‘寒富’苹果光合生理及碳素物质代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
‘寒富'苹果的育成在扩大大苹果栽培区域,构建大苹果新的优势产业带中发挥了重要作用,但其相关生理基础和技术措施的作用机制研究十分缺乏,尤其是冷凉气候条件对优质大苹果植株光合特性及相关生理基础影响的研究尚未见报道。本试验以‘寒富'苹果及其亲本‘东光'和‘富士'为试材,采用光合气体交换及叶绿素荧光分析技术等手段,结合组织解剖特征分析和生理生化指标测定,对‘寒富'苹果的光合生理及碳素物质代谢进行初步评价,通过人为创造各种胁迫环境,研究不同土壤管理制度条件下‘寒富'苹果各器官的光合生理特性及碳素物质代谢基础,探讨‘寒富'苹果的光合生理及碳素物质代谢机制,揭示冷凉气候区‘寒富'苹果多抗性表达的生理基础,以期为冷凉气候区‘寒富'苹果的优质栽培管理提供理论依据。主要研究结果如下:
     1‘寒富'苹果叶片的叶肉和栅栏组织厚度、栅海比、气孔密度、基粒厚度、基粒片层数和比基粒片层数均显著高于‘东光'和‘富士';叶片的光合能力、表观量子效率、羧化效率和RuBP最大再生速率、叶绿素含量和比叶重较高;具有较高的初始荧光,较低的最大荧光产量、PSⅡ最大光化学效率和性能指数;‘寒富'苹果叶片光合作用的启动时间较短,大约在22min时就达到最大值(19.5μmol·m~(-2)·s~(-1));‘寒富'苹果具有较高的饱和光强、饱和CO_2和CO_2补偿点,较低的光补偿点,分别为(1665±20)μmol·m~(-2)·s~(-1)、(2961±41)μmol·mol~(-1)、(87.5±1.4)μmol·mol~(-1)、和(5.9±1.8)μmol·m~(-2)·s~(-1);年生长周期内,‘寒富'苹果叶片的可溶性糖和淀粉含量略低于‘东光',但明显高于‘富士'。
     2不同发育状态的‘寒富'苹果叶片光合生理参数表现不同,功能叶和幼叶光合作用的启动时间较短,净光合速率大约在22min时就达到最大值(19.5μmol·m~(-2)·s~(-1)和12.29μmol·m~(-2)·s~(-1))。功能叶片的表观量子效率、气孔限制值和光合能力最大。功能叶的饱和光强、光补偿点和饱和CO_2均高于嫩叶和衰老叶,CO_2补偿点较低,分别为(2210±10.6)μmol·m~(-2)·s~(-1)、(28.5±2.8)μmol·m~(-2)·s~(-1)、(1222.7±42)μmol·mol~(-1)、和(85.6±1.5)μmol·mol~(-1),表明功能叶利用强光、高CO_2和低CO_2的能力较强。可溶性糖含量在叶片发育初期含量较高,随着开花和新梢旺长含量降低。新梢停长后可溶性糖和淀粉含量出现峰值,随着叶片的衰老下降。年生长周期内,‘寒富'苹果葡萄糖和山梨醇含量(44.587mg·ml~(-1)和32.287mg·ml~(-1))显著高于蔗糖和果糖含量(3.841mg·ml~(-1)和2.333mg·ml~(-1))。
     3不同组织器官和枝类‘寒富'苹果的营养物质含量不同。叶片中的可溶性糖含量最高,韧皮部淀粉含量最高。秋梢叶片中可溶性糖含量、以及木质部的可溶性糖和淀粉含量高于春梢和封顶枝。养分再分配过程中,一年生枝韧皮部和木质部的淀粉含量、一年生枝木质部的可溶性糖含量高于其他级次枝,主干韧皮部的可溶性糖含量最高。
     4‘寒富'苹果新梢不同节位叶片的光合生理参数表现不同。净光合速率呈由低至高的变化趋势,基部叶片的Pn较低,从基部第4节开始维持较高水平,并且各节位之间的差异较小。新梢中部11~16节位的叶片具有较低的初始荧光和最大荧光产量,PSⅡ最大光化学效率和性能指数均高于新梢基部和梢部叶片。
     5覆草处理增加了‘寒富'节果的叶片厚度、栅栏组织厚度和栅海比,气孔密度、叶绿体数目、叶绿体长度、基粒片层数和比基粒片层数均呈现不同程度的增加,基粒类囊体排列紧密而整齐,叶绿体片层结构较发达;覆草处理增加了‘寒富'苹果叶片的光合色素含量,提高了‘寒富'苹果叶片的净光合速率、初始荧光、最大荧光产量和性能指数。覆草处理叶片、韧皮部和木质部的可溶性糖和淀粉含量明显高于清耕。
     6弱光胁迫条件下,‘寒富'苹果叶片变薄,栅栏组织排列疏松,栅海比增加,叶绿体变小,基粒厚度明显增加,叶绿体基粒片层结构增厚,片层间隙增大,并出现大量的噬锇体;弱光胁迫条件下,‘寒富'苹果叶片的净光合速率、水分利用效率和气孔导度降低,叶片PSⅡ反应中心原初光能转化效率和PSⅡ的潜在活性提高;弱光降低了‘寒富'苹果叶片的光合能力、表观量子效率、羧化效率、气孔限制值和RuBP最大再生速率,饱和光强、光补偿点和饱和CO_2降低,CO_2补偿点升高,弱光下建造的‘寒富'苹果叶片突然转至强光下以后,光合作用的启动时间延长。弱光使可溶性糖含量增加,蔗糖磷酸合成酶活性上升,转化酶、山梨醇脱氢酶和山梨醇氧化酶活性下降,蔗糖合成酶活性趋于稳定,‘寒富'苹果具有喜光耐荫的特点。
     7轻度干旱胁迫处理使‘寒富'苹果叶片的栅栏组织厚度增加,栅海比增大,上表皮出现一层失活的木栓组织,栅栏组织细胞中出现失活点。中度、重度干旱胁迫和淹水条件下,叶肉的栅栏组织和海绵组织细胞解体。适度水分胁迫增加了‘寒富'节果气孔导度和水分利用效率,对净光合速率没有影响,并且提高了PSⅡ反应中心原初光能转化效率和PSⅡ的潜在活性,随着胁迫程度的加重,‘寒富'苹果的光合参数和叶绿素荧光参数才受到不可逆转的影响;水分胁迫使‘寒富'苹果叶片内可溶性糖和淀粉含量降低,胁迫越严重,变化幅度越大。轻度干旱胁迫提高了‘寒富'苹果叶片中性转化酶、酸性转化酶和蔗糖合成酶活性,降低了蔗糖磷酸合成酶、山梨醇脱氢酶、山梨醇氧化酶活性。中度、重度干旱胁迫和淹水条件下,中性转化酶、酸性转化酶和蔗糖合成酶降低。‘寒富'苹果能忍耐轻度和中度干旱胁迫,抗旱性较强。
     8高湿胁迫条件下,‘寒富'苹果叶片厚度增加,栅栏组织细胞明显增多,海绵组织结构被破坏,细胞解体,内部出现失活点。高湿处理降低了‘寒富'苹果净光合速率、PSⅡ反应中心原初光能转化效率和PSⅡ潜在活性,提高了初始荧光产量,但没有显著影响‘寒富'苹果叶片能量的分配;高湿胁迫使‘寒富'苹果叶片内可溶性糖含量升高,淀粉含量降低,提高了‘寒富'苹果叶片中性转化酶、酸性转化酶、蔗糖合成酶活性,降低了蔗糖磷酸合成酶、山梨醇脱氢酶、山梨醇氧化酶活性,‘寒富'苹果具有较强的耐湿性。
