拟南芥短日照依赖型模拟病斑SDL1基因的分离和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟病斑突变体(lesion mimic mutant)是一类在没有明显的逆境、损伤或病原物侵害时,在叶片上能自发地形成类似病原物侵染后的坏死斑的突变体,这些突变体往往能激活植物体的系统获得性抗性,通常具有与抗病反应相关的细胞学和生物化学特征。
     拟南芥短日照依赖型模拟病斑突变体(short-day-dependent lesion mimic mutant1, sdl1),是一个在短日照条件下(8小时光照、16小时黑暗)形成模拟病斑的突变体。该突变体在长日照条件下(16小时光照、8小时黑暗)与野生型拟南芥(Col-0)没有明显差异;但在短日照条件下,生长减慢,个体较野生型矮小,叶片局部产生类似坏死的病斑。植株抽苔后,幼嫩的茎以及茎顶端的花序和果荚会发生白化萎蔫,但不导致植株整体死亡。进一步研究突变体的表型,发现生长在培养基上的sdl1突变体仍然表现模拟病斑坏死表型,培养基中高浓度蔗糖的添加在一定程度上削弱了模拟病斑坏死的发生。
     采用图位克隆的方法分离鉴定了SDL1基因,该基因编码含421个氨基酸的蛋白质。sdl1的单碱基突变位点发生在基因第四个外显子的最后一个碱基,直接导致编码的氨基酸序列第157个氨基酸由Trp变为终止密码子TAG,使翻译提前结束,丢失了265个氨基酸。
     在模拟病斑形成的过程中,大多数突变体都表现出与病原菌防御相关的组织化学及系统获得抗性相关基因的表达。本研究将各生长时期的叶片进行台盼蓝染色,发现均有不同程度的细胞死亡。检测突变体中部分病程相关基因的表达,发现在短日照条件下,sdl1突变体激活了水杨酸信号途径的抗病基因表达,并伴随内源水杨酸的积累;通过构建sdl1与水杨酸缺失突变体NahG及水杨酸信号转导缺失突变体npr1-1的双突变体,发现模拟病斑的产生与水杨酸在植物体内的积累密切相关,而与水杨酸的信号转导关系不大。
     由于突变发生在剪接识别位点,采用cDNA测序及RT-PCR检测发现没有发生剪切位点的改变。RT-PCR分析发现sdll突变体中的SDL1基因的表达显著降低。本研究进一步通过构建含有内源启动子的表达载体以及由35S强启动子启动的超表达载体来检测基因mRNA及蛋白水平的表达。结果表明SDL1基因剪接识别位点的突变并没有影响剪切效率,基因通过启动子自身进行反馈调控。此外,mRNA及蛋白水平表达说明了SDL1基因的表达不受光照的调控。
     SDL1是一个未经报道的新基因,生物信息学分析表明,SDL1高度保守,具有延胡索酰乙酰乙酸酶(fumarylacetoacetate hydrolase, FAH)重要结构域,推测其可能作为FAH参与了植物体内酪氨酸的代谢进程。本研究借鉴动物体内的Tyr代谢模式,外源添加芳香族氨基酸及其代谢中间产物和终产物来处理植物,进一步寻找基因作用的节点。研究发现,外源添加高浓度的Tyr及Trp可以抑制sdl1突变体在短日照条件下的模拟病斑表型;而外源添加Phe对sdl1突变体几乎没有影响。氨基酸分析发现sdl1突变体中Tyr的含量没有改变。说明一定量的Tyr及Trp的添加似乎可以弥补SDL1基因突变的影响。低浓度的代谢中间产物尿黑酸(homogentisate, HGA)加速了sdl1突变体的模拟病斑坏死表型的发生,而高浓度HGA强烈抑制植物生长。代谢终产物延胡索酸(fumaric acid, FA)的添加没有影响,但SDL1基因突变降低了植物体内的FA含量。说明SDL1基因很可能是在HGA的下游,FA的上游发挥作用,但这种表型并非是由于HGA的积累及FA减少带来的。
     综上所述,本文分离鉴定了拟南芥短日照依赖型模拟病斑SDL1基因,并对该基因的功能进行了初步探讨,研究结果对探讨光照长度如何调控植物抗病性的分子机理具有重要的科学意义。
Lesion mimic mutants spontaneously develop lesions without apparent adversity, injury or pathogens. The lesion formation seems to be similar to the hypersensitive response elicited by inoculation with an avirulent pathogen. In some cases, lesion mimic mutants express cytological and biochemical markers that have been associated with disease-resistant responses, and exhibit local and systemic acquired resistance (SAR).
