替码板栗混合芽细胞程序性死亡特征及调控信号因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单位面积产量低、土地和光能利用率差是制约中国板栗产业升级的关键问题,而解决这一问题的根本是选育适合集约密植栽培的新品种。替码板栗具有自然更新控冠、树体矮化、修剪省工的独特优势,极其适合密植栽培,但其‘替码’性状形成机制至今尚不清楚。
     为研究‘替码’性状是否由混合芽PCD所造成,首先对替码板栗芽体生长发育进程中的形态特征进行了观测,之后采用DNA Ladder检测、PI染色细胞核、流式细胞仪检测凋亡细胞率以及超微细胞结构观察相结合的方法,研究了替码板栗混合芽衰亡进程中细胞内部变化特征,继而为研究几类调控信号因子(内源激素、矿质元素和金属离子)在混合芽PCD进程中的效应和级联关系,以普通板栗混合芽为对照,HPLC、GC和FAAS法测定了替码板栗混合芽PCD进程中上述调控信号因子含量的动态变化,并针对检测结果在树体上进行了诱导回验试验。取得主要研究结果如下:
     1.替码板栗枝条上部混合芽在生长发育过程中顺次展现出失水、枯萎和脱落的植物PCD典型形态学特征,认为混合芽自然衰亡是板栗‘替码’性状形成的直接原因。相较同期普通板粟混合芽生长发育形态学特征,把替码板粟合芽自然衰亡历程划分为5个特征明显时期。
     2.替码板栗混合芽衰亡进程中(花后20-40d),芽体细胞内部表现出一系列植物PCD典型生化特征,包括:DNA逐渐降解并可检测到"DNA Ladder",PI染色后的细胞核直径逐渐减小、可染性(荧光强度)逐渐降低,凋亡细胞在芽体细胞群体中比率逐渐上升、具完整DNA含量的正常细胞比率逐渐下降。进一步观察细胞超微结构发现,替码板栗混合芽衰亡进程中细胞内部表现出明显的异常变化,并呈现有序的细胞死亡过程,首先液泡数量增多、体积变大,细胞核内核仁消失,继而液泡膜破裂,染色质发生凝聚,叶绿体和线粒体也在液泡膜破裂后逐渐肿胀、解体,期间质壁分离现象出现,最后液泡完全消失,细胞核解体,细胞器降解形成明显碎片,细胞壁皱褶变形,此时胞内完全没有完整细胞核和细胞器存在,此过程中所有细胞器是在质膜包裹下有序地降解。而对照板栗混合芽花后20~40d内,细胞内DNA无降解现象,PI染色细胞核荧光强度不变,细胞群体中凋亡细胞率变化不大,质膜内部细胞核和液泡、线粒体等细胞器一直保持完整、没有裂解现象。总之,替码板栗混合芽自然衰亡进程中细胞异常变化表现出植物细胞程序性死亡(PCD)的典型形态学特征标记和生化标记(真质标记),由此断定替码板栗混合芽细胞异常死亡不是细胞坏死(Necrosis),而是PCD现象,并且主要依据此过程中液泡协同其它细胞器变化的时间和形态特征,认为替码板栗芽体细胞死亡类型属于液泡型细胞死亡(Vacuolar cell death),板栗植株混合芽组织发生PCD是‘替码’性状形成的根本原因。
     3.替码板栗混合芽PCD进程中,随着细胞表现出PCD形态和生化特征(花后25d),ZT、ZR含量出现异于普通板栗的下降趋势,而IAA、ABA和Eth却在细胞PCD特征出现前5d(花后20d)含量突然急剧增加,尤以Eth变化最为明显,并在整个DNA降解、细胞器裂解过程中保持较高水平。后续诱导剂回验试验证实,CTK类和IAA均不能诱导板栗混合芽死亡,但可使替码板栗混合芽死亡时间延后,说明ZT、ZR和IAA在混合芽PCD中具有负调控作用,其中ZT、ZR含量缺失可能是芽体PCD的必要因子,而IAA可能在芽体PCD进程中以含量上升的方式来发挥拮抗作用;ABA既可诱导板栗芽体死亡,又可在芽体PCD进程中特定阶段发挥抑制作用,说明其在混合芽PCD进程中具有双重作用;Eth可以刺激替码板栗混合芽PCD进程加速,并可很快诱导混合芽死亡,说明Eth对板栗混合芽PCD不仅具有促进作用,而且具有诱导作用,是PCD发生的正向调控信号因子。进一步通过Eth/ABA分析发现,板栗混合芽发育过程中Eth/ABA存在一种呈波浪式变化的动态平衡,而当这种平衡在替码板栗混合芽内被Eth相对量的增加所打破,既诱导芽体PCD特征出现,因此认为Eth和ABA协同调控着替码板栗芽体PCD的进程,其中Eth是诱导芽体PCD的优势主效调控信号因子。同时芽体PCD执行期开始时间与Eth/ABA剧增时间点一致,认为Eth/ABA可以作为板栗芽体PCD执行期开始的生理标记。