The breeding of 'Hanfu' apple played an important role for expanding the cultivation area and building the new superior industry belt of big fruit apple,but the researches of related physiological basis and the mechanism of technical measures are great shortage. Particularly,the researches on effects of cold weather conditions on related physiological basis of high-quality and big fruit apple has not been reported.In this paper,with 'Hanfu' apple and its parents 'Dongguang' and 'Fuji' apple as the materials,the photosynthetic physiology and carbon material metabolism of 'Hanfu' apple were evaluated preliminarily by the means of photosynthetic gas exchange and chlorophyll fluorescence analysis combining with tissue anatomy characteristic analysis and physiological and biochemical detection.The photosynthetic physiological and carbon material metabolism basis of 'Hanfu' apple under the conditions of a variety of stress,different soil management systems were studied for discussing the mechanism of photosynthetic physiological and carbon material metabolism, revealing the physiological basis of multiple resistance expression of 'Hanfu' apple in cold regions and providing a theoretical basis for high-quality cultivations and managements of 'Hanfu' apple in cold regions.The main results were as follows:
     1 Compared with that of 'Dongguang' and 'Fuji'apple,the leaves of 'Hanfu' apple had higher thickness of mesophyll and the largest rate of palisade tissue and spongy tissue.The stomatal density,grana thickness,number of grana lamellae and specific lamella number of granum were significantly higher than its parents.The photosynthetic capacity,apparent quantum yield,carboxylation efficiency and maximum regeneration velocity of RuBP, chlorophyll content and specific leaf weight were higher than its parents.The leaves of 'Hanfu' apple had higher initial fluorescence,lower maximum fluorescence yield, PSⅡmaximum photochemical efficiency and performance index.The photosynthesis starting time of leaves in 'Hanfu' apple was shorter and the maximum(19.5μmol·m~(-2)·s~(-1)) was appeared at about 22 minutes.'Hanfu' apple had a higher saturation light intensity,Saturation CO_2,CO_2 compensation point and lower light compensation point,which respectively were (1665±20)μmol·m~(-2).s~(-1),(2961±41)μmol·mol~(-1),(87.5±1.4)μmol·mol~(-1),and (5.9±1.8)μmol·m~(-2)·s~(-1).During annual growth cycle,the eontents of soluble sugar and starch in 'Hanfu' apple were slightly lower than that of 'Dongguang' apple leaves,but significantly higher than that of 'Fuji' apple leaves.