     A mutant which develops lesions under short-day conditions(8hr light/16hr dark) was named as short-day-dependent lesion mimic mutant1, sdl1. The sdl1mutant shows no significant differences with the wild-type Col-0under long-day conditions (16hours light/8hours dark), but the mutant plant grows more slowly and is more dwarf than the wild-type plant under short-day conditions. The sdl1mutant spontaneously develops lesions on its leaves without pathogen attack and wrinkles irregularly. After bolting, the acrocarpous plant shows albino stems and wilting siliques and flower buds. But it will not lead to the death of the mutant. Further studies reveal that the lesion phenotype of sdl1could not be suppressed in medium plates, but was able to be obviously attenuated by supplementation of high concentration sucrose in medium.
     The SDL1gene is identified by map-based cloning. Arabidopsis SDL1gene encodes a421amino acid protein. The mutation in sdll occurs at the last base of the fourth exon of SDL1gene, which directly leads to a substitution of the termination codon TAG for Trp. The translation ends at a premature end, losing265amino acids.
     In the process of mimic lesion formation, it has been detected in most of the lesion mimic mutants that the pathogen defense-related histochemical reaction and the systemic acquired resistance-related gene expression. Partial cell death has also been observed through the trypan blue staining in the leaves'cells of different growth periods. By detecting the resistance genes expression level, we discovered the constitutive expression of related resistance genes and the accumulation of salicylic acid in the mutants under short-day conditions. It suggests that the lesion mimic formation is related to the accumulation of SA in the mutants, but unrelated to SA signaling pathways by studying of sdl1NahG and sdl1npr1-1double mutants.
     cDNA sequencing and RT-PCR showed the SDL1mutation in sdl1that changed splicing recognition sequence did not alter its splice site and the transcripts of the mutation SDL1gene in the sdl1mutant decreased markedly. By constructing the expression vector containing the endogenous promoter and35S promoter, we further detect the expression at transcriptional and translational levels. The expression at transcriptional level indicates that mutation at splicing site of sdl1doesn't affect splicing efficiency. The gene is feedback controlled by its own promoter. In addition, the expression at transcriptional and translational levels of SDL1is not light-regulated.
     SDL1is an unreported new gene, bioinformatics analysis show that SDL1is highly conserved and contains important domains of fumarylacetoacetate hydrolase, suggesting its function as FAH functioning in tyrosine metabolic process. Learning from Tyr metabolism in vivo model, we treat plants with exogenous aromatic amino acids and their metabolic intermediates and end products to further study gene working site. The results show that exogenous high concentrations of Tyr and Trp can inhibit sdl1phenotype under short-day conditions, while there is no effect by adding exogenous Phe. The tyrosine content in sdl1mutant is not changed, illustrating a certain amount of Tyr and Trp seems to remedy the defect. Low concentration of metabolic intermediates homogentisate (HGA) in medium accelerates lesion necrosis phenotype of the sdl1mutants, while high concentrations of HGA in medium strongly inhibit plant growth. Metabolic end product fumaric acid (FA) has no impact to the phenotype of the plants, but the mutation of SDL1gene leads to reduction of FA content in the plants. The results indicate SDL1gene is likely to be working downstream of HGA, upstream of FA. But the phenotype is not due to the HGA accumulation and FA reduction.
     In summary, a short day-dependent lesion mimic SDL1gene is identified in this study, and its function is preliminary investigated. The findings are of great scientific significance to explore how the light length regulates the plant disease resistance.