     4.替码板栗混合芽PCD进程中,随着细胞PCD形态和生化特征出现(花后25d),芽体N、P含量出现异于对照的下降趋势,而K含量出现与对照下降趋势相反的上升;当替码板栗混合芽PCD形态和生化特征刚出现时,Ca浓度出现剧烈增加,当细胞液泡膜裂解和DNA降解最为严重时期,Ca浓度达到最高值;Fe含量于替码板栗混合芽PCD形态和生化特征出现前5d(花后20d)升高,随着DNA降解开始,Fe含量又急剧增加,至细胞DNA降解最为严重时,伴随DNA Ladder出现,此时混合芽内Fe含量达到最高峰值。以上说明伴随替码板栗混合芽PCD形态和生化特征出现,芽体内N、P、K、Ca含量均出现异于对照品种的变化,推测其参与替码板栗混合芽PCD事件,其中N、P含量的缺失是PCD进行的必要因子,Ca含量上升提高了核酸内切酶活性,保证了PCD的进行,并促进PCD进程加速。Fe于板栗混合芽PCD形态和生化特征出现前含量剧增,推测Fe在混合芽PCD进程中具有正向调控作用。
     此研究结果拓展了木本植物器官PCD研究领域,在人为调控替码率、定向改变板栗结果枝组发育模式方面具有重要的理论及应用价值,同时为今后选育适合矮化密植的替码板栗新品种奠定理论基础。
The low yield, low utilization rate of land and light energy were the mostest restriction problem of China's chestnut industry. The apical-bud-senescence chestnut is characterized by the apical mixed bud of fruit bearing shoot, which usually senescence and abscission after flowering and the basal latent bud will develop to new fruit bearing shoot in next year. This has the advantages of facilitating intensive cultivation and increasing production. However the mechanism of mixed bud senescence still remained unknown by now.
     In this study, the time course of cell death leading to mixed bud wilting and abscission on chestnuts were first observed, then hallmarks of programmed cell death (PCD) were studied in apical mixed bud undergoing senescence including DNA degradation, nuclear morphology, and cell death ratio and cell ultrastructure morphology, and then the contents of endogenous hormones, mineral elements contents in mixed bud undergoing PCD of chestnut were tested by HPLC, GC and FAAS in order to study the mode of action of these contral signal factors in the process of PCD and wether these control singals could induce the PCD in mixed bud of chestnut. The main results were as follows:
     1. The apical mixed bud in shoots be senescenced was the direct cause of character 'apical-bud-senescence'of chestnut. The stage that mixed buds undergoing senescence was subdivided into five distinguished stages by visible symptom.