     2 The photosynthetic physiological parameters of different developmental leaves were different.The photosynthesis starting time of functional and young leaves were shorter start photosynthesis,the maximum(19.5μmol·m~(-2)·s~(-1) and 12.29μmol·m~(-2)·s~(-1)) were appeared at about 22 minutes.The apparent quantum efficiency and stomatal limitation value of functional leaves were significantly higher than that of young leaves and senescence leaf.The photosynthetic capacity of functional leaves and young leaves was no significant difference, but both were significantly higher than senescence leaf.The carboxylation efficiency and RuBP maximumn regeneration rate of leaves at different developmental stageshad no difference.The saturation light intensity,light compensation point and saturation CO_2 of functional leaves were higher than that of young leaves and senescence leaves whereas the CO_2 compensation points was lower,which respectively were(2210±10.6)μmol·m~(-2)·s~(-1), (28.5±2.8)μmol·m~(-2)·s~(-1),(1222.7±42)μmol·mol~(-1),and(85.6±1.5)μmol·mol~(-1).All showed that the functional leaves and the capacity of using high light,high and low CO_2.With the development of leaves,the net photosynthetic rate gradually increased,it reached the peak after leaf maturation and decreased rapidly with the aging of leaves.The soluble sugar contents of leaves were higher at the early stage of development,which decreased with the flowering and rapid growth of new shoots.After new shoots stopped growth,the soluble sugar and starch content reached peaks,which decreased with leaf senescence.During the annual growth cycle,the glucose and sorbitol content(44.587mg·ml~(-1) and 32.287mg·ml~(-1)) was significantly higher than that of sucrose and fructose content(3.841mg·ml~(-1) and 2.333mg·ml~(-1)) in 'Hanfu' apple.
     3 The nutrient content of different types of tissues,organs and branches were different in 'Hanfu' apple.The soluble sugar content in leaves was the highest,and the starch content in phloem was the highest.The soluble sugar content in leaves,the soluble sugar and starch content in xylem of autumn shoots were higher than that of spring shoots and one-year-old top-cutting shoots.During the process of nutrient redistribution,the starch content in the one-year-old branch phloem and xylem,the soluble sugar in one-year-old branch xylem were the highest,and the soluble sugar content in trunk phloem was the highest.
     4 The photosynthetic physiological parameters of leaves at different leaf node in 'Hanfu' apple were different.The net photosynthetic rate showed the trend of from low to high.The Pn of basal leaves was lower,it maintained a fairly high level from the base fourth node,and the difference among the nodes was smaller.The leaves at the 11th to 16th nodes had lower initial fluorescence and maximal fluorescence yield,the PSⅡmaximumn photochemical efficiency and performance index were higher than that of leaves at the base and tip of shoot.
     5 Under planting and covering grass treatment,the thickness of leaves,palisade tissue and the rate of palisade tissue and spongy tissue,the stomatal density,the number of chloroplasts,chloroplast length,number of grana lamellae and specific lamella number of granum increased to some extent.The granum-thylakoid were arranged compactly and regularly with developed chloroplast lamellar structure.The photosynthetic pigment content, the net photosynthetic rate,the initial fluorescence,maximal fluorescence yield and the performance index improved.The soluble sugar and starch content of leaves,phloem and xylem increased.
     6 Under low-light stress,the thickness of leaves and spongy tissue were thinned with loose palisade tissue,the rate of palisade tissue and spongy tissue and basal granule thickness increased.The size of chloroplast was significantly smaller,the number of grana lamellae and specific lamella number of granum decreased,the chloroplast grana lamellae structure was thickened,the lamellar gap was enlarged and a large number of plastoglobuli appeared. Under low light stress,the net photosynthetic rate,water use efficiency and stomatal conductance were reduced,and PSⅡconversion efficiency of primary light energy and the potential activity of PSⅡimproved.The photosynthetic capacity,apparent quantum yield, carboxylation efficiency,stomatal limitation value and the RuBP maximum regeneration rate, saturation light intensity,light compensation point and saturation CO_2 decreased with the weakness of light intensity,but the CO_2 compensation points increased.After the 'Hanfu' apple leaves constructed in low light transferred to the strong light suddenly,the photosynthesis starting time was prolonged.The soluble sugar content increased,the activity of sucrose phosphate synthase enhanced,but the activity of glutamine synthetase,invertase, sorbitol dehydrogenase and sorbitol oxidase declined,the activity of sucrose synthase maintained stability,which indicated that 'Hanfu' apple was a photophil and shade-tolerant plants.
     7 Under light drought stress,the thickness of palisade tissue and the rate of palisade tissue and spongy tissue increased.A layer of inactivated phellem tissue appeared on the upper epidermis and the inactivation point appeared in the palisade tissue cells.In moderate and high drought stress and waterlogging conditions,the palisade tissue and spongy tissue cells in mesophyll disintegrated,a lot of broken cells and cavity appeared,and the proportion of xylem increased.Under moderate water stress,the stomatal conductance,water use efficiency increased and PSⅡconversion efficiency of primary light energy and the potential activity of PSⅡimproved,but the net photosynthetic rate had no effect.With the heavier of stress levels,the photosynthetic parameters and chlorophyll fluorescence parameters of 'Hanfu' apple had be affected irreversibly.In water stress conditions,the soluble sugar content increased,and the starch content reduced.The heavier of stress,the greater of change range.Under light drought stress,the neutral invertase,acid invertase and sucrose synthase activity improved,sucrose phosphate synthase,sorbitol dehydrogenase,sorbitol oxidase and glutamine synthetase activity reduced.In moderate and high drought stress and waterlogging conditions,neutral invertase,acid invertase and sucrose synthase activity reduced enhanced. 'hanfu' apple was a cultivar with strong drought resistance because it could tolerate light and moderate drought.
