):27-31.
    [117]Maruyama K, Sugano S. Oligo capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligorlhonucleotides. Gene,1994,138(1/2):171-174.
    [118]Marzia Salmaso, Giulia Malacarne, Troggio M, et al. A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet,2008,116:1129-1143.
    [119]Matsuoka K, Demura T, Galis I, et al. A comprehensive gene expression analysis towards the understanding of growth and differentiation of tobacco BY-2 cells. Plant Cell Physiol,2004,45: 1280-1289.
    [120]Mccollum TG, Huber DJ, Cantliffe DJ. Soluble sugar accumulation and activity of related enzymes during musk melon fruit development. J Amer Soc Hort Sci,1998,113:399-403.
    [121]McGall GH, Barone AD, Diggelmann M, et al. The efficiency of light-directed synthesis of DNA arrays on glass substrates. J Am Chem Soc,1997,119(22):5081-5090.
    [122]Miller SS, Driscoll BT, Gregerson RG. Alfalfamalate dehydrogenase (MDH):molecular cloning and characterization of five different forms reveals a unique nodule enhance MDH. Plant J,1998, 15,173-184.
    [123]Moccia M, Oger-Desfeux C, Marais G, et al. A White Campion (Silene latifolia) flora expressed sequence tag (EST) library:annotation, EST-SSR characterization, transferability, and utility for comparative mapping. BMC genomics,2009,10:243.
    [124]Moncada X, Pelsy F, Merdinoglu D, et al. Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome,2006,49:1459-1472.
    [125]Moravcova K, Baranek M, Pidra M. Use of SSR markers to identify grapevine cultivars registered in the Czech Republic. J Intl Sci Vigne Vin,2006,40:71-80.
    [126]Moser C, Segala C, Fontana P, et al. Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L. Funct Integr Genomics,2005,5:208-217.
    [127]Mucheroa W, Diopb NN, Bhatb PR, et al. A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. PNAS,2009,106(43):18159-18164.
    [128]Nakagawa T, Nakatsuka A, Yano K, et al. Expressed sequence tags from persimmon at different developmental stages. Plant Cell Rep,2008,27:931-938.
    [129]Naoumkina MA, Modolo LV, Huhman DV. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell,2010,22: 850-866.
    [130]Newcomb RD, Crowhurst RN, Gleave AP, et al. Analyses of expressed sequence tags from apple. Plant Physiol,2006,141:147-166.
    [131]Oh JH, Kim YS, Kim NS. An improved method for constructing a full length enriched cDNA library using smallamounts of total RNA as a starting material. Exp Mol Med,2003,35(6): 586-590.
    [132]Ohirogge J, Benning C. Unravelling plant metabolism by EST analysis. Curr Opin Plant Biol, 2000,3:224-228.
    [133]Park JS, Kim JB, Haha BS, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea) using suppression subtractive hybridization. Plant Sci,2004,166:953-961.
    [134]Pashley CH, Ellis JR, McCauley DE, et al. EST databases as a source for molecular markers: lessons from Helianthus. J Hered,2006,97:381-388.
    [135]Pear JR, Kawagoe Y, Sehreckengost WE, et al. Higher Plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA,1996,93: 12637-12642.
    [136]Peng FY, Reid KE, Liao N, et al. Generation of ESTs in vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene,2007,402:40-50.
    [137]Poncet V, Rondeau M, Tranchant C, et al. SSR mining in coffee tree EST databases:potential use of EST-SSRs as markers for the Coffea genus. Mol Genet Genomics,2006,276:436-449.
    [138]Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Sci,1996,1(7):215-222.
    [139]Prpndnikov D, Timofeev E, Mirzabekov A. Immobilization of DNA in Polyacrylamide gel for the manufracture of DNA chip and oligonucleotide Microchips. Anal Biochem,1998,259:34-38.
    [140]Qi JL, Zhang WJ, Liu SH, et al. Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library of Onosma paniculatum cell cultures. J Plant Physiol,2008, 165(14):1474-1482.
    [141]Ralph SG, Chun HJ, Cooper D, et al. Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics,2008,9:57.
    [142]Ramsay G. DNA chips:state of the art. Nature Bio technology,1998,16(1):40-44.
    [143]Reid KE, Olsson N, Schlosser J, et al. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol,2006,6:27.
    [144]Reilly TP, Bourdi M, Brady JN, et al. Expression profiling of acetam inophen liver toxicity in mice using microarray techndogy. Biochem Biophys Res Common,2001,282(1):321-328.