     2. The results showed that DNA degradation occurred in apical mixed bud senescence prior to visible wilting. And nuclear stained with propidium iodide indicated that the fluorescence and diameter of nuclear significantly decreased in mixed bud undergoing senescence of apical-bud-senescence chestnut. Compared to the control chestnut buds, the cell apoptotic ratio, determined by flow cytometry, significantly increased in apical mixed buds undergoing senescence. Further cell ultrastructure detection proved that some characteristic of apoptosis including chromatin condensation, tonoplast invagination and DNA degradation occurred at an early stage of mixed bud senescence. This paper confirmed that PCD did occur in mixed bud of apical-bud-senescence chestnut, and what's more the type of PCD is vacuolar cell death rather than necrosis.
     3. When in the progress of mixed buds undergoing PCD in apical-bud-senescence chestnut, contents of ZT and ZR, which was belonged to CTK, declined gradually with the DNA degradation more and more seriously during mixed bud senescence, and it indicated that ZT and ZR have a negative regulatory role in the PCD, the deletion of content of them may be the essential factors of PCD in bud, then spraying KT-30also proved that CTK has an inhibitory role in bud PCD. Content of IAA sharply rose suddenly5d before DNA degradation, and kept high content during the whole DNA degradation, then sharply decreased with the end of DNA degradation in bud. So IAA may be had the negative regulation role in PCD. Changes of ABA in mixed bud of apical-bud-senescence chestnut was similar to Eth, contents of the two hormones sharply rose suddenly5d before DNA degradation in mixed bud, and kept high content, which indicated that ABA and Eth were the induced factors of PCD in mixed bud, then the test of spraying ethylene and ABA indicated that ethylene could induce death of bud quickly, and ABA had the double role in bud cell death. Analysis of Eth/ABA indicated that Eth and ABA have a wave-type dynamic balance, with the sharply increasing of Eth/ABA, the balance was broken by Eth increased and induced physiological changes of PCD in chestnut bud, meantime the start time of PCD was the same to the time of Eth/ABA sharply increased, so Eth/ABA increased could be used as physiololgical markers of the begin of execution in PCD. In summary, in the process of PCD in mixed buds of apical-bud-senescence chestnut, changes of IAA, ABA, and Eth contents were earlier than DNA degradation, and Eth maybe was the main control signals in mixed buds undergoing PCD of apical-bud-senescence chestnut.
     4. When in the progress of mixed buds undergoing PCD in apical-bud-senescence chestnut, the PCD process accompanied by degradation of N, P contents, and the degradation time of N, P contents was the same to start time of PCD. With the beginning of the PCD in bud, the content of K presented the upward trend, content of Ca2+sharply increased when PCD started, and significantly higher the former content, then come to the maximum value in the time when DNA degraded most seriously. Content of Fe increased before DNA degradation, and then sharply increased with the beginning of PCD, come to the maximum value in the time when DNA degradation accompanied with appearance of DNA ladder was most seriously30d after bloom in apical mixed bud senescence. The study indicated that with the DNA degradation in the PCD, content changes of N、P、K、Ca and Fe were different with CK, which could indicated that they maybe involve in PCD, and deletion of content of N, P may be the essential factor of PCD, increasing of content of Ca maybe increase the activity of related endoenzyme, which promoted PCD process. Content of Fe sharply increased before DNA degradation, and kept a high content level during DNA degradation, which indicated that Fe may be the positive control signals of PCD.
     The datas obtained here may promote the PCD research on woody plants and lay the foundation for artificial regulation of mixed bud senescence so as to remodel the development pattern of fruit branches of chestnut.
引文
1. 白双义,刘青林.月季切花不同品种衰老征兆及瓶插寿命的比较.园艺学报,2001,28(4):364-366.
    2. 陈惠萍.脱落酸与植物发育过程中的细胞凋亡.华南热带农业大学学报,2005,11(3):35-40.
    3. 崔克明.植物细胞程序性死亡的机理及其与发育的关系.植物学通报,2000,17(2):97-107.