     8 Under high humidity stress,the thickness of leaves and palisade tissue cells markedly increased.The structure of spongy tissue was damaged,mesophyll cells was disintegrated,a large number of cavity and inactivation point appeared.The net photosynthetic rate, PSⅡconversion efficiency of primary light energy and the potential activity of PSⅡreduced and the initial fluorescence yield increased,but the distribution of energy did not significantly be affected.The soluble sugar increased and starch contents decreased.The neutral invertase, acid invertase,sucrose synthase and glutamine synthetase activity improved,sucrose phosphate synthase,sorbitol dehydrogenase,sorbitol oxidase activity reduced.'hanfu' apple was a cultivar with strong high humidity resistance.
引文
1.艾希珍,郭延奎,马兴庄,邢禹贤.2004.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,37:268-273.
    2.别之龙,刘佩瑛,万兆良,何首林.1998.弱光对辣椒落花和光合作用的影响[J].核农学报.12(5):314-316.
    3.曹珂,王力荣,朱更瑞,方伟超,陈昌文.2008.桃幼树光合年变化及落叶期早晚与营养生长的关系[J].果树学报,25(2):231-235.
    4.曹珂,王永熙,王力荣,朱更瑞,方伟超.2004.遮荫对桃幼树光合特性的影响[J].西北林学院学报,19(4):28-31.
    5.柴成林,李绍华,徐迎春.2001.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].植物生理学通讯,37(6):495-498.
    6.陈薇,马怀宇,李亚东,张志东,刘海广,吴林.2008.三种栽培方式对越橘光合特性的影响[J].园艺学报,5(9):1255-1260.
    7.陈俊伟,谢鸣,秦巧平.2005.植物糖信号与激素信号之间的联系[J].植物生理通讯,(6):279-285.
    8.程来亮,罗新书,杨兴洪.1992.田间苹果叶片光合速率日变化的研究[J].园艺学报,19(2):111-116.
    9.程来亮,罗新书.1990.短期土壤干旱对苹果叶片光合速率日变化的影响[J].果树科学7(4):193-200.
    10.代玉华,刘训言,孟庆伟,赵世杰.2004.低温弱光处理及恢复期间黄瓜叶片的光抑制与类囊体膜中脂肪酸组成的变化[J].植物生理学通讯,40(1)14-18.
    11.樊洪泓,李廷春,李正鹏,林毅,蔡永萍.2008.强光胁迫下外源NO对霍山石斛叶绿素荧光和抗氧化系统的影响[J].园艺学报,35(8):1215-1220.
    12.冯建灿,胡秀丽,毛训甲.2002.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,20(4):14-18.
    13.付振书,赵世杰,孟庆伟,魏佑营.2005.高温强光下耐热性不同的两个甘蓝品种幼苗光合作用差异的研究[J].园艺学报,32(1):25-29.
    14.高辉远.1999.大豆生长发育过程中光合作用及光合效率的调节[D].泰安:山东农业大学博士学位论文.
    15.巩擎柱,吕金印,徐炳成,李凤民,张海波.2006.水分胁迫和种植方式对小麦叶绿素荧光参数及水分利用效率的影响[J].西北农林科技大学学报(自然科学版),34(5):83-87,92.
    16.郭继英,严大义,王秉昆,郭勇,程桂红.1994.巨峰葡萄光合特性的研究[J].北京农业科学,12(2):30-32.
    17.郭延平,张良诚,洪双松,沈允刚.1999.温州蜜橘叶片光合作用的光抑制[J].园艺学报,26(5):281-286.
    18.郝淑英,谢晓红,杨红珍,相里泉,董铁民.2005.苹果园生草试验[J].中国果树,(4):15-16.
    19.何维明,钟章成.2000.攀援植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报,24(3):375-378.
    20.扈惠灵,韩德全.1997.山楂光合作用的研究[J].河南职业技术师范学院学报,25(2):36-40.
    21.黄卫东,吴兰坤,战吉宬.2004.中国矮樱桃叶片生长和光合作用对弱光照强度的适应性调节[J].中国农业科学,37(12):1981-1985.
    22.黄镇,张连忠.束怀瑞.1983.苹果不同节位叶片碳素同化物定位分配习性研究[J].山东农学院学报,14(1):31-34.
    23.姜闯道,高辉远,邹琦,蒋高明2004.田间大豆叶片成长过程中的光合特性及光破坏防御机制[J].植物生理与分子生物学学报,30(4):428-434.
    24.姜卫兵,庄猛,沈志军,宋宏峰,曹晶,李刚.2006.不同季节红叶桃、紫叶李的光合特性研究[J].园艺学报.33(3):577-582.
    25.缴丽莉,路丙社,周如久,白志英,梁海永,甄红伟.2007.遮光对青榨槭光合速率及叶绿素荧光参数的影响[J].园艺学报,34(1):173-178.
    26.李建华,罗国光.1996.巨峰葡萄叶片生长动态与光合特性的研究[J].园艺学报,23(3):213-217.
    27.廖镜思,刘殊,陈清西,郑国华.1996.龙眼光合特性及其影响因子的研究[J].园艺学报,23(1):1-7.
    28.林世清,许春辉,张其德,徐黎,毛大璋,匡廷云.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业中的应用[J].植物学通报,9(1):1-16.
    29.刘世秋,张振文,惠竹梅,宋倩.2008.干旱胁迫对酿酒葡萄赤霞珠光合特性的影响[J].干旱地区农业研究,26(5):169-172.
    30.刘殊,廖镜思,陈清西,郑国华.1997.龙眼光合作用对环境温度的响应[J].福建农业大学学报,26(4):407-410.