    [145]Remy I, Michnick SW. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods,2004,32: 381-388.
    [146]Rivasseau C, Boisson AM, Mongelard G, et al. Rapid analysis of organic acids in plant extracts by capillary electrophoresis with indirect UV detection directed metabolic analyses during metal stress. J Chromatogr A,2006,1129:283-290.
    [147]Roeder T. Solid-phase cDNA library construction, a versatile approach. Nucleic Acids Research, 1998,26(14):3451-3452.
    [148]Rounsley S, Linx K. Large-scale sequencing of plant genome. Curr Opin Plant Biol,1998,1(2): 136-141.
    [149]Ruan Y, Gilmore J, Conner T. Towards Arabidopsis genome analysis:monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J,1998,15:821-833.
    [150]Saha MC, Mian MA, Eujayl I, et al. Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet,2004,109:783-791.
    [151]Said M, Cabrera A. A physical map of chromosome 4Hcn from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica,2009,167:253-259.
    [152]Salmaso M, Malacarne G, Troggio M, et al. A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet,2008,116:1129-1143.
    [153]Sambrook J, Maniatis T, Fritseh EF. Molecular cloning:a laboratory manual New York:Cold Spring Harbor Laboratory,1989,283-356.
    [154]Sasaki YF, Ayusawa D, Oishi M. Construction of a normalized cDNA library by introduction of a sem-isolid mRNA-cDNA hybridization system. Nucleic Acids Research,1994,22:987-992.
    [155]Sato K, Shin IT, Seki M, et al. Development of 5006 full length cDNAs in barley:a tool for accessing cereal genomics resources. DNA Res,2009,16(2):81-89.
    [156]Schena M, Shalon D, Davis RW, et al. Tissue macroarray:a simple and cost-effective method for high-thoughput studies. Appl Immunohisto M M,2003,11(2):174-176.
    [157]Schena M, Shalon D, Drvis R, et al. Quantitative monitoring of gene expression patterns with acomplementary DNA microarray. Science,1995,270(5235):467-470.
    [158]Schena M, Shalon D, Heller R, et al. Parallel human genome analysis:microarray based expression monitoring of 1000 genes. Proc Natl Acad Sci USA,1996,93:10614-10619.
    [159]Schuler GD. Pieces of the sequence tags and the catalog of human genes. J Mol Med,1997,75: 694-698.
    [160]Schuler GD, Boguski MS, Steuart EA, et al. A gene map of the human genome. Science,1996,274: 540-546.
    [161]Scott KD, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs. Theor Appl Genet, 2000,100:723-736.
    [162]Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13: 61-72.
    [163]Shimamura K, Ishimizu T, Nishimura K, et al. Analysis of expressed sequence tags from Petunia flowers. Plant Sci,2007,173:495-500.
    [164]Shmada T, Fuii IH, Endo T, et al. Toward comprehensive expression profiling by microarray analysis in citrus:monitoring the expression profiles of 2213 genes during fruit development. Plant Sci,2005,168(5):1383-1385.
    [165]Singh RK, Sane VU, Misra A, et al. Differential expression of the mango alcohol dehydrogenase gene family during ripening. Phytochemistry,2010,71:1485-1494.
    [166]Smith MW, Yanaguchi S, Ait-Ali T, et al. The first step of gibberellins biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate syntheses encoded by differently regulated genes. Plant Physiol,1998,118:1411-1419.
    [167]Soglio V, Costa F, Molthoff JW, et al. Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes,2009,5:685-698.
    [168]Southern EM. Arrays or complementary oligonucleotides for analyzing the hybridization behaviour of nudei acids. Nucleic Aciels Res,1994,22(8):1368-1373.
    [169]Sraphet S, Boonchanawiwat A, Thanyasiriwat T, et al. SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet,2011,122:1161-1170.
    [170]Stephen PAE. Multiplesed biochemical assays with biological chips. Nature,1993,364:555.
    [171]Sugui JA, Deising HB. Isolation of infection-specific sequence tags expressed during early stages of maize anthracnose disease development. Mol Plant Pathol,2002,3:197-203.
    [172]Taji T, Sakurai T, Mochida K, et al. Large-scale collection and annotation of full length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol,2008,8:115.
    [173]Tan W, Chen Y, Zhang L, et al. Construction and characterization of a cDNA library from liver tissue of Chinese Banna minipig inbred line. Transpl P,2006,38(7):2264-2266.
    [174]The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature,2007, 449:463-468.