引文
1. Aviv DH, Rusterucci C, Holt BF, et al. Runaway cell death, but not basal disease resistance, in Isd1 is SA-and NIM1/NPR1-dependent[J]. The Plant Journal,2002, 29:381-391.
    2. Badigannavar A M, Kale D M, Eapen S, et al. Inheritance of disease lesion mimic leaf trait in groundnut[J]. J Hered,2002,93:50-52.
    3. Balague C, Lin B, Alcon C, et al. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family [J]. Plant Cell,2003,15:365-379.
    4. Bayoumi SA, Rowan MG, Blagbrough IS, et al. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration:the E-Z-isomerisation stage[J]. Phytochemistry,2008,69:2928-2936.
    5. Beffa R, Szell M, Meuwly P, et al. Cholera toxin elevates pathogen resistance and induces pathogenesis-elated gene expressionin tobacco[J]. EMBO J,1995,14 5753-5761.
    6. Bell CJ, Ecker JR. Assignment of 30 micro satellite loci to the linkage map of Arabidopsis[J]. Genomics,1994,19:137-144.
    7. Bellp R. Megaspore abortion:a consequence of selective apoptosis[J]. International Journal of Plant Sciences,1996,157:1-7.
    8. Boch J, Verbsky M L, Robertson T L, et al. Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5[J]. Molecular Plant Microbe Interactions,1998,11:1196-1206.
    9. Bowling S A, Clarke J D, Liu Y, et al. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance[J]. Plant Cell,1997,9: 1573-1584.
    10. Brodersen P, Petersen M, Pike H M, et al. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense[J]. Genes Dev,2002,16,490- 502.
    11. Buschges R, Hollricher K, Panstruga R, et al. The barley mlo gene:a novel control element of plant pathogen resistance [J]. Cell,1997,88:695-705.
    12. Camakaris H, et al. Regulation of tyrosine and phenylalanine biosynthesis in Escherichia coli k-12:properties of the tyrR gene product[J]. J Bacteriol,1973, 115(3):1135.
    13. Chamnongpol S, Willekens H, Langebartels C, et al. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light[J]. Plant J.1996,10:491-503.
    14. Chern M, Fitzgerald H A, Canlas P E, et al. Overexpression of a Rice NPR1 homolog leads to const itutive act ivation of defense response and hypersensit ivity to light[J]. Molecular Plant Microbe Interactions,2005,18:511-520.
    15. Choe S, Schmitz R J, Fujioka S, et al. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3 beta-like kinase[J]. Plant Physiology,2002,130,1506-1515.
    16. Clarke J D, Aart N, Feys B J, et al. Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cprl and cpr6 and is partially EDS1-dependent in cpr5[J]. plant J,2001,26:409-420.
    17. Clough S J, Fengler K A, Yu I C, et al. The Arabidopsis dndl "defense, no death"gene encodes a mutated cyclic nucleotide-gated ion channel[J]. Proceedings of the National Academy of the United States of America,2000,97: 9323-9328.
    18. Copenhaver G P, Browne W E, Preuss D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads[J]. Proc. Natl Acad. Sci,1998, 95:247-252.
    19. Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy:cell death programs in plant-microbe interactions[J]. Plant cell,1996,8:1793-1807.
    20. Delonga A, Caledron A, Dellaporta S L. Sex determination gene TASSELSEED2 of maize encodes a short chain alcohol dehydrogenase required for stage-specific floral organ abortion[J]. Cell,1993,74:757-768.
    21. Devadas S K. The Arabidopsis hrll mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens[J]. Plant J,2002,30:467-480.
    22. Dietrich R A, Delaney T P, Uknes S J, et al. Arabidopsis mutants simulating disease resistance response [J]. Cell,1994,77:565-577.
    23. Dietrich R A, Richberg M H, Schmidt R, et al. A novel zinc finger protein is encoded by the Arabidopsis Isd1 gene and functions as a negative regulator of plant cell death[J]. Cell,1997,88:685-694.