    31.刘贞琦,刘振业,马达鹏,曾淑芬.1984.水稻叶绿素含量及其与净光合速率关系的研究[J].作物学报,10(1):57-61.
    32.刘振蛟,曲柏宏,李玉梅,陶锐.2006.苹果梨的净光合速率变化规律[J].延边大学农学学报,28(1):32-34.
    33.娄义龙,高嘉麟,田应生,姚佳华,曾顺兰.1998.唐菖蒲、月季、菊花、香石竹的光合特性和叶表特征研究[J].园艺学报,25(3):280-286.
    34.卢从明,张其德.1994.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,36(2):93-98.
    35.路丙社,白志英,董源,梁海永.1999.阿月浑子光合特性及其影响因子的研究[J].园艺学报,26(5):287-290.
    36.吕忠恕.1982.果树生理[M].上海:上海科技出版社.
    37.吕晓静,任安祥,王羽梅.2009.不同光照强度下辣木光合作用及与其相关生理指标的日变化[J].植物生理学通讯,45(2):142-144.
    38.牟云官.1988.板栗密植园光合效能的探索[J].山东农业大学学报,19(2):41-47.
    39.牛俊玲,解思敏.2000.果园生草对苹果树光合特性影响的研究[J].山西农业大学学报,20(4):353-355.
    40.潘增光,束怀瑞.1996.苹果秋梢类型及其与树体营养状况的关系[J].果树科学,13(2):75-78.
    41.綦伟,谭浩,翟衡.2006.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,17(5):835-838.
    42.秦嗣军,吕德国,杜国栋,刘国成.2006.5种樱桃砧木光合特性的初步研究[J].园艺学报,33(4):813-816.
    43.沈育杰,史贵文,徐浩,葛玉香.1998.山葡萄种质资源光合特性的研究[J].特产研究,(3):22-25.
    44.苏印泉,张军侠.1997.10种茶树叶片比较解剖学及与抗性关系的研究[J].西北林学院学报,13(4):1-8.
    45.苏应娟,刘启宏,程莲良.1994.湖北产八角莲属三种植物的解剖学研究[J].武汉植物学报,11(2):111-115.
    46.孙艳,徐伟君,范爱丽.2006.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,17(3):399-402.
    47.谭维娜,戴廷波,荆奇,曹卫星,姜东.2007.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报,27(2):314-317.
    48.唐茜,施嘉璠.1997.川西茶区主栽品种光合强度与叶片结构相关关系的研究[J].四川农业大学学报,15(2):193-198.
    49.陶俊,陈鹏.1999.银杏光合特性的研究[J].园艺学报,26(3):157-160.
    50.王浩.2008.‘寒富'苹果性状评价研究[D].沈阳:沈阳农业大学硕士学位论文.
    51.王齐瑞,谭晓风,张琳.2006.覆草栽培对甜樱桃生长及光合速率的影响[J].浙江林学院学报,23(1):24-28.
    52.王文江,刘永居,王永蕙.1993.大磨盘柿树光合特性的研究[J].园艺学报,20(2):105-110.
    53.王文泉,郑永战,梅鸿献,张福锁.2000.芝麻对涝害的反应及适应性变异Ⅱ,模拟涝害胁迫下芝麻基因型间的光合生理变化及其对生长调节剂的反应[J].中国油料作物学报,22(2):48-52.
    54.王兴银,张福墁.2000.弱光对日光温室黄瓜光合产物分配的影响[J].中国农业大学学报,5(5):36-41.
    55.王永蕙,李保国.1990.枣树光合特性的研究[J].华北农学报,5(2):65-70.
    56.王志强,何方,牛良,刘淑娥.2000.设施栽培油桃光合特性研究[J].园艺学报,27(4):245-250.
    57.魏凤珍,李金才,董琦.2000.孕穗至抽穗期湿害对冬小麦耐湿性不同品种光合特性的影响[J].植物生理学通讯,36(3):119-122.
    58.魏锦城.1994.水稻叶片生育过程中Rubisco活性与光合光呼吸的关系[J].植物生理学报,20(3):285-292.
    59.温达志,叶万辉,林植芳,孔国辉,孙梓健.2001.全光和遮荫下两种亚热带木本植物的光合作用对光的响应[J].热带亚热带植物学报,9:248-255.
    60.文晓鹏,罗充,樊卫国,杨胜学,邓艳梅.1995.板栗光合生理的研究:板栗叶片结构与光合速率[J].贵州农学院学报,14(3):48-52.
    61.文晓鹏,朱维藩,向显衡,史继孔.1992.刺梨光合生理的初步研究(一)[J].贵州农业科学,6:27-31.
    62.吴凯,周晓阳.2007.环境胁迫对植物超微结构的影响[J].山东林业科技,3:79-83.
    63.吴林.2005.越橘叶片组织结构及其与抗寒性的关系[J].吉林农业大学学报,27:48-50.
    64.吴月燕,汪财生,吴秋峰.2005.阴雨环境中葡萄的某些光合生理特性[J].园艺学报,32(3):387-391.
    65.吴月燕.2003.高湿和弱光对葡萄叶片某些光合特性的影响[J].园艺学报,30:443-445.
    66.相昆,李宪利,王晓芳,高东升.2006.水分胁迫下外源NO对核桃叶绿素荧光的影响[J].果树学报,23(4):616-619.