    [175]Thiel T, Michalek W, Varshney RK, et al. Exploiting EST database for the development and characterization of genderived SSR markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003,106:411-422.
    [176]This P, Lacombe T, Cadle-Davidson M, et al. Wine grape (Vitis vinifera L.) color associates with allelicvariation in the domestication gene VvmybAl. Theor Appl Genet,2007,114(4):723-730.
    [177]Tian B, Lin ZB, Ding Y, et al. Cloning and characterization of a cDNA encoding Ran binding protein from wheat. Mitochondr DNA,2006,17(2):136-142.
    [178]Tillett RL, Ergul A, Albion RL, et al. Identification of tissue-specific, abiotic stressresponsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC Plant Bio,2011,11:86.
    [179]Trainottia L, Bonghib C, Ziloittob F, et al. The use of microarray PEACH 1.0 to investigate transcriptome changes during transition form pre-climacterie to climacteric phase in peach fruit. Plant Sci,2006,170(3):607-613.
    [180]Tsuchihara K, Suzuki Y, Wakaguri H, et al. Massive transcriptional start site analysis of human genes in hypoxia cells. Nucleic Acids Res,2009,37(7):2249-2263.
    [181]Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray). Science,2006,313:1595-1604.
    [182]Umezawa T, Sakurai T, Totoki Y, et al. Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length enriched cDNA library. DNA Res,2008,15(6):333-346.
    [183]Urbanczyk-Wochniak E, Sumner LW. MedicCyc:a biochemical pathway database for medicago truncatula. Bioinformatics,2007,23:1418-1423.
    [184]Valentao P, Lopes G, Valente M, et al. Quantitation of Nine Organic Acids in Wild Mushrooms. J Agric Food Chem,2005,53:3626-3630.
    [185]Vecchietti A, Lazzari B, Ortugno C, et al. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch). Tree Genet Genomes,2009,5: 377-391.
    [186]Vendramin E, Deitori MT, Giovlnazzi J, et al. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes,2007,7:307-310.
    [187]Vitek MP, Kreissman SG, Gross RH. The isolation of ecdysterone inducible genes by hybridization subtraction chromatography. Nucleic Acid Res,1981,9:1191-1202.
    [188]Wang M, Qu F, Shan XQ, et al. Development and optimization of a method for the analysis of low-molecular-mass organic acids in plants by capillary electrophoresis with indirect UV detection. J Chromatogr A,2003,989:285-292.
    [189]Wang Y, Li J, Yang J, et al. Expression of lycopene cyclase genes and their regulation on downstream carotenoids during fruit maturation of Guoqing No.1 Satsuma mandarin and Cara Cara navel orange. Sci Hortic-Amsterdam,2011,127:267-274.
    [190]Waters DLE, Holton TA, Ablett EM, et al. cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics,2005,5:40-58.
    [191]Wiemann S, Mehrle A, Bechtel S, et al. cDNAs for functional genomics and proteomics:the German consortium. Comptes Rendus Biol,2003,326:1003-1009.
    [192]Wu J, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell,2002,14:525-535.
    [193]Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science,2003,299:396-399.
    [194]Xu BY, Su W, Liu JH, et al. Differentially expressed cDNAs at the early stage of banana ripening identied by suppression subtractive hybridization and cDNA microarray. Planta,2007,226:529-539.
    [195]Xu BY, Su W, Liu JH, et al. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta,2007,226(2): 529-539.
    [196]Yamada-Akiyama H, Akiyama Y, Ebinaa M, et al. Analysis of expressed sequence tags in apomictic guineagrass(Panicum maximum). Plant Physiol,2009,166:750-761.
    [197]Yang LF, Gai JY, Zhu YL, et al. Construction and characterization of full-length cDNA library and expressed sequence tags analysis in developing seeds of vegetable soybean. Hortic Environ Biotechnol,2009,50(1):51-56.
    [198]Yang W, Bai X, Kabelka E, et al. Diseovery of single micleotide polymorphisms in Lyeopersieon eseulentum by computer aided analysis of expressed sequence tags. Mol Breeding,2004,14:21-34.
    [199]Yao LH, Zheng XY, Cai DY, et al. Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Evol,2010,57:841-851.
    [200]Yao Y, Li M, Liu Z, et al. A novel gene screened by cDNA-AFLP approach contributes to lowering the acidity of fruit in apple. Plant Physiol,2007,45:139-145.
    [201]Yi G, Lee JM, Lee S, et al. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet,2006,114:113-130.
    [202]Zhang Y, Li P, Cheng L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh. Food Chem,2010,123:1013-1018.