    4. 崔克明.植物细胞程序性死亡及其特点.植物杂志,2000,(3):32-33.
    5. 樊明寿,张福锁.低磷胁迫条件下植物根内通气组织的形成.自然科学进展,2003,13:190-193.
    6. 葛志强,元英进,李景川.一种研究和鉴别悬浮培养红豆杉细胞凋亡与坏死的新方法.植物生理学报,2001,27(3):231-234.
    7. 国家林业局.中华人民共和国林业行业标准LY/T 1210-1275-1999(森林士壤分析方法).北京:中国标准出版社.1999.
    8. 洪丽亚,黄儒珠,代容春.植物细胞程序性死亡的基本特征及其检测方法.福建林业科技,2003,30(1):7-10.
    9. 黄武刚.中国板栗生产的现状、问题与对策.中国林业,2003,4(A):18-19.
    10.姜国高主编.板栗早实丰产栽培技术.北京:中国林业出版社.1995.
    11.姜丽丽,连秀芬,樊明寿.细胞程序化死亡在植物适应逆境中的意义.生命科学,2005,17(3):267-271.
    12.姜晓芳,朱海珍.彗星电泳法在植物原生质体凋亡检测中的应用.植物学报:英文版,1998,40(10):928-932.
    13.孔德军.板栗品种资源保存利用与研究.河北农业科学,2003,7(S1):51-54.
    14.李超,伏圣博,刘华玲,马欣荣.细胞凋亡研究进展.世界科技研究与发展,2007,29(3):45-53.
    15.李睿,兰盛银,徐珍秀.小麦淀粉胚乳发育期间的程序性细胞死亡.植物生理与分子生物学学报,2004,30(2):183-188.
    16.李荣峰,蔡妙珍,刘鹏,徐根娣,陈敏燕,梁和.Al3+对大豆根边缘细胞程序性死亡诱导的生理生态作用.植物生态学报,2008,32(3):690-697.
    17.林久生,王根轩.活性氧与植物细胞编程性死亡.植株生理学通讯,2001,37(6):551-555.
    18.刘庆香,孔德军,王广鹏.板栗新品种‘替码珍珠’.园艺学报,2004,31(5):698.
    19.刘庆香,孔德军,王广鹏.板栗新品种‘燕晶’.园艺学报,2010,37(10):1705-1706.
    20.刘庆忠.板栗种质资源描述规范和数据标准.北京:中国农业出版社.2006.
    21.马引利,佘小平.植物细胞程序性死亡研究进展.西北林学院学报,2004,19(3):58-62
    22.马元考,王云尊,许传宝,姚学锋,孙淑梅.板栗新品种——沂蒙短枝.中国果树,1998,1:35-36.
    23.宁顺斌,王玲.植物细胞凋亡的ELISA检测Development and reproductive biology,2000,9(2): 61-68.
    24.潘建伟,董爱华,朱睦元.高等植物的PCD研究进展(一).遗传,2000,22(3):189-192.
    25.潘建伟.大麦根尖和边缘细胞铝毒生物学特性及其机理研究.浙江大学,博士毕业论文,2002.
    26.孙鑫博,代小梅,王怡杰,韩烈保.植物细胞程序性死亡研究进展.生物技术通报,2010,11:1-6.
    27.孙英丽,赵允,刘春香.细胞色素C能诱导植物细胞编程性死亡.植物学报,1999,41(4):379-383.
    28.谭冬梅.植物细胞程序性死亡的研究进展.潍坊学院学报,2009,9(2):99-103.
    29.谭冬梅,许雪锋,李天忠,王忆,韩振海.干旱胁迫诱导新疆野苹果细胞程序性死亡的细胞形态学研究.华北农学报,2007,22(1):50-55.
    30.田寿乐,明桂冬,张美永.中国板栗育种进展.干果研究进展,2007,5:79-84.
