铝胁迫下大豆差异基因表达及GmRNF12、GmFDR3基因功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不良的耕作方式和越来越严重的酸雨现象,使酸性土壤的酸化程度和面积在不断加剧和扩大。在酸性土壤上,限制植物生长发育的主要因素之一为铝(Aluminum, Al)的毒害。Al毒主要抑制植物的根系生长,从而影响水分及养分吸收,最终影响植物生长和发育。不同植物种类间以及同一植物的不同基因型间的耐Al性存在很大差异,并且抗Al特性是可遗传性状。利用生物技术手段改良和提高植物耐Al性,培育出适应酸性Al毒土壤的植物品种或基因型,是解决Al毒害问题的经济有效的方法,其前提是明确植物耐Al毒的生理生化及分子机理。从目前世界范围对植物耐Al机制的研究成果看,从生理角度对植物耐Al机制的研究较为透彻,而关于植物耐Al的分子机制研究仍处于起步阶段。利用基因芯片技术研究Al胁迫大豆基因差异表达,从而得到Al胁迫植物基因表达变化的模型,从整体上研究Al胁迫大豆基因的表达变化对分子水平上阐明植物耐Al机制有重要的意义。
     本研究用Affymetrix大豆全基因组表达谱芯片对Al胁迫大豆根尖与正常培养大豆根尖的基因表达变化进行了分析,获得了完整的Al胁迫大豆根尖差异表达基因数据库。经单因子方差分析(p<0.05),Al胁迫大豆根尖与正常培养大豆根尖基因表达相比,转录水平表达差异2倍以上的基因共639个,其中上调表达基因561个,下调表达基因78个。参考NCBI数据库和Affymetrix Ontology数据库对639个差异表达的基因按照生物学功能分类,发现只有334个基因(52.2 %)有明确的功能注释,305(47.8%)个基因是尚未鉴定的。这334个基因可以分为9个生物学功能组:细胞壁相关基因(5.9%)、激素与信号转导(3.4%)、激酶与磷酸化(6.3%)、初生与次生物质代谢(5.6%)、氧化胁迫(7.2%)、防御反应(7.1%)、转录因子(9.2%)、转运体(4.2%)和蛋白质代谢(3.3%)。利用实时荧光定量PCR方法验证了芯片数据的可靠性。
     利用实时荧光定量PCR方法分析了Al胁迫下GmFDR3、GmABC、GmSTOP1、GmRNF12和GmWRKY57基因在耐Al基因型大豆吉育70和Al敏感基因型吉育62中的转录水平表达变化。GmFDR3、GmABC、GmRNF12、GmWRKY57在大豆两个品种中不同程度的受Al诱导表达,而GmSTOP1不受Al诱导表达。而GmSTOP1基因在大豆两个品种的表达量差异不明显。
     通过RT-PCR方法从大豆根尖中克隆到GmRNF12和GmFDR3基因的cDNA全长。GmRNF12编码一个由236个氨基酸残基组成的锌指蛋白家族成员。GmFDR3编码一个由589个氨基酸残基组成的MATE家族蛋白,具有典型的跨膜结构域,进化树分析表明GmFDR3与白羽扇豆LaFDR3的亲缘关系最近。
     GmRNF12基因的表达受干旱、高盐、低温、SA及ABA的诱导。GmFDR3受SA诱导表达。在Al胁迫下,GmRNF12和GmFDR3基因在大豆根、茎、叶中均有表达,表达量的高低顺序为:根>叶>茎。
     构建了GmRNF12和GmFDR3两个基因的超表达载体,以农杆菌介导法转化拟南芥,经除草剂Basta筛选得到T1代转基因拟南芥。对转GmRNF12基因T3代拟南芥进行Al胁迫、低温、高盐胁迫处理,对转GmFDR3基因T3代拟南芥进行Al处理,初步结果表明:与野生型拟南芥相比,转GmRNF12拟南芥提高了抗低温、耐盐能力,转GmRNF12和转GmFDR3基因拟南芥耐Al性明显提高。
Soil acidification is an increasing problem in the world because of acid rain, intensive agriculture and with the excessive use of nitrogen fertilizers. Al toxicity is considered to be one of the most important limiting factors of crop production on acid soils. Under acidic conditions, toxic forms of Al will mobilized into soil solution, and rapidly inhibit plant root growth, subsequently decrease nutrient and water uptake, and result in poor crop growth and productivity. The ability to resist Al stress is different in genotypic differences among plant species or cultivars within the same species and the ability to resist Al stress is genetic. The identification and characterization of Al resistance genes will not only greatly advance our understanding of the mechanistic functioning of these processes, but,more importantly, will be the source of new molecular resources that researchers will use to develop improved crops better suited for cultivation on the acid soils that comprise such a large fraction of the world’s lands.