    [203]Zhao L, Ma C, Chen L. Construction and expressed sequence tags analysis of Young Roots cDNA library of tea plant. Mol Plant Breeding,2008,6:893-898.
    [204]Zhao W, Zhong C, Cao H, et al. Study on methods of extracting total RNA from grape inflorescence. J Anhui Agri Sci,2009,37:16161-16162.
    [205]曹雪,上官凌飞,于华平,杨光,王晨,于华平,房经贵.葡萄SBP基因家族生物信息学分析.基因组学与应用生物学,2010,29(4):791-798.
    [206]曹雪,王晨,房经贵,杨光,于华平,宋长年.葡萄SPL9和SPL10基因全长cDNA克隆、亚细胞定位和表达分析.园艺学报,2011,38(2):240-250.
    [207]陈琛,庄木,李康宁,刘玉梅,杨丽梅,张扬勇,程斐,孙培田,方智远.甘蓝EST-SSR标记的开发与应用.园艺学报,2010,37(2):221-228.
    [208]程萍,冯仁军,袁克华,张银东.香蕉红素氧还蛋白酵母双杂交cDNA文库的构建及鉴定.生命科学研究,2009,13(4):349-353.
    [209]蔡霞.定量PCR技术及其应用现状.现代诊疗与治疗,2005,16(2):112-115.
    [210]崔红军,张军杰,黄玉碧.玉米根部酵母双杂交cDNA文库的构建及评价.分子植物育种,2008,6(1):161-164.
    [211]崔素萍,刘博,黄丽丽,康振生.利用RACE方法克隆小麦p-1,3-葡聚糖酶基因的全长cDNA.西北农林科技大学学报,2008,36(7):79-85.
    [212]董清华,冯永庆,秦岭,王有年,沈元月.葡萄果实cDNA文库的构建及鉴定.分子植物育种,2007,5(1):117-120.
    [213]董清华,王西成,赵密珍,宋长年,葛安静,王静.草莓EST-SSR标记开发及在品种遗传多样性分析中的应用.中国农业科学,2011,44(17):3603-3612.
    [214]房经贵,刘洪,杨光.基因组学研究时代的葡萄酿造明星-黑比诺.中外葡萄与葡萄酒,2008(3):57-59.
    [215]郭磊,上官凌飞,房经贵,刘崇怀,于华平.葡萄EST-SSR标记的开发及其应用.南京农业大学学报,2011,34(4):23-30.
    [216]江东,钟广炎,洪棋斌.柑橘EST-SSR;分子标记分析.遗传学报,2006,33(4):345-353.
    [217]江南,谭晓风,陈洪,王秀利,张琳,曾艳玲.梨S基因芯片的试制及分子杂交条件的优化.园艺学报,2008,35(4):481-486.
    [218]姜春芽,廖娇,徐小彪,辜青青,刘善军,陈金印.植物EST-SSR技术及其应用.分子植物育种,2009,7(1):125-129.
    [219]姜春芽,徐小彪,廖娇,倪志华,李晶.猕猴桃EST序列的SSR信息分析.中国农学通报,2009,25(13):37-39.
    [220]李太武,相见海,刘瑞玉.中国对虾cDNA文库的构建.动物学报,1998,44(2):237-238.
    [221]李小白,张明龙,崔海瑞.油菜EST资源的SSR信息分析.中国油料作物学报,2007,29(1):20-25.
    [222]李晓颖,曹雪,杨光,杨光,王晨,沈玉英,房经贵.果梅花与果实cDNA文库的构建及鉴定.北京林业大学学报,2010,32(增刊2):31-34.
    [223]李永强,李宏伟,高丽锋,何蓓如.基于表达序列标签的微卫星标记(EST-SSRs)研究进展.植物遗传资源学报,2004,5(1):91-95.
    [224]刘星,仇雪梅,高祥刚,赫崇波.基因文库构建及其在鱼类遗传研究上的应用.现代农业科技,2008,(16):247-249.
    [225]罗国光.中国葡萄栽培发展成就和需要关注的几个问题.第十三届全国葡萄学术研讨会会议论文集.长沙:湖南农业大学,2007,9-13.
    [226]齐建勋,王克建,吴春林,王维霞,郝艳宾,冷平.核桃EST-SSR标记的开发.农业生物技术学报,2009,17(5):872-876.
    [227]田淑芬.中国葡萄产业态势分析.中外葡萄与葡萄酒,2009(1):64-66.