    67.项文化,田大伦,闫文德,罗勇.2004.白栎光合特性对二氧化碳浓度增加和温度升高的响应[J].浙江林学院学报,21(3):247-253.
    68.谢建国,李嘉瑞,赵江.1999.猕猴桃若干光合特性研究[J].北方园艺,2:26-28.
    69.徐芬芬,曾晓春,叶利民.2005.环境条件对植物叶片气孔的影响[J].安徽农学通报,11(7):38-41.
    70.徐凯,郭延平,张上隆.2005.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,38(2):369-375.
    71.徐迎春,李绍华,柴成林,刘国杰,陈尚武.2001.水分胁迫期间及胁迫解除后苹果树源叶碳水同化物代谢规律的研究[J].果树学报,18(1):1-6.
    72.许大全,张玉忠,张荣铣.1992.植物光合作用的光抑制[J].植物生理学通讯,28(4):237-243.
    73.许大全,薛德林.1985.大豆叶片的一些光合特性[J].植物生理学通讯.6:34-37.
    74.许大全.1997.光合作用气孔限制分析的一些问题[J].植物生理学通讯,33(4):241-244.
    75.许大全.2001.光合作用研究进展:从分子机理到绿色革命[J].植物生理学报,27(2):97-108.
    76.杨春雪,卓丽,环柳参奎.2008.植物显微及超微结构变化与其抗逆性关系的研究进展[J].分子植物育种,6(2):341-346.
    77.杨江山,常永义,种培芳.2005.樱桃不同节位叶片光合特性与解剖特征比较研究[J].果树学 报,22(4):323-326.
    78.杨兴洪,邹琦,赵世杰.2005.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,29(1):8-15.
    79.杨兴洪.2000.棉花对光胁迫的适应机制及调控[D].泰安:山东农业大学博士学位论文.
    80.姚允聪,王绍辉,孔云.2007.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化[J].中国农业科学,40(4):855-863.
    81.叶勇,卢昌义,谭凤仪.2001.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,12(10):1654-1661.
    82.应叶青,吴家胜,戴文圣,黎章矩.2004.柃木苗期光合特性研究[J].浙江林学院学报,21(4):366-370.
    83.喻方圆,徐锡增,Robert D.2004.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,40(2):38-44.
    84.战吉宬,黄卫东,王利军.2003.植物弱光逆境生理研究综述[J].植物学通报,20(1):43-50.
    85.战吉宬,王利军,黄卫东.2002.弱光照强度下葡萄叶片的生长及其在强光下的光合特性[J].中国农业大学学报,7(3):75-78.
    86.张大鹏,黄丛林,王学臣,娄成后.1995.葡萄叶片光合速率与量子效率日变化的研究及利用[J].植物学报,37(1):25-33.
    87.张放,张良诚,李三玉.1995.柑桔开花、幼果期的异常高温胁迫对叶片光合作用的影响[J].园艺学报,22(1):11-15.
    88.张国良,王文凤,杨建民,张林平.1999.骆驼黄杏幼树的光合特性[J]_果树科学,16(3):224-226.
    89.张纪英,杨风云.2001.几种落叶果树叶片气孔性状观察[J].邯郸农业高等专科学校学报,18(4):14-15.
    90.张力栓,冯社章,刘承晏.1994.鸭梨不同枝类叶片光合速率在生长期的变化趋势[J].华北农学报,9(3):59-62.
    91.张连忠.1987.苹果不同植株类型和不同势力枝条碳素同化物分配习性研究[J].山东农业大学学报,18(3):43-50.
    92.张琦,张玉星,陈玉娟.2006.库尔勒香梨光合特性的研究[J].河北农业大学学报,29(6):29-32.
    93.张守仁.1999.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,16(4):444-448.
    94.张志华,高仪,王文江,郗荣庭.1993.核桃光合特性的研究[J].园艺学报,20(4):319-323.
    95.赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报,15(1):63-66.
    96.郑文君,范崇辉,韩明玉.2007.不同天气对苹果叶片光合特性的影响[J].西北农业学 报,16(6):124-127.
    97.郑元超,冯玉龙.2005.西双版纳两种生态特性不同的外来草本植物对生长环境光强的适应策略[J].生态学报,25(4):727-732.
    98.钟雪花,杨万年,吕应堂.2002.淹水胁迫下对烟草、油菜某些生理指标的比较研究[J].武汉植物学研究,20(5):395-398.
    99.周广生,朱旭彤.2002.湿害后小麦生理变化与品种耐湿性的关系[J].中国农业科学,35(7):777-783.
    100.邹琦.1995.植物生理生化实验指导(第1版)[M].北京:中国农业出版社.
    101.邹天才,张著林,周洪英,娄义龙.1996.山茶属五种植物叶片解剖特征及与光合生理相关性研究[J].西北植物学报,16(1):42-51.
    102.Alleweldt,G.,Eibach,RandRuhl,E.1983.Investigations on gas exchange in grapevine.I.Influence of temperature,leaf age and time of day on net photpsynthesis and transpiration[J].Horticultural Abstracts,53:205.
    103.Anjana,Umar S.and Iqbal M.2006.Functional and structural changes associated with cadmium in mustard plant:effect of applied sulphur[J].Communications in Soil Science and Plant Analysis,37:1205-1217.
    104.Arnon D I.1949.Copper enzymes in isolated chlorop lasts polyphenoloxidase in Beta vulgaris[J].Plant Physiol,24(1):1-15.