     Using genomic microarray technique researched genes differential expression under Al stress in soybean and obtained a primary gene expression profiling and to undersand the Al resistance mechanism at global transaiptional level.
     The present study provided the genomic microarray analysis of soybean transcriptional responses under Al stress, in which the genomic transcriptional levels of Al-stressed soybean were analyzed using the Affymetrix porcine GeneChip. Total RNA was extracted from soybean tips collected before and after Al. Results showed that 639 genes were confirmed as having a greater than twofold altered expression, with 561up-regulated and 78down-regulated. 334 genes involved in a wide range of functions, but 305 genes (47.8% )are unknown functions .The functions of the 639 genes were observed by the Gene Ontology tool, available from the Affymetrix web.These clustered into 9 functional groups: cell wall related(5.9%), signal transduction(3.4%), kinase and phosphorylation(6.3%), Primary and secondary metabolism (5.6%),Oxidative reponse(7.2%), Resistance reponse(7.1%), transcription factor(9.2%),Transporter(4.2%),.Quantitative real-time PCR was used to verify the microarray data.
     Quantitative real-time PCR method detected the differential expression of some genes at different times under Al stress in jiyu70 and jiyu62. The results compared the difference of gene expression characteristics between in jiyu70 and jiyu62.
     By using RT-PCR technique, GmRNF12和GmFDR3 were isolated from soybean tips. The results of sequence functionally annotated by Blast in NCBI indicate GmRNF12 encodes a Zn-finger type transcription factor consisting of 236 amino acids. GmFDR3 encodes a MATE family protein consisting of 589 amino acids. Analysis of phylogenetic tree indicated that GmFDR3 is more closely related with LaFDR3.
     Real-time PCR technique was applied to clarify the express pattens response tovarious abiotic stresses about GmRNF12. GmRNF12 was induced by drought,salt , low-temperature ,SA and ABA . GmFDR3 was induced by SA.
     Two overexpression vectors for two genes were construced and transfornled into Arabidopsis by Agrobacterium-mediated transformation. Identification of Al resistance indicated that the T3 generation of transgenic Arabidopsis plants showed increasing resistance to Al.
引文
[1] Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Plant Physiol Plant Mol Bio,1995,46:237–60.
    [2] Martell AE, Hancock RD, Smith RM, et al. Coordination of Al(III) in the environment and in biological systems[J].Coord Chem Rev,1996,149:311–28.
    [3] Aniol A. Induction of aluminium tolerance in wheat seedlings by low doses of aluminium in nutrient solution[J]. Plant Physiol ,1984,75:551–555.
    [4]沈仁芳主编.Al在土壤-植物中的行为及植物的适应机制[M].北京:科学出版社, 2008.
    [5] Guo JH, Liu XJ, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010,327: 1008–1010.
    [6]刘强,郑绍建,林咸永.植物适应Al毒胁迫的生理及分子生物学机理[J].应用生态学报, 2004,15 (9) :1641–1649.
    [7] Hacia J, Edgemonl, Sun B, et al. Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes[J]. Nucleic Acids Res.1998, 26(16):3865–3866.
    [8]张志刚,杨晓萍,梅正鼎,等.基因芯片技术在作物中的研究进展及展望[J].江西棉花,2006, 28(1): 3–5.
    [9] Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants[J]. Int Rev Cytol -Survey Cell Bioll ,2000, 200:1–46.
    [10] Ryanp R,D Itoma SO JM, Kochian L V. Characterization of Al stimulated efflux of malate from the apices of Al tolerant wheat roots [J]. J Exp Bot,1993, 44:437–446.
    [11] Sivaguru M, Horst WJ .The distal part of the transition zone is the most aluminum sensitive apical root zone of maize[J]. Plant Physiol,1998, 116:155–63.
    [12] Ryan PR,DiTomaso JM,Kochian LV. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap[J].J Exp Bot,1993,44:437–46.
    [13] Matsumoto H,Hirasawa F,Takahashi E, et al. Localization of absorbed aluminum in pea root and its binding to nucleic acid[J]. Plant Cell Physiol, 1976,17:127–37.
    [14] Sasaki M, Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminumin wheat (Triticum aestivum) roots[J]. Physiol Plant,1996, 96:193–198.