    31.汪坤仁,薛绍白,柳慧图主编.细胞生物学(第二版).北京:北京师范大学出版社.1998.
    32.王广鹏,刘庆香,孔德军.适宜密植型板栗新品种——燕光的选育.果树学报,2011,28(3):544-545.
    33.王静慧,吴文良.我国燕山板栗生产带的优势、问题与对策研究.中国农业资源与区划,2003,24(4):24-28.
    34.王三根.细胞分裂素在植物抗逆和延衰中的作用.植物学通报,2000,17(2):121-126.
    35.王同坤,齐永顺,张京政,李才.板栗新品种‘燕龙’.园艺学报,2008,35(12):1851.
    36.王同坤,王飞.燕山板栗生产现状与发展对策.河北果树,2007,(6):1-3.
    37.夏启中,张明菊,张献龙,郭小平.高浓度细胞分裂素诱导棉花悬浮细胞程序性死亡.华中农业大学学报,2005,24(4):334-338.
    38.夏启中,张献龙,聂以春,郭小平.撤除外源生长素诱发棉花胚性悬浮细胞程序性死亡.植物生理与分子生物学学报,2005,31(1):78-84.
    39.谢志芳.早熟矮化丰产稳产板栗新品种—农大1号及其栽培技术.广东林业科技,1999,15(1):31-33.
    40.许志强,廖毅,王晓峰,陈建勋.姜花瓶插期间的形态及生理生化变化研究.华南农业大学学报,1998,19(4):67-71.
    41.杨征,蔡陈凌,宋运淳.植物细胞凋亡研究进展.生物化学和生物物理进展,1999,26(5):439-443.
    42.尤瑞麟.小麦珠心细胞衰退过程的超微结构研究.植物学报,1985,27(4):345-353.
    43.张虹,梁婉琪,张大兵.花药绒毡层细胞程序性死亡研究进展.上海交通大学学报(农业科学版),2008,26(1):86-90.
    44.张婧,董清华,杨凯,曹庆芹,冯永庆,秦岭.板栗短雄花序异常死亡的超微结构观察.园艺学报,2007,34(3):605-608.
    45.张伟成,严文梅,娄成后.蒜苔乳管发育中细胞内与细胞间在结构上的变化.植物学报,1983,25(1):8-19.
    46.张宇和,柳鎏,梁维坚,张育明.中国果树志:板栗 榛子卷.北京:中国林业出版社.2005.
    47.张宇和,王福堂,高新一.板栗.北京:中国林业出版社,1989.
    48.张子义,伊霞,胡博,胡云才,刘景辉,樊明寿.缺氮条件下燕麦根轴细胞的程序性死亡.中国农学通报,2010,26(8):175-178.
    49.中国农业百科全书总编辑委员会果树卷编辑委员会.中国农业百科全书(果树卷).北京:农业出版社.1993.
    50.周毅,尤忠胜,俞越汉,张惟杰.化学试剂对唐葛蒲切花衰老的影响.园艺学报,1994,21(2):189-192.
    51. Abeles F B, Morgan P W, Saltveit M E. Ethylene in Plant Biology, Academic Press, San Diego, CA, 1992,414.
    52. Afanas'ev V N, Korol'B A, Mantsygin Y A, Nelipovich P A, Pechatnikov V A, Umansky S R. Flow cytometry and biochemical analysis of DNA degradation characteristic of two types of cell death. Federation of European Biochemical Societies,1986,194(2):347-350.
    53. Alan M J. Programmed cell death in development and defense. Plant Physiology,2001,125(1):94-97.
    54. Angelika F, Paul C B, Russell L J. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiology,2001,126(1):156-166.
    55. Arora A, Singh V P. Polyols regulate the flower senescence by delaying programmed cell death in Gladiolus. Journal of Plant Biochemistry and Biotechnology,2006,15(2):139-142.