    24. Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots[J]. Trends in Plant Science,2000,5:123-127.
    25. Fath A, Bethke P C, Jones R L. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in bareley aleurone[J]. Plant Physiology,2001,126:156-166.
    26. Femando D, Javier M. The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development[J]. Planta,2001,213: 352-362.
    27. Fern E Z, Canon J M, Pe-nalva M A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue[J]. J. Biol. Chem.1998,273:329-337.
    28. Fisher R S, Zhao G, Jensen R A. Cloning, sequencing and expression of the P-protein gene(PheA) of Pseudomonas stutzeri in Escherichia coli:implication for evolutionary relationships in phenylalanine biosynthesis[J]. J. Gen. Microbiol. 1996,118:5605-5614.
    29. Flor H H. Current status of the gene-for-gene concept[J]. Annu Rev Phytopathol, 1971,9:275-296.
    30. Frankenberg N, Mukuogawa K, Kohchi T, et al. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms[J]. Plant Cell,2001,13:965-978.
    31. Georg J. Arabidopsis Map-based Cloning in the Post-Genome Era[J]. Plant physiology,2002,129:440-450.
    32. Gietlc C, Mchmidm L. Ricinosomes:an organelle for developmentally regulated programmed cell death in senescing plant tissues[J]. Naturwissenschaften,2001, 88:49-58.
    33. Gonzalez G M, Apostolova N, Belles J M, et al. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde[J]. Plant Cell,2002,14,1833-1846.
    34. Goodman R N, Novacky A J. The hypersensitive reaction in plants to pathogens[M]. APS Press, St. Paul, MN,1994.
    35. Gray J, Close P S, Briggs S P, et al. A novel suppressor of cell death in plants encoded by the lls1gene of maize[J]. Cell,1997,89:25-31.
    36. Grbic V, Beatrice AB. Ethylene regulates the timing of leaf senescence in Arabidopsis[J]. The Plant Journal,1995,8:595-602.
    37. Greenberg J T, Yao N. The role and regulation of programmed cell death in plant pathogen interactions [J]. Cellular Microbiology,2004,6(3):201-211.
    38. Greenberg J T, Guo A, Klessig D F, et al. Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions[J]. Cell,1994,77:551-563.
    39. Greenberg J T, Silverman F P, Liang H. Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5[J].Genetics,2000,156:341-350.
    40. Hammond K E, Jones J D G. Plant disease resistance genes[J]. Plant Mol. Biol, 1997,48:575-607.
    41. Harms K, Ramirez I, Pena-Cortes H. Inhibition of wound induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid[J]. Plant Physiol,1998,118:1057-1065.
    42. Havel J, Durazan D J. Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce[J]. Plant Science,1996,157:8-16.
    43. He Y, Gan S A. Gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis[J]. The Plant Cell,2002,14:805-815.
    44. Heath M C. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000,44:321-334.
    45. Heike H C, Janine G, Iris S, et al. Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions[J]. Journal of Plant Physiology,2005,162:767-770.
    46. Hoeberichts F A, Woltering E J. Multiple mediators of plant programmed cell death:interplay of conserved cell death mechanisms and plant-specific regulators [J]. Biology Essays,2002,25:47-57.
    47. Hu G. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. Plant Cell,1996,8:1367-1376.
    48. Hu G, Yalpani N, Briggs S P, et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize[J]. The Plant Cell,1998, (07):1095-1105.
    49. Hunt M D. Salicylate-independent lesion formation in Arabidopsis lsd mutants[J]. Mol Plant Microbe Interact,1997,10:531-536.
    50. Ishikawa A, Okamoto H, Iwasaki Y, et al. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis [J]. The Plant journal,2001,27: 89-99.
    51. Ishikawa A, Tanaka H, Nakai M, et al. Deletion of a chaperonin 60 gene leads to cell death in the Arabidopsis lesion initiation 1 mutant[J]. Plant Cell Physiol, 2003 (44):255-261.