    [15] Doncheva S, Amenós M, Poschenrieder C, et al. Root cell patterning: a primary target for aluminum toxicity in maize[J].J Exp Bot,2005,56:1213–20.
    [16] Rengel Z. Tansley Review Uptake of aluminum by plant cells[J]. New Phytol,1996,134:389–406.
    [17] Schmohl N, Pilling J, Fisahn J, et al. Pectin methylesterase modulates aluminum sensitivity in Zea mays and Solanum tuberosum[J]. Physiol Plant, 2000,109:419–27.
    [18] Ma JF. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J].Int Rev Cytol, 2007, 264:225–52.
    [19] Sivaguru M, Balu?ka F, Volkmann D, et al. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone[J]. Plant Physiol, 1999,119:1073–82.
    [20] Yang JL, Li YY, Zhang YJ, et al. Cell Wall Polysaccharides Are Specifically Involved in the Exclusion of Aluminum from the Rice Root Apex[J]. Plant Physiology, 2008, 146: 602-611.
    [21]林咸永,唐剑锋,章永松. Al胁迫下小麦根细胞壁多搪组分含量的变化与其耐Al性的关系[J].浙江农业大学学报, 2005, 31(6): 724-730.
    [22] Horst W J, Schmohl N, Kollmeier M, et al. Does aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum [J].Plant Soil, 1999, 215:163–174.
    [23] Schwarzerova k,Zelenkova S,Nick P, et al.Aluminum-inducd Rapid changes in the microtubular cytoskeleton of tobacco cell line[J].Plant Cell Physiol, 2002, 43:207-216.
    [24] Ahad A, Nick P.Actin is bundled in activation-tagged tobacco mutants that tolerate aluminum [J]. Planta, 2001, 225:451-468.
    [25] Ahn SJ,Sivaguru M,Chung GC, et al.Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) [J]. Expc Bot,2002,53, 1959-1966.
    [26] Kinraide TB.Toxicity factors in acidic forest soils attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation[J]. Soil Sci, 2003,54: 323-333.
    [27] Grabski S, Schindler M. Aluminum induces rigor within the actin network ofsoybean cells[J]. Plant Physiol,1995, 108:897-901
    [28] Kochian LV, Hoekenga OA, Pi?eros MA. How do crop plants tolerate acid soils - Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Ann Rev Plant Biol, 2004, 55:459-493.
    [29] Gassmann W, Schroeder JI.Inward-rectifying K+ channels in root hairs of wheat (a mechanism for aluminumsensitive low-affinity K+ uptake and membrane potential control) [J]. Plant Physiol, 1994, 105:1399-1408.
    [30] Vilma K,Vidmantas S. The Effect of Aluminium on Bioelectrical Activity of the Nitellopsis obtusa Cell Membrane after H+-ATPase Inhibition[J]. Central European Journal of Biology,2007, 2 (2):222-232.
    [31] Tabuchi A, Matsumoto H. Changes in cell-wall properties of whea(Tricum aestivum L) roots during aluminum-induced growth inhibition[J]. Physiol Plant, 2001,112:353-358.
    [32] Ma J F, Rengel Z ,Kuo J. Aluminum toxicity in rye (Secale cereale) :Root growth and dynamics of cytoplasmic Ca2+ in intact root tips[J].Annals Bot, 2002b, 89:241–244.
    [33] Jones D, Kochian L. Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat rootsy[J].Plant Cell, 1995,7: 1913–1922.
    [34] Ramos Díaz A, Brito Argáez L, Munnik T, et al. Aluminum inhibits phosphatidic acid formationby blocking the phospholipase C pathway[J]. Planta, 2007, 225:393-401.
    [35] Zhang ZY, Chen GX, Harrington PD. Detection of trace organic compounds by using ion mobility spectrometry and simplisma [J]. Spectr Spectral Anal, 2005, 25:1530-1533.
    [36] Siegle E, Gilliham M, Haseloff J,et al. Hyperpolarisation -activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. PlantJ, 2000 , 21: 225-229.
    [37] Rengel Z, Zhang WH. Role of dynamics of intracellular calcium in aluminum -toxicity syndrome[J].New Phytol, 2003, 159:295-314.
    [38] Snowden KC, Richard KD, Cardner RC. Alurninurn-induced genes: induction by txoic rnetals, low calciurn, and wounding and pattern of expression in root tips[J]. Plant Physiol , 1995,107:341-348.
    [39] Siegle E,Gilliham M,Haseloff J,et al.Hyperpolarisation-activated calciumcurrents found only in cells from the elongation zone of Arabidopsis thaliana roots[J]. Plant J, 2000,21:225–229.