    56. Arunika HLAN, Pearce D M, Jackson M B, Hawes C R, Evans D E. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize. Planta, 2001,212(2):205-214.
    57. Awoleye F, Duren M, Dolezel J, Novak FJ.1994. Nuclear DNA content and in vitro induced somatic polyploidization cassava(Manihot esculenta'Crantz') breeding. Euphytica,1994,76(3):195-202.
    58. Bailly C, Corbineau F, Come D. The effect of abscisic acid and methyl jasmonate on 1-aminocyclopropane 1-carboxylic acid conversion to ethylene in hypocotyl segments of sunflower seedlings seedlings and their control by calcium and calmodulin. Plant Growth Regulation,1992, 11(4):349-355.
    59. Beals T P, Golsberg R B. A novel cell ablation strategy blacks tobacco anther dehiscence. Plant Cell, 1997,9(9):1527-1545.
    60. Belenghi B, Salomon M, Levine A. Caspase-like activity in the seedlings of Pisum sativum eliminates weaker shoots during early vegetative development by induction of cell death. Journal of Experimental Botany,2004,55(398):889-897.
    61. Bell P R. Megaspore abortion:a consequence of selective apoptosis. International journal of plant sciences,1996,157(1):1-7.
    62. Boscolo P R S, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize. Phytochemistry, 2003,62(2):181-189.
    63. Breusegem F V, Dat J F. Reactive Oxygen Species in Plant Cell Death. Plant Physiology,2006,141(2): 384-390.
    64. Carafoli E. Calcium signaling:a tale for all seasons. Proceedings of the National Academy of Sciences, 2002,99(3):1115-1122.
    65. Carimi F, Zottini M, Formentin E, Terzi M, Schiavo F L. Cytokinins:new apoptotic in ducers in plants. Planta,2003,216(3):413-421.
    66. Chae H S, Lee WS. Ethylene- and enzyme-mediated superoxide production and cell death in carrot cells grown under carbon starvation. Plant Cell Reports,2001,20(3):256-261.
    67. Chen T C, Kao C H. Senescence of rice leaves. XXXII. Effects of abscisic acid and benzyladenine on polyamines and ethylene production during senescence. Journal of Plant Physiology,1992,139: 617-620.
    68. Cheng P C, Greyson R 1, Walden D B. Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. Ameriean Journal of Botany,1983,70(3):450-462.
    69. Courtois-Moreau C L, Pesquet E, Sjodin A, Muniz L, Bollhoner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique programe for cell death in xylem fibers of Populus stem. The Plant Journal, 2009,58(2):260-274.
    70. Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Science,2005,10(4):195-200.
    71. Dalessandro G, Roberts L. Induction of xylogenesis in pith parenchyma explants of Lactuca. American journal of botany,1971,58(5):378-385.
    72. Dane F, Lang P, Huang H, Fu Y. Intercontinental genetic divergence of Castanea species in eastern Asia and eastern North America. Heredity,2003,91:314-321.
    73. Dang J L, Dietrich R A, Richberg M H. Death don't have no mercy:cell death programs in plant-microbe interactions. The Plant Cell,1996,8(10):1793-1807.
    74. Danon A, DelormeV, Mailhac N, Gallois P. Plant programmed cell death:a common way to die. Plant Physiol Biochem,2000,38(9):647-655.
    75. De Pinto M C, Paradiso A, Leonetti P, De Gara L. Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the cross road between defense and cell death. The Plant Journal,2006,48(5): 784-795.
    76. Dellaporta S L, Calderon-Urrea A. The sex determination proeessinmaize. Science,1994,266: 1501-1505.
    77. Delong A, Calderon Urrea A, Dellaporta S L. Sex determination gene TASSLESEED2 of maize encodes a short chain alclhol dehydrogenase required for stage-specific floral organ abortion. Cell, 1993,74(4):757-768.