    52. Ito J, Fukuda H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements [J]. The Plant Cell,2002,34:98-101.
    53. Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide[J]. Science,1996,273 (27): 1853-1856.
    54. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals[J]. Biochem Pharmacol,1999,57:231-245.
    55. Jacobsen, S E, Meyerowitz, E M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis[J]. Science,1997,277:1100-1103.
    56. Jambunathan N, Siani J M, Mc N T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance[J]. Plant Cell,2001,13:2225-2240.
    57. Jones A M. Programmed cell death in development and defense[J]. Plant Physiol, 2001,125:94-97.
    58. Journot C N, Somssich I E, Rnhy D, et al. The transcription-factors WRKY11 and WRKY17 act as negative regulators of basalresistance in Arabidopsis thaliana[J]. Plant Cell,2006,18:3289-3302.
    59. Kachroo P, Kachroo A, Lapchyk L, et al. Restoration of defective cross talk in ssi2 mutants:role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling[J]. Mol Plant-Microbe Interact,2003,16:1022-1029.
    60. Kachroo P, Shanklin J, Shah J, et al. A fatty acid desaturase modulates the activation of defense signaling pathways in plants[J]. Proceedings of the National Academy of the United States of America,2001,98:9448-9453.
    61. Kirik V. CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein[J]. Curr. Biol,2001,11:1891-1895.
    62. Konieczny A, Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. Plant J,1993,4:403-410.
    63. Kosslak R M, Dieter J R, Ruff R L, et al. Partial resistance to root-borne infection by Phytophthora sojae in three a Uelic necrotic root mutants in soybean[J]. J Hered,1996,87:415-422.
    64. Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense[J]. Curr Opin Plant Biol,2002,5:325-331.
    65. Kuriyama H, Fukude H. Regulation of tracheary element differentiation[J]. Plant Growth Regulation,2001,20:35-51.
    66. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response[J]. Nature,2001,411(6839):848-853.
    67. Lam E, Pontier D, Pozo O D. Die and let live-programmed cell death in plants[J]. Curr Opin in Plant Biol,1999,2:502-507.
    68. Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    69. Laux T, Bowman J. Molecular regulation of leaf senescence[J]. Current Opinion in Plant Biology,2003,6:79-84.
    70. Li J, Brader G, Palva E T. The WRKY70 transcription factor:an ode of convergence for jasmonate-mediated and salicylate-mediated-signals in plant defense[J]. Plant Cell,2004,16:319-331.
    71. Liang H, Yao N, Song J T, et al. Ceramides modulate programmed cell death in plants [J]. Genes Dev,2003,17:2636-2641.
    72. Lin B, De WP. Identification and characterization of a novel Arabidopsis mutant, svnl, exhibiting aberrant regulation of cell death[J]. In Biology of Plant2Microbe Interactions,1999,2:416-421.
    73. Lister C, Dean C. Recombinant inbred line for mapping RFLP and phenotypic markers in Arabidopsis thaliana[J]. Plant J,1993,4:745-750.
    74. Liu D F, Cheng Z K, Liu G Q. Gene mapping and identification of lesion mimic mutant lmi in rice[J]. Sci China,2003,48(8):831-835.
    75. Lorrain S, Lin B, Auriac M C, et al. Roby D VASCULAR ASSOCIATED DEATH1, a novel GRAM domain-containing protein, is a regulator of cell death and defense responses in vascular tissues[J]. Plant Cell 2004,16:2217-2232.
    76. Lorrain S, Vailleau F, Balague C, et al. Lesion mimic mutants:keys for deciphering cell death and defense pathways in plants?[J]. Trends in plant science, 2003,8:263-271.
    77. Lukowitz W, Gillmor C S, Scheible W R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you[J]. Plant Physiology, 2000,123:795-805.
    78. Mach J M, Castillo A R, Hoogstraten R, et al. The Arabidopsis-accelerated cell death gene acd2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms [J]. Proc Natl Acad Sci USA,2001,98:
    79. Malamy J, Carr J P, Klessig D F, et al. Salicylic Acid:a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science,1990, 250(4983):1002-1004.