    [40] Rengel Z, Zhang WH. Role of dynamics of intracellular calcium in aluminum- toxicity syndrome[J]. New Phytol, 2003,159:295–314.
    [41] Zhang W, Rengel Z. Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells[J].Plant Physiol, 1999, 26:401–409.
    [42] Neill SJ,Desikan R,Hancock JT. Nitric oxide signaling in plant[J].New Phytol, 2003,159:11-35.
    [43] Lamattina L,Garda-Mata C,Grazino M,et al.Nitric oxide: the versatility of an extensive signal molecule[J]. Plant Biol, 2003,54:109-136.
    [44] Crawford N W,Guo F, W Q. New insights into nitric oxide metabolism and regulatory functions[J].Trends Plant Sci,2005, 10:195-200.
    [45] Lamattina L,Garda-Mata C,Grazino M,et al.Nitric oxide: the versatility of an extensive signal molecule J]. Plant Biol, 2003,54:109-136.
    [46] Tian QY, Sun DH, Zhao MG, et al. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos[J]. New Phytol, 2007, 174:322–31.
    [47] Blancaflor E, Jones D ,Gilroy S . Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize[J]. Plant Physiol, 1998, 118:159–172.
    [48] Kollmeier M, Felle H H, Horst W J. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone [J]. Plant Physiol, 2000,122:945–956.
    [49] Pan W L,Jackson W A,Hopkins A G. Aluminum inhibition of shoot lateral branches of Glycine max and reversal by exogenous cytokinin[J].Plant Soil,1989, 120:1-9.
    [50] Hou NN, You JF, Pang JD,et al. The accumulation and transport of abscisic acid in soybean (Glycine max L.) under aluminum stress[J]. Plant and Soil, 2010,330:127–137.
    [51] Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants[J]. Int Rev Cytol, 2000, 200:1-46.
    [52] Cakmak I, Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycinemax) [J]. Plant Physiol,1991, 83: 463–468.
    [53] Yamamoto Y, Kobayashi Y, Devi S, et al.Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J]. Plant Physiol, 2002 , 128:63–72.
    [54] Taylor G J. Current views of the aluminum stress response: The physiological basis of tolerance[J]. Plant Biochem Physiol, 1991, 10:57-93.
    [55] Ma JF, Ryan R, Delhaize E. Aluminum tolerance in plants and the complexing role of organicacids[J].Trends in Plant Science, 2001, 6: 273-278.
    [56] Ma JF, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of Al in Hydrangea, identification of Al form in the leaves[J]. Plant Physiol. 1997,113: 1033-1039.
    [57] Ma JF, Zheng SJ, Hiradate S, et al. Detoxifying aluminum with buckwheat[J]. Nature,1997b, 390: 569-570.
    [58] Shen RF, Ma JF, Kyo M, et al. Compartmentation of aluminium in leaves of an Al-accumulator Fagopyrum esculentum Moench[J].Planta, 2002,215:394-398.
    [59] Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants [J]. Inorg Biochem, 2003,97:46–51.
    [60] Ma JF, Shen RF, Nagao S, et al. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J].Plant Cell Physiol,2004,45:583-589.
    [61] Ishikawa S, Wagatsuma T, Takano T, et al. The plasma membrane intactness of root-tip cell is a primary factor for Al-tolerance in cultivars of five species[J]. Soil Sci Plant Nutr,2001,47:489-501.
    [62] Yang ZM, Sivaguru M, Matsumoto H. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant, 2000, 110: 72-77.
    [63] Kitagawa T, Morishita T, TachibanaY, et al. Differential aluminum resistance of wheat varieties and secretion of organic acids [J]. Soil Sci Plant Nutr, 1986,57: 352-358.
    [64] Miyasaka SC, Buta JG, Howell RK, et al. Mechanis of aluminum tolerance in snapbeans: root exudation of citric acid[J]. Plant Physiol,1991,96: 737-743.
    [65] Ma JF, Hiradate S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench) [J]. Planta ,2000, 211:355-360.
    [66] Delhaize E, Craig S, Beaton C D, et al . Aluminum tolerance in wheat ( Triticumaestivum L. ): I. Uptake and distribution of aluminum in root apices[J ] . Plant Physiol, 1993 , 103:685- 6931.
    [67] Ma JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassiatora L[J].Plant Cell Phvsiol, 1997c, 38: 1019-1025.