    78. Demura T, Fukuda H. Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. The Plant Cell,1994,6(7):967-981.
    79. Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak M A, Nard L, Obermaryer R. Plant Genome Size Es'timation by Flow Cytometry:Inter-laboratory Comparison. Annals of Botany,1998,2 (Supplement 1):17-26.
    80. Drake R, John I, Farrell A. Isolatio nand analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant molecular biology,1996,30:755-767.
    81. Drew M C, He C J, Morgan P W. Decreased Ethylene Biosynthesis and Induction of Aerenchyma, by Nitrogen-Starvation or Phosphate-Starvation in Adventitious Roots of Zea-Mays-L. Plant Physiology, 1989,91(1):266-271.
    82. Drew M C, He C J, Morgan PW. Ethylene-triggered cell death during aerenchyma formation in roots. In:Bryant JA, Hughes SG, Garland JM, editors. Programmed cell death in animals and plants. Oxford: BIOS Scientific Publishers Ltd,2000, pp183-192.
    83. Drew M C, He C J, Morgan P W. Programmed cell death and aerenchyma formation in roots. Trends in plant science,2000,5(3):123-127.
    84. Eaton J W, Qian M. Molecular bases of cellular iron toxicity. Free Radical Biology and Medicine, 2002,32(9):833-840.
    85. Erland L, Toma B. DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiology Plant,2001,111(3):365-372.
    86. Eshel A, Nielsen K L, Lynch J P. Screening bean genotypes for differences in phosphorus utilization efficiency. Israeli J Plant Sci,1996,44:225.
    87. Fan M C, Richard J L. Aerenchyma formation and possible physiological roles in low PH stressed maize roots. Funct Plant Biology,2003,30(5):1-14.
    88. Fath A, Bethke P, Lonsdale J. Programmed cell death in cereal aleurone. Plant molecular biology, 2000,44(3):255-266.
    89. Fukuda H. Programmed cell death of treachery elements as a paradigm in Plants. Plant molecular biology,2000,44(2):245-253.
    90. Fukuda H. Tracheary element differentiation. Plant Cell,1997,9(7):1147-1156.
    91. Gaido M L, Cidlowski JA. Identification, purification, and characterizati on of acalcium-dependent endonucl ease (NUC18) from apoptotic rat thymocytes, NUC18 is not histone H2B. Biological chemistry,1991,266 (28):18580-18585.
    92. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology,1992,11(9):493-501.
    93. Greenberg J T. Programmed cell death:a way of life for plants. Proc Nat. Acad. Sci. USA.,1996, 93(22):12094-12097.
    94. Groover A, Jones A M. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death andsecondary cell wall synthesis. Plant Physiology,1999,119(2):375-384.
    95. Gunawardena A H, Pearce DP, Jackson MB, Hawes CH, Evans DE. Characterisation of programmed cell death during aerenchyma formation induced by ethylene orhypoxia in roots of maize(Zea mays. L). Planta,2001,212(2):205-214.
    96. Gunawardena A H. Programmed cell death and tissue remodelling in plants. Journal of Experimental Botany,2008,59(3):445-451.
    97. Gutteridge J M, Halliwell B. Iron toxicity and oxygen radicals. Bailliere's Clinical Haematology,1989, 2(2):195-256.
    98. Hansen G. Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microb Interact, 2000,13(6):649-657.
    99. Heath M C. Hypersensitive response-relatived death. Plant molecular biology,2000,44(3):321-334.
    100. Helene V, Hua L, Debra NR, Jean TG. A role for salicylic acid NPR1 in regulating cell growth in Arabidopsis. The Plant Journal,2001,28(2):209-216.
    101.Hiroo F. Programmed cell death of tracheary elements as a paradigmin plants. Plant Molecular Biology,2000,44 (3):245-253.
    102. Hiroo F. Programmed cell death of tracheary elements as a paradigm in toides on marginal soils in northern India. Biomass and Bioenergy,1999,16:257-262.