    80. Mall T K, Dweikat I, Sato S J, et al. Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses[J]. Plant Mol Biol,2011,75(4-5):467-79.
    81. Man P, Duan M, Wei C, et al. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonateresponsive gene expression[J]. Plant cell Physiol,2007,48:833-842.
    82. Meinke D W, Cherry J M, Dean C, et al. Arabidopsis thaliana:a model plant for genomic analysis[J]. Science,1998,282:662-682.
    83. Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR[J]. Plant J,1998,14:381-385.
    84. Mike S M, Jetten, Sinskey A J. Recent advances in the Physiology and genetic of amino acid-producing bacteria[J]. Cri. Rev. Biotech.1995,15(1):73-103
    85. Mittler R, Rizhsky L. Transgene-induced lesion mimic[J]. Plant Mole Biol,2000, 44:335-344.
    86. Mittler R, Shulaev V, Lam E. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump [J]. Plant Cell,1995,7:29-42.
    87. Mu Z, He Y, Dai Y, et al. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology [J]. Plant Cell,2000,12: 405-418.
    88. Nakamura Y, Sato S, Kaneko T, et al. Structural analysis of Arabidopsis thaliana chromosome 5. Ⅲ. Sequence features of the regions of 1,191,918 bp covered by seventeen physically assigned P1 clones[J]. DNA Res,1997,4:401-414.
    89. Nam H G, Giraudat J, Den Boer,B, et al. Restriction fragment length polymorphism linkage map of Arabidopsis thaliana[J]. Plant Cell,1989,1,699-705.
    90. Neff M M, Neff J D, Chory J, et al. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms:experimental applications in Arabidopsis thaliana genetics[J]. Plant J,1998,14:387-392.
    91. Nibbe M. Cell death and salicylate and jasmonatedependent stress responses in Arabidopsis are controlled by single cet genes[J]. Planta,2002,216:120-128.
    92. Norris S R, Barrette T R, DellaPenna D. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation[J]. Plant Cell,1995,7(12):2139-2149.
    93. Norris S R, Shen X, Della P D. Complementation of the Arabidopsis pdsl mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase[J]. Plant Physiol,1998,117:1317-1323.
    94. Olivier B, Claudine B. Ethylene is one of the key elements for cell death and Defense response control in the Arabidopsis lesion mimic mutant vad1[J]. Plant Physiology 2007,145:465-477.
    95. Park H J, Miura Y, Kawakita K, et al. Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices[J]. Plant and cell physiology,1998,39:1218-1225.
    96. Pallett K E, Little J P, Sheekey M, et al. The mode of action of isoxaflutole:Ⅰ. physiological effects, metabolism, and selectivity [J]. Pestic Biochem & Phys, 1998,62:113-124.
    97. Pan J W, Zhu M Y, Chen H. Aluminum-induced cell death in root-tip cells of barley [J]. Environm and Experim Botany,2001,46:71-79.
    98. Panavast T, Levangie R, Mistle J. Activities of nucleases in senescing daylily petals [J]. Plant Physiology,2000,38:837-843.
    99. Pena-Cortes H, Albrecht T, Prat S, et al. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis [J]. Planta, 1993,191:123-128.
    100.Pennel R I, Lamb C. Programmed cell death in plants[J]. Plant Cell,1997,9: 1157-1168.
    101.Peters J L, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches[J]. Trends in Plant Science,2003,8:484-491.
    102.Petersen M, Brodersen P, Naested H, et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance[J]. Cell,2000,103:1111-1120.
    103.Pilloff R K. The Arabidopsis gain-of-function mutant dill spontaneously develops lesions mimicking cell death associated with disease[J]. Plant J,2002, 30:61-70.
    104.Prabhu P R, Hudson A O. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT) from Arabidopsis thaliana[J]. Biochem Res Int,2010:549-572.
    105.Preston C A, Lewandowski C, Enyedi A J, et al. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants[J]. Planta,1999,209:87-95.