    [68] Pellet D M, Grunes DL, Kochian L V. Organic acid exudation as an aluminum–tolerance mechanism in maize ( Zea mays L. )[J]. Planta,1995, 196:788- 795.
    [69] Li X F , Ma J F , Matsumoto H. Pattern of aluminum induced secretion of organic acids differs between rye and wheat [J]. Plant Physiol, 2000,123:1537- 15441.
    [70] Ryan P R, Delhaize E, Randall PJ. Malate efflux from root apices and tolerance to aluminum are highlycorrelated in wheat[J]. Plant Physiol, 1995b,
    [71] Yang ZM, Nian H, Sivaguru M, et al. Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean (Glycine max L.) plants[J]. Physiol Plant, 2001,13:64-71.
    [72] Yang ZM, Wang J, Wang SH, et al. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora [J]. Planta, 2003, 217:168-17.
    [73] Koyama H, Kawamura A, Kihara T. et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil[J]. Plant Cell Physiol, 2000, 41:1030-1037.
    [74] Tesfaye M, Temple SJ, Allan DL, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol, 2001, 127:1836–1844.
    [75] Juan M F, Verenice R R, JoséL C, et al.Aluminum Tolerance in Transgenic Plants by Alteration of Citrate Synthesis[J]. Science,1997,276:1566-1568.
    [76] Kollmeier M, Kietrich P, Bauer CS, et al. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex[J]. Plant Physiol,2001,126: 397-416.
    [77] Pi?eros MA , Kochian LV. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize: identification and characterization of Al3+-induced anion channels[J]. Plant Physiol,2001, 125:292-305.
    [78] Zhang WH, Ryan PR ,Tyerman SD. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots[J]. PlantPhysiol. 2001, 125:1459-1472.
    [79] Xu MY, You JF, Hou NN, et al. Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots[J]. Func Plant Biol. 2010, 37:285-295.
    [80] Kidd PS, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.)[J]. J Exp Bot. 2001, 52:1339-1352.
    [81] Horst WJ, Wagner A , Matsumoto H. Mucilage protects roots from aluminium injury [J]. Plant Physiol,1982, 140:174-178.
    [82] Puthota V, Cruz-Ortega R, Jonsan J. An ultranstructural study of the inhibition of mucilage secretion in the wheat root cap by aluminium [J]. Plant Soil, 2004,75:779-789. [ 83] Wang P, Bi S, Ma L, et al. Aluminium tolerance of two wheat cultivars(Brevor and Atlas 66) in relation to their rhizosphere pH and orangnic acids exuded from roots [J]. Agyi Food Chem, 2006, 54:10033-10039.
    [84] Degenhardt J, Larsen P B,Howell S H, et al. Aluminium resistance in the Arabhidopsias mutant alr-104 is caused by an aluminium-induced increase in rhizosphere pH[J]. Plant Physiol,1998, 117:19-27.
    [85]董爱华,童微星,朱睦元.大麦耐Al3+性与诱导培养液pH改变的相关性研究[J].上海农业学报, 1999, 15( 3):38-41.
    [86] Snowden KC, Richards KD,Gardner RC. Aluminium induced genes. Induction of toxic metals , low calcium ,and wounding and pattern of expression in root tips[J]. Plant Physiol, 1995,107:341-34.
    [87] Richards K, Schott E, Sharma Y, et al. Aluminum induces oxidative stress genes in Arabidopsisthaliana[J]. Plant Physiol,1998,116:409-418.
    [88] Ezaki B, Katsuhara M, Kawamura M , et al. Different mechanisms of four aluminum (Al)-resistant transgenes for Al Toxicity in Arabidopsis[J]. Plant Physiol, 2001, 127:918-927.
    [89] BaSU U, Good Cx, Taylor CJ. Transgenic Brassica nupus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum[J]. Plant Cell Environ,2001, 24:1269-1278.
    [90] Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding analuminum-activated malate tranporter[J]. The Plant, 2004, 37:645-653.
    [91] Magalhaes JV, Liu J, Guimar?es CT, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nat Genet, 2007, 39(9):1156-1161.
    [92] Furukawa J, Yamaji N, Wang H, et al. An aluminum-activated citrate transporter in barley.[J]. Plant Cell Physio, 2007, 48(8):1081-91.
    [93] Paul B, Larsen, MattJ B,et al. Expression ALS3 encodes a phloem-localized ABC-like protein that is required for aluminum tolerance in Arabidopis[J].The Plant Journal, 2005, 41:353-363.