    105.Barber J.1995.Molecular basis of the vulnerability of photosystem Ⅱ to damage by light[J].Australian Journal of Plant Physiology,22:201-208.
    106.Barden JA.1978.Apple leaves,their morphology and photosynthetic potential[J].Horticultural Science,13:644-646.
    107.Beadle CL,Ludlow MM,Honeysett JT.1993.Water relations.In:Hall DO,Scurlock JMO,Bolhar-Nordenkampf HR,Leegood RC,Long SP(eds)[J].Photosynthesis and Production in a Changing Environment.London:Chapman and Hall,113-127.
    108.Bertamini M.Nedunchezhian N.2003.Photoinhlbition of photosynthesis in mature and young leaves of grapevine(Vitis vinifera L.)[J].Plant Sciences,164:635-644.
    109.Bj(o|¨)rkman O,Demmig B.1987.Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins[J].Planta,170:489-504.
    110.Bj(o|¨)rkman O,1987.Low-temperature chlorophyll fluorescence in leaves and its reaction to photon yield of photosynthesis in photoinhibition[J],In:Kyle JD,Osmond CB,Arntzen CJ(eds).Photoinhibition.Amsterdam Elsevier,219-228.
    111.Bruce S.,Anthony W.Whiley.1997.Leaf gas exchange ,dry matter partitioning ,and mineral element concentrations in mango as influenced by elevated atmospheric carbon dioxide and root restrictionv[J].Journal of the American Society for Horticultural Science,122(6):849-855.
    112.Buchanan B B,Gruissem W,Jones R L.2000.Biochemistry and Molecular Biology of PlantsfJ].American Society of Plant Physiologist:1160.
    113.Cant(?)n FR.2005.Molecular aspects of nitrogen mobilization and recycling in trees[J].Photosynthesis Research,83:265-278.
    114.Catsky J,Sestak Z.1997.Photosynthesis During Leaf Development[M].Handbook of Photosynthesis,633.
    115.Constable GA,Rawson HM.1980.Effect of leaf position,expansion and age on photosynthesis,transpiration and water use efficiency of cotton[J].Australian Journal of Plant Physiology.7:89-100.
    116.DeJong,TM,and Doyle JF.1985.Seasonal relationships between leaf nitrogen content(photosynthesis capacity) and leaf canopy light exposure in peach(Prunus persica)[J].Plant,Cell and Environment,8(9):701-706.
    117.Egbert K.J.,Martin C.E.,and Vogelmann T.C..2008.The influence of epidermal windows on the light environment within the leaves of six succulents[J].Journal of Experimental Botany,59(7):1863-1873.
    118.Eichelmann H,Laisk A.2000.Cooperation of photosystems II and I in leaves as analyzed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800nm [J].Plant Cell Physiol,41:138-147.
    119.Evans J.R.2009.Potential Errors in Electron Transport Rates Calculated from Chlorophyll Fluorescence as Revealed by a Multilayer Leaf Model[J].Plant Cell Physiol.,50(4):698-706.
    120.Fredeen A L,Raab T K,Rao IM.1990.Effects of phosphorus nutrition on photosynthesis in Glycine Max L Merr [J].Planta,181:399-405.
    121.Fujii JA,Kennedy R A.1985.Seasonal trends in the photosynthetie rate in apple trees,Acomparison between fruiting and nenfruiting trees [J].Plant Physiology,78(3):519-524.
    122.Grappadelli L.C.,Lakso A.N.,Plore J.A.1994.Early season patterns of carbohydrate portioning in exposed and shaded apple branches [J].Journal of the American Society for Horticultural Science,119(3):596-603.
    123.Hidema J,Makino A,Mae T.1991.Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence[J].Plant Physiol,97:1287-1293.
    124.Iryna T.and Michael M.B!anke.2002.Effect of mechanically-simulated hail on photosynthesis,dark respiration and transpiration of apple leaves[J].Environmental and Experimental Botany,48(2):169-175.
    125.Kent E.Cushman and Muhammad Maqbool.2005.Mulch Type,Mulch Depth,and Rhizome Planting Depth for Field-grown American Mayapple[J].HortScience,40(3) :635-639.
    126.Krause GH,Virgo A,Winter K.1995.High susceptibility to photoinhibition of young leaves of tropical forest trees [J].Planta,197:583-591.
    127.Krause GH,Weis E.1991.Chlorophyll fluorescence and photosynthesis:the basics[J].Annual Review of Plant Physiology and Plant Molecular Biology,43:313-349.
    128.Law RD,Crafts-Brandner SJ.1999.Inhibition and Acclimation of Photosynthesis to Heat Stress Is Closely Correlated with Activation of Ribulose-l,5-Bisphosphate Carboxylase/Oxygenase[J].Plant Physiol,120:173-181.
    129.Monma E,Shigesalburo Jsunoda.l979.Photosynthetic Heterosis in Maize[J].Japanese Journal of Breeding,29(2):159-165.
    130.Morinaga K.and.Ikeda F.1990.The Effects of Several Rootstocks on Photosynthesis,Distribution of Photosynthetic Product,and Growth of Young Satsuma Mandarin Trees[J].HortScience,59(l):9-34.
    131.Niyogi K K.1999.Photoprotection revisited:genetic and molecular approaches [J].Annual Review of Plant Physiology and Plant Molecular Biology,50:333-359.