    106.Rafalski A. Applications of single nucleotide polymorphisms in crop genetics[J]. Curr. Opin. Plant Biol,2002,5:94-100.
    107.Rao M V, Davis K R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis:The role of salicylic acid[J]. The Plant Journal,1999, 17(6):603-614.
    108.Rate D N, Greenberg J T. The Arabidopsis aberrant growth and death mutant shows resistance to Pseudomonas as syringae and reveals a role for NPR1 in suppressing hypersensitive cell death[J]. The Plant Journal,2001,27:203-211.
    109.Rate D N. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth[J]. Plant Cell,1999,11:1695-1708.
    110.Roberts K, Me C M C. Xylogenesis:the birth of a corpse[J]. Current Opinion in Plant Biology,2000,3:517-522.
    111.Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants[J]. The Plant Cell,2002,14:185-205.
    112.Rubinstein B. Regulation of cell death in flower petals[J]. Plant Molecular Biology,2000,44:303-318.
    113.Rusterucci C, Aviv D H, Holt F, et al. The disease resistance signaling components EDS1 and PAD4 are essential regulator of the cell death pathway controlled by LSD1 in Arabidopsis[J]. Plant Cell,2001,13:2211-2224.
    1 H.Ryerson D E, Heath M C. Cleavage of nuclear DNA oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments [J]. Plant Cell,1996,8:393-402.
    115.Sandorf I, Hollander C H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta, 2002,216:173-179.
    116.Schwartz B W, Yeung E C, Meinke D W. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis[J]. Development,1994,120:3235-3245.
    117.Shah J. A recessive mutation in the Arabidopsis SSl2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens[J]. Plant J,2004,25:563-574.
    118.Shah J. The Arabidopsis ssil mutation restores pathogenesis-related gene expression in nprl plants and renders defensin gene expression salicylic acid dependent[J]. Plant Cell,1999,11:191-206.
    119.Shirano Y, Kachroo P, Shah J, et al. A gain-of-function mutation in an Arabidopsis Toll Interleukinl receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance[J]. Plant Cell,2002,14:3149-3162.
    120.Shirasu K, Schulze L P. Regulators of cell death in disease resistance[J]. Plant Mol Biol,2000,44(3):371-385.
    121.Spoel S H, Koornneef A, Claessens S M, et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. Plant Cell,2003,15:760-770.
    122.Stessman D, Miller A, Spalding M. Regulation of photosynthesis during Arabidopsis leaf development in continuous light[J]. Photosynthesis Research, 2002,72:27-37.
    123.Sugimoto S, Shiio I. Purification and properties of dissociable chorismate mutase from Brevibacterium flavuw[J]. J Biochem(Tokyo),1980,88(1):167-176.
    124.Torres M A, Dangl J L, Jones J D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of the United States of America [J].2002,99:517-522.
    125.Tsuneaki A, Julie M S, Jacqueline E, et al. Ausubel fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J]. Plant Cell,2000,12:1823-1836.
    126.Vol1 LM, Allaire EE, Fiene G, Weber AP. The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism[J]. Plant Physiol,2004,136:3058-69.
    127.Wang M, Oppedijkb J, Lu X. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid[J]. Plant Mol Biol,1996,32:1125-1134.
    128.Wang P, Yang J, Pittard A J. Promoters and transcripts associated with the atoP gene of Escherichia coli[J]. J Bacteriol,1997,179(13):4206-4212.
    129.Weymann K, Hunt M, Uknes S, et al. Suppression and restoration of lesion formation in Arabidopsis lsd mutants [J]. Plant Cell,1995.7:2013-2022.
    130.Wolfgang LC, Stewart G, Wolf S. Positional cloning in Arabidopsis. why it feels good to have a genome initiative working for you[J]. Plant Physiology,2000,123: 795-805.
    131.Woo HR, Chung KM, Park JH. ORE9, an F box protein that regulates leaf senescence in Arabidopsis[J]. The Plant Cell,2001,13:1779-1790.