    [228]王晨,房经贵,刘洪,谭红花.葡萄与葡萄酒的营养成分.江苏林业科技,2009,36(4):38-40.
    [229]王晨,刘洪,房经贵,宋长年,曹雪,杨光,章镇.基于EST数据库的葡萄APETALA2基因cDNA克隆及其表达分析.果树学报,2010,27(2):207-212.
    [230]王红丽,王彦昌,姜正旺,黄宏文.‘红阳’猕猴桃cDNA文库构建及F3H基因的表达初探.遗传,2009,31(12):1265-1272.
    [231]王静毅,陈业渊,刘伟良,武耀廷.香蕉EST-SSRs标记的开发与应用.遗传,2008,30(7):933-940.
    [232]王文艳,王晨,陶建敏,杨光,房经贵.中国外来引进葡萄品种命名情况分析.江西农业学报,2010,22(11):40-44.
    [233]王西成,姜淑苓,上官凌飞,曹玉芬,乔玉山,章镇,房经贵.梨EST-SSR标记的开发及其在梨品种遗传多样性分析中的应用评价.中国农业科学,2010,43(24):5079-5087.
    [234]王义强,谭晓风,陈介南,周小慧,孙吉康.银杏雌树成熟cDNA文库的构建.中南林业科技大学学报,2009,29(1):6-9,31.
    [235]文海涛,陈忠正,赵亮,郭健,李斌,蒋跃明.南昆山毛叶茶cDNA文库构建.食品科学,2008,29(5):337-340.
    [236]吴东,刘俊杰,喻树迅,等.中棉所36均一化全长cDNA文库的构建与鉴定.作物学报,2009,35(4):602-607.
    [237]吴耀荣,赵双宜,夏光敏.小麦幼叶cDNA文库的构建.山东大学学报:理学版,2003,38(2):101-104.
    [238]忻雅,崔海瑞,张明龙,林容杓,崔水莲.白菜的EST标记及其对油菜的通用性.遗传,2005,27(3):410-416.
    [239]许莉萍,阙友雄,刘金仙,郭晋隆,郑益凤,徐景升,袁照年,陈平华,陈如凯.甘蔗叶片全长cDNA文库构建及EST序列分析.农业生物技术学报,2009,17(5):843-850.
    [240]榻维言,郑学勤.无核荔枝果实形成差异表达基因cDNA的克隆.广西植物,2006,26(6):597-601.
    [241]晏慧君,黄兴奇,程在全.cDNA文库构建策略及其分析研究进展.云南农业大学学报,2006,21(1):1-6.
    [242]杨红丽,王彦昌,姜正旺,黄宏文.‘红阳’猕猴桃cDNA文库构建及F3H基因的表达初探.遗传,2009,31(12):1265-1272.
    [243]姚英豪.定量PCR仪荧光检测系统研究.浙江大学,2011.
    [244]叶庆亮,江东,彭爱红.‘岩溪晚芦’椪柑果皮与果肉差减cDNA文库的构建及初步分析.园艺学报,2009,36(7):967-974.
    [245]张朝红.无核葡萄胚珠发育进程中EST的分析及败育相关基因的克隆.杨凌:西北农林科技大学,2007.
    [246]张俊娥.苹果EST中微卫星分析.广西农业生物科学,2008,27(4):378-380.
    [247]张秀梅,孙光明,杜丽清,魏长宾,刘忠华,谢江辉.菠萝果实cDNA文库的构建.植物生理学通讯,2008,44(6):1146-1168.
    [248]张彦苹,王晨,于华平,蔡斌华,房经贵.适于葡萄不同组织RNA提取方法的筛选.西北农业学报,2010,19(11):135-140.
    [249]张增翠,侯喜林.SSR分子标记开发策略及评价.遗传,2004,26(5):763-768.
    [250]张志宏,赵进春,代红艳.全基因组基因表达分析技术及其在果树上的应用.果树学报,2008,25(3):382-388.
    [251]郑建立,高峰,田永生,高建杰,帅建军,彭日荷,熊爱生,姚泉洪.葡萄中一类AP2/EREBP-B1亚族转录因子的电子克隆及生物信息学分析.上海农业学报,2011,27(3):9-15.
    [252]朱艳,郝艳宾,王克建,吴春林,王维霞,齐建勋,周军.核桃EST-SSR信息分析与标记的初步建立,果树学报,2009,26(3):394-398.
    [253]朱自果,王跃进,史江莉,王沛雅,张朝红.华东葡萄抗白粉病杂种后代cDNA文库的构建及EST序列分析.果树学报,2009,26(1):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700