    132.Nobel PS.1980.Leaf anatomy and water use efficiency.In:Turner NC,Kramer PJ eds[M].Adaptation of Plants to Water and High Temperature Stress.Wiley,New York,43-55.
    133.Ort D R.2001.When there is too much light[J].PIant Physiol,125:29-32.
    134.Patten CJ,Ning SM,Lu AY,Yang CS.1986.Acetone-inducible cytochrome P-450:purification,catalytic activity,and interaction with cytochrome[J].Archives of biochemistry and biophysics,251(2):629-38.
    135.Philip A,Knapp A K.1998.Response to short-term reductions in light in soybean leaves[J].Plant Science,59(5):801-805.
    136.Porpiglia PJ,Barden JA.1980.Seasonal trends in net photosynthetic potential,dark respiration,and specific leaf weight of apple leaves as affected by canopy position[J],Journal of the American Society for Horticultural Science.105:920-923.
    137.Ralf Untiedt,Michael M.Blanke.2004.Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis,dark respiration and carbon economy[J].Crop protection,23(10):1001-1006.
    138.Ranney TG,Whitlow TH,Bassuk NL.1990.Response of five temperate deciduous tree species to water stress[J].Tree Physiol.6(4):439-448.
    139.Rook F,Bevan M W.2003.Genetic approaches to understanding sugar response pathways[J].Journal of Experimental Botany,(54):495-501.
    140.Sams,C.E.,J.A.Flore.1982.The Influence of age,position,and environmental variables on net photosynthetic rate of sour cherry leaves[J].Journal of the American Society for Horticultural Science,107:339-344.
    141.Sawchuk M.G.,Donner T.J.,Head P.,and Scarpella E..2008.Unique and Overlapping Expression Patterns among Members of Photosynthesis-Associated Nuclear Gene Families in Arabidopsis[J].Plant Physiology,148(4):1908-1924.
    142.Schaffer B,Whiley AW,Kohli RR.1991.Effects of leaf age on gas exchange characteristics of avocado(Persea americana Mill.) [J].Hortscience,48:21-28.
    143.Schansker G,Rensen JJS van.l999.Performance of active Photosystem II centers in photoinhibited pea leaves[J].Photosynthesis Research.62(2):175-184.
    144.Schnettger B,Critchley C,Santore UJ.1994.Relationship between photoinhibition of photosynthesis,Dl protein turnover and chloroplast structure:effects of protein synthesis inhibitors[J].Plant Cell Environ,17:55-64.
    145.SestakZ.1985.Chlorophylls and carotenoids during leaf ontogeny.In:(?)est(?)k Z(ed).Photosynthesis During Leaf Development[M].Boston,MA:Dr Junk W,76-106.
    146.Shafiqur R K,Robin R,Diane L.2000.Effects of shade on morphology chlorophyll concentration and chlorophyll fluorescence of four Pacific Northwest conifer species[J].New Forests,19:171-186.
    147.Sonoike K.,Terashima I.1994.Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L[J].Planta,194:287-293.
    148.Srivali B ,Renu KC.1998.Drought2induced enhancement of protease activity during monocarpic senescence in wheat[J].Current Science,75(l 1):1174-1176.
    149.Staswick P E.1994.Storage protein of vegetative plant tissues[J].Annual Review of Plant Physiology and Plant Molecular Biology,45:303-322.
    150.Stoft K G.1976.The effects of competition from ground covers orr apple vigour and yield[J].Annals Of Applied Biology.,83:327-330.
    151.Sundby C,Melis A,Maenpaa RAndersson B.1986.Temperature-dependent changes in the antennae size of PSII:Reversible conversion of PSIIato PSIIβ[J].Biochim Biophys Acta ,851:475-483.
    152.Takagi N,Inoue j.1982.Seasonal changes in berry growth and photosynthetic rate of leaves of Muscatof Alexan driagrapes[J].Journal of the Japanese Society for Horticultural Science.,51(3):286-292.
    153.Terashima,T.Fujita,T.Inoue,W.S.Chow,R.Oguchi.2009.Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light:Revisiting the Enigmatic Question of Why Leaves are Green[J].Plant Cell Physiol.,50(4):684-697.
    154.Thimijan,R.W.,Royal D.Heins.1983.Photometric,Radiometric,and Quantum Light Units of Measure:A Review of Procedures for Interconversio [J].HortScience 18(6):818-822.
    155.Turgeon R.1989.The sink-source transition in leaves[J].Annual Review of Plant Physiology and Plant Molecular Biology,40:119-138.
    156.Vinod Kumar,Aref Abdul-Baki,James D.Anderson.2005.Cover Crop Residues Enhance Growth,Improve Yield,and Delay Leaf Senescence in Greenhouse-grown Tomatoes[J].Hortscience,40(5):1307-1311.
    157.Xinhua Yin,Clark F.Seavert,Janet Turner.2007.Effects of Polypropylene Groundcover on Soil Nutrient Availability,Sweet Cherry Nutrition, and Cash Costs and Returns[J].Hortscience,42( 1):147-151.
    158.Yang X H,Zou Q,Wang W.2001.Photoinhibition in shaded cotton leaves after exposing to high light and the time course of its restoration [J].Acta Botanica Sinica,43:1255-1259.
    159.Zrenner R.,Stitt M.1991.Comparison of the effect of rapidly and gradually developing water-stress on carbohydrate metabolism in spinach leaves[J].Plant,Cell& Environment,14(9):939-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700