    [94] Larsen PB, Cancel J, Rounds M, et al. Arabidopsis ALS1 encodes a root tip and stele localized half type ABCtransporter required for root growth in an aluminum toxic environment[J]. Planta, 2007, 225: 1447–1458.
    [95] Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance[J]. Proc Natl Acad Sci,2007,104(23):9900-5.
    [96] Huang CF, Yamaji N, Mitani N, et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. Plant Cell, 2009, 21: 655–667.
    [97] Naoki Yamaji, Chao FengHuang, Sakiko Nagao,et ai. A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes Implicated in Aluminum Tolerance in Rice[J]. The Plant Cell, 2009, 21: 3339–3349.
    [98] Jixing Xia, Naoki Yamaji, Tomonari Kasai, et al.Plasma membrane-localized transporter for Aluminum[J]. PANS, 2010, 43:18381–18385.
    [99] Schena M, Shalon D, Brown P, et al Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science,1995, 270 (5235):467-470.
    [100] Schena M, Shalon D, Heller R.Parallel human genome analysis: microarray-based expressionmonitoring of 1000 genes[J]. PNAS.1996, 93(20): 10614-10619.
    [101] Loguercio L, Zhang J Q, Wilhins T A. Differential regulation of six novel MYB-domain genesdefines two distinct expression patterns in allotetraploid cotton [J]. Mol Gen Genet, 1999,261:660-671.
    [102] Grewal A, Stochton J, Bolger C.Tools for discovery gene expression enterprisesolutions[J]. Curr Opin Drug Discovery Dev, 2003, 6(3):333-338.
    [103] Spyrou G, EnmarkE, Vizuete A, et al.Cloning and expres- sion of a novel mammalian thioredoxin[J]. Biol Chem,1997, 272(5): 2336- 2341.
    [104] Coombes K R, Highsmith W E, Krogmann T A. Identifying and quantifying sources of variation in microarray data using high-density cDNA membrane using high-density cDNA membrane arrays[J]. Comput Biol, 2002, 9:655-669.
    [105] Peer M, Kemal Kazan , Iain Wilson , et al . Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. PNAS, 2000, 97 (21):11655~11660.
    [106] Scki M. Naruskak M. Abeh H, et al. Monitoring the expression pattern of 1300 Arabidopsis under drought and cold stresses by using a full-length microarry [J].Plant cell, 2001, 13(1): 61-72.
    [107] Aharoni A and Vorst O. DNA microarrays for functional plant genomics[J]. Plant Mol Biol, 2002, 48:99–118.
    [108] Greenberg S A. DNA microarray gene expression analysis technology and its application to neurological disorders[J]. Neurology, 2001,57(5):755-761.
    [109] Michael B E, Paul T, Spellman Patrick O, et al. Cluster analysis and display of genome-wide expression patterns[J]. PNAS,1998, 95:14863-14868.
    [110] Wang H Y, Yu Y, Chen Z L, et al. Functional characterization of Gossypium hirsutum profilinl gene(GhPFNl)in tobacco suspension cells[J]. Planta, 2005, 222: 594-603.
    [111] Hmmond RD, Guimaraes CT, Felix J, et al. Prospecting sugarcane genes involved in aluminum tolerance[J]. Genet Mol Biol, 2001, 24: 221-230.
    [112] Shinozaki K, Ymaguchi Shinozaki. Gene expression and signal transduction in water-stress response[J]. Plant Physiol, 1997, 115(2):327-334.
    [113] Seki M, Ishida J, Narusaka M, et al. Monitoring the expression pattern of around 7000 genes under ABA treatments using a full-length cDNA microarray[J]. Funct Integr Genomics, 2002, 2: 282-291.
    [114]李龙云.利用基因芯片技术筛选棉纤维发育相关基因[D].西北农林科技大学硕士论文, 2010.
    [115]葛璎.野大豆碱胁迫转录谱与基因组整合分析[D].东北农业大学博士论文, 2010.
    [116] Chris S, Shauna S. Plant functional genomics[J]. Science.1999, 285: 380-383.
    [117] Bevan M, Bancroft I, Bent K. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J].Nature,1998, 391:485-488.
    [118] Woychik R P, Klebig M L, Justice M J, et al. Functional genomics in the post-genome sra [J]. Mut Res,1998, 400:3-14.
    [119] Fodor S P A, Read J I, Pirning M C, et al. Light directed, spatially addressable parallel chemical synthesis [J]. Science, 1991, 251(4):767-773.
    [120] Kumari M, Taylor GJ, Deyholos, MK. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Mol Genet Genomics, 2008,279: 339-357.