    132.Wyllie AH. The genetic regulation of apoptosis[J]. Curr Opin Genet Devl,1995, 5:97-104.
    133.Yamada T, Takatsu Y, Manabe T. Suppressive effect of trehalose on apoptotic cell leading to petal senescence in ethylene-insensitive flowers of gladiolus[J]. Plant Science,2003,164:213-221.
    134.Yamamoto R, Fujiokas L, Demura T. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements[J]. Plant Physiology,2001,125: 556-563.
    135.Yamamoto Y, Kobayashi Y, Devi S R, et al. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J]. Plant Physiol,2002 (128):63-72.
    136.Yamanouchi U, Yano M, Lin H, et al. A rice spotted leaf gene, spl7, encodes a heat stress transcription factor protein[J]. Proc Natl Acad Sci USA,2002,99(11): 7530-7535.
    137.Yang S, Hua J. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis[J]. Plant Cell, 2004,16:1060-1071.
    138.Yin Z. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Mol Plant-Microbe Interact,2000,13:869-876.
    139.Yoshioka K, Kachroo P, Tsui F, et al. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis[J]. Plant J,2001,26:447-459.
    140.Zhou H, Li J. Study on a new male sterile gene and apoptosis[J]. Maize Genetics Cooperation Newsletter,1997,71:8-9.
    141.陈萍萍.粳稻浙粳22类病斑和散穗突变体的基因定位及其品质分析[D].浙江师范大学,2010.
    142.陈析丰,金杨,马伯军.水稻类病变突变体及抗病性的研究进展,植物病理学报,2011,41(1):1-9.
    143.丁新华.水稻抗病相关基因的分离克隆和功能鉴定[D].华中农业大学,2008.
    144.董颖苹,连勇,何庆才等.植物化学诱变技术在育种中的运用及其进展[J].种子,2005,24(7):54-58.
    145.姜丽丽,连秀芬,樊明寿.细胞程序性死亡在植物适应逆境中的意义[J].生命科学,2005,17(3):267-270.
    146.李小白,王雪艳,舒小丽,等.植物类病斑突变体的信号途径与抗病性研究进展[J].核农学报,2009,23(4):631-638.
    147.李永辉.芳香族氨基酸生物合成代谢途径调控研究[D].中国人民解放军军事医学科学院,2003.
    148.梁玉玲,于静娟.新型白化型除草剂靶标酶对羟苯基丙酮酸双加氧酶及其耐性转基因植物研究进展[J].中国生物工程杂志,2009,29(12):100-107.
    149.罗铁军,李正名HPPD抑制剂的研究进展[J].新农药,2002,22(23):19-24
    150.马健阳.水稻类病条纹斑突变体Ims1的鉴定和遗传定位[D].上海师范大学,2011.
    151.潘建伟,陈虹,顾青,等.环境胁迫诱导的植物细胞程序性死亡[J].遗传,2000,24:385-388.
    152.潘建伟,董爱华,朱睦元.高等植物的PCD研究进展(一)[J].遗传,2000,22(3):189-192.
    153.彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报,2005,31(4):347-353.
    154.王建军,朱旭东,王林友,等.水稻类病变(lesion resembling disease)突变体的生理和遗传分析[J].植物生理与分子生物学报,2004,30(3):331-338.
    155.吴雪峰,赵开军,陈毓荃.植物启动子的诱导模序[J].中国生物工程杂志,2004,24(12):14-21.
    156.徐刚,姚银安.水杨酸、茉莉酸和乙烯介导的防卫信号途径相互作用的研究进展[J].生物学杂志,2009,26(1):48-51.
    157.阎龙飞,张玉麟.分子生物学[M].北京:中国农业大学出版社,1997.
    158.杨雪静,刘燕娟,高必达,等.植物类病斑坏死突变体研究进展[J].湖南农业科学,2010,(23):92-95.
    159.詹洁,余永昌,何龙飞.逆境条件下的植物细胞程序性死亡[J].广西农业科学,2006,37(1):13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700