    [121] MaronL G, Kirst M, Mao C, et al. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots[J]. New Phyt, 2008,179:116-128.
    [122] Chandran D, Sharopova N, Ivashuta S, et al. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula[J]. Planta, 2008, 228: 151-166.
    [123]候宁宁. ABA对大豆耐Al性的调控[D].吉林大学博士论文,2009.
    [124] Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) method[J]. Methods,2001,25(4):402:428.
    [125] Silva IR, Smyth TJ, Raper CD, et al. Differential aluminium tolerance in soybean : An evaluation of the role of organic acids[J].Physiol Plant, 2001, 112:200-210.
    [126] Rangel AF, Rao IM, Horst WJ. Aluminum resistance in common bean (Phaseolus vulgaris) involves in duction and maintenance of citrate exudation from root apices[J]. Physiol planta, 2010, 138:176-190.
    [127] Casati P, Drincovich MF, Edwards GE, et al. Malate metabolism by NADP-malic enzyme in plant defense[J]. Photosynthesis Research,1999, 61: 99–105.
    [128] Walter M H, Grima Pettenati J, Feuillet C. Characterization of a bean (Phaseolus vulgaris L.) malic enzyme gene[J]. Biochemi, 1994, 224: 999–1009.
    [129] Pinto M, Casati P, Hsu TP, et al. Effects of ultraviolet-B light on growth, photosynthesis, flavonoids and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions[J]. Photochem Photobiol,1999, 48: 200–209.
    [130]尤江峰,候宁宁,杨振明,等. Al胁迫下大豆根系脱落酸累积与柠檬酸分泌的关系研究[J].植物营养与肥料学报, 2010,16( 4): 899- 905.
    [131] Palmieri LG, Picault N, Arrigoni R, et al. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylated carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization[J]. Biochem, 2008, 410:621-629.
    [132] Durrett TP, Gassmann W, Roers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient Fe translocation[J]. Plant Physiol, 2007,144: 197-205.
    [133] Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family controls iron deficiency responses in Arabidopsis[J].Plant Cell, 2002, 14 (8):1787-1799.
    [134] Tabuchi A, Matsumoto H.Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J].Physi Planta, 2001, 112:353-358.
    [135] Dixon RA, Achnine L, Kota P, Li CJ, Reddy MSS, Wang LJ. The phenylpropanoid pathway and plant defence- a genomics perspective[J]. Mole Plant Path,2002,3(5): 371-390.
    [136] Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall[J].Trends Plant Sci,2004, 9(11): 534-540.
    [137] Coutinho PM, Deleury E, Davies GJ, et al. An evolving hierarchical family classification for glycosyl transferases[J]. Mol Biol, 2003, 328:307–317.
    [138] Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J].Physi Planta, 2001, 112: 353-358.
    [139] Shinozaki K, Yamaguchi-shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responseds[J]. Plant Biol, 2003, 6:410-417.
    [140] Saito S, Hirai N, Matsumoto C, et al. Arabidopsis CYP707 As encode (+)-abscisic acid 8`-hydroxylase, a key enzyme in the oxidative catabosism of abscisic acid[J]. Plant Physiol, 2004,134:1439-1449.
    [141] Sun P, Tian QY, Zhao MG,et al. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus[J]. Plant CellPhysiol,2007, 48:1229–1235
    [142] Eticha D, Zahn Marc, Bremer M, et al. Transcriptomic analysis reveals differential gene expression in response to aluminum in common bean (Phaseolus vulgaris) genotypes[J]. Ann Botany, 2010,105:1119-1128.
    [143].李蕾,谢丙炎,戴小枫等.WRKY转录因子及其在植物防御反应中的作用[J].分子植物育种, 2005, 3(3): 401-408.
    [144]王育娜.辣椒WRKY转录因子cDNA的分离与功能鉴定[D].福建农林大学博士学位论文, 2008.
    [145]刘蕾,杜海,唐晓凤等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J].遗传, 2008, 30( 10): 1265-127
    [146] Tohae T, Nishiyama Y, Hirai MY, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant J, 2005, 42:218-235.
    [147] Abe H, Yamaguchi Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J].Plant Cell,1997, 9 : 1859-1868, [155].
    [148] Ezaki B, Gardner RC, et al. Expression of aluminium induced genes in transgenic Arabidopsis plants can ameriorate aluminium stress and oxidative stress[J]. Plant Physiol, 2000, 122 :657–665.
    [149] Schuler MA, Werck-Reichhart D. Functional genomics of P450s[J]. Ann Revi Plant Biol, 2003, 54: 629–667.
    [150] Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health[J]. Trend plant sci, 2002, 5(5):193-198.
    [151] Yang YS, Cheng JZ, Singhal SS, et al. Role of glutathione S-transferases in protection against lipid peroxidation[J]. Biol Chem, 2001, 276(22): 19220-19230.
    [152] Ezaki B, Gardner RC, Ezaki Y, et al. Protective roles of two aluminum (Al)-induced genes, HSP150 and SED1 of Saccharomyces cerevisiae in Al and oxidative stresses[J]. FEMS Microbiology letters, 1998, 159: 99-105 30 (6): 1292–1305.
    [153] Czechowski T, Czechowski T. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors unprecedented sensitivity reveals novel root andshoot-specific genes[J]. Plant J, 2004, 238(2):366–379.
    [154] Girard B M, May V, Bora S H, et al. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction [J]. Regul Peptides, 2002, 109(1-3):89-101.
    [155] Hiroshi S, Kazue O, Yonemura K, et al. Quantitative PCR to evaluate small amounts of BCL2 mRNA in human peripheral T cells: implication of equimolar target and competitor end products [J]. Clinica Chimaica Acta, 2003, 328(12):147-153.
    [156] Higgins Christopher F. ABC transporters from microorgan is mstom[J]. Ann Rev Cell Biol , 1992, 8: 67- 113.
    [157] Sanchez-Fernandez R, Davies TG, Coleman J, et al. The Arbabldopsls thallana ABC protein snperfamily a complete inventory[J].J Biol Chem, 2001, 276:30231-30244.
    [158] Schulz B, Kolukisaoglu HU. Genomics of plant ABC transporters:the alphabet of photosynthetic life forms or just holes in membranes?[J]. FEBS Lett, 2006, 580:1010-l016.
    [159] Derek A. W att . Aluminium - responsive genes in sugarcane : identification and analysis of expression under oxidative stress [J]. J Exp Bot, 2003,54: 1163- 1174.
    [160] Zou X, Seemann J R, Neuman D, et al. An ABA inducible WRKY gene intejrates responses of creosote bush (Larrea tridentate to elevated CO2 and zbiotic stress plant[J]. Science, 2007, 172: 997-1004.
    [161] Iker B, Somssich I E.WRKY transcription factors: from DNA binding towards biological function[J]. Currt Opin Plant Biol, 2004,751: 491-498.
    [162] Mare C, Mazzucotelli E. Crosatti C, et al. Hv-WRKY38: a new teanscription factor involved in cold-and drought-response in barley[J].Plant Mol Biol, 2004, 55(3):399-416
    [163]仇玉萍,荆邵娟,付坚,等.13个水稻WRKY基因的克隆及其表达谱分析[J].科学通报, 2004, 49(18): 1860-1869
    [164]刘萌萌. C2H2型锌指蛋白转录因子基因的克隆与鉴定[D].北京:中国农业科学院, 2007.
    [165]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45( 14 ):1465-1474.
    [166] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a znic finger protein gene from rice confers tolerance to cold, dehydration and salt stress in transgenic tobacco[ J]. PNAS , 2004, 101 ( 16 ):6309-6314
    [167] Meng X B,ZhaoW S, LinR M, et al.Molecular cloning and characterization of a rice blast inducible RING H2 type zinc finger gene[J]. Mitochondrial DNA,2006, 171:41-48.
    [168] Yang X H, Sun C , HuY L , et al.Molecular cloning and characterization of a gene encoding RING zinc finger protein from drought tolerant Artemisia desertorum [J] . J Biosci, 2008, 33( 1) : 103-112.
    [169]吴学闯,曹新有,陈明,等.大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析[J].植物遗传资源学报, 2010,11( 3): 343-348.
    [170]Chung YJ,Krueger C, Metzgar D, et al. Size Comparisons Among Integral Membrane Transport Protein Homologues in Bacteria,Archaea,andEucarya[J].J Bacteriol,2001,183( 3):1012- 1021.
    [171] Li L, He Z, Pandey G K, et al . Functional Cloning and Characterization of a Plant Efflux Carrier for Multidrug and Heavy Metal Detoxification [ J ]. Biol Chem, 2002, 277( 7): 5360- 5368.
    [172] Rogers EE, Wu XL, Stacey G, et al. Two MATE proteins play a role in iron efficiency in soybean[J]. Plant physiol, 2009, 166:1453-1459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700