    103. Hoeberichts F A, Woltering E J. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato. Journal of Plant Physiol,2001,158(1):125-128.
    104. Hong J K, Yun B W, Kang J G, Raja M U, Kwon E, Sorhagen K, Chu C, Wang Y, Loake G J. Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany,2008, 59(2):147-154.
    105. Hsu H Y, Tsang S F, Lin K W, Yang S C, Lin C N. Cell death induced by flavonoid glycosides with and without copper. Food and Chemical Toxicology,2008,46(7):2394-2401.
    106. Ikegawa H, Yamamoto Y, Matsumoto H. Responses to aluminum of suspension cultured tobacco cells in a simple calcium solution. Soil Science and Plant Nutrition,2000,46(2):503-514.
    107. Jabs T, Dietrich R A, Dang 1 J. Initiation of runaway cell death in an Arabido psismutant by extracellular superoxide. Science,1996,273(5238):1853-1856.
    108. John I, Drake R, Farrell A. Delayed leaf senescence in erhylene-deficient ACC-oxidase antisense tomato plants:Molecular and physiological analysis. Plant Journal,1995,7(3):483-490.
    109. Jones AM, Dangl JL. Logjam at the Styx:programmed cell death in plants, Trends in Plant Science, 1996,1(4):114-119.
    110. Jones A M. Programmed cell death in development and defense. Plant Physiology,2001,125(1), 94-97.
    111. Kerr J F, Currie A R. Apoptosis:a basic biological Phenomenon with wide ranging implieations in tissue kineties. Br J Caneer.1972,26:239-257.
    112. Kolodziejek I, Koziol-Lipinska J, Waleza M, Korczynski J, Mostowska A. Aspects of programmed cell death during early senescence of barley leaves:possible role of nitric oxide. Protoplasma,2007, 232(2):97-108.
    113. Konings H, Verschuren G. Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supply. Physiology Plant,1980,49(3):265-279.
    114. Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS. Oksdaic acid, a protein phosphatase inhibitor, blocks calcium changes, genes expression, and cell death induced by gibber ellin in wheat aleurone cells. The Plant cell,1996,8(2):259-269.
    115. Kuriyama H, Fukuda H. Regulation of tracheary element differentiation. Journal of Plant Growth Regulation,2001,20(1):35-51.
    116. Lai V, Srivastava LM. Nuclear changes during differentiation of xylem vessel elements. Cytobiologie, 1976,12:220-243.
    117. Lam E, Del Pozo O. Caspase-like protease involvement in the control of plant cell death. Plant Molecular Biology,2000,44(3):417-428.
    118. Laux T, Jurgens G. Embryogenesis:A new start in life. Plant Cell,1997,9(7):989-1000.
    119. Levine A, Pennell R I, Alvarez M E, Palmer R, Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Current Biology,1996,6(4):427-437.
    120. Lohman K N, Gan S, John M C. Molecular analysis of natural leaf senescence in Arabido psisthaliana. Plant Physiology,1994,92(2):322-328.
    121. Lombard L, Mariotti L, Picciarelli P. Ethylene produced by the endosperm is involved in the regulation of nucellus programmed cell death in Sechium edule Sw. Plant science,2012,187:31-38.
    122. Man Y, Yasnomi T, Pyoyun P. Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant Journal,2001,28(1):13-26.
    123. Martinez-Este'vez M, Racagni-Di Palma G, Mun oz-Sa'nchez JA, Brito-Arga'ez L, Loyola-Vargas VM. Aluminum differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells. Journal of Plant Physiology,2003,160(11):1297-303.
    124. Marty F. Plant vacuoles. Plant Cell,1999,11(4):587-599.
    125. McCabe P F, Levine A, Meijer P J, Tapon N A, Pennell R I. A programmed cell death pathway activated in carrot cell cultured at low cell density. Plant Journal,1997,12(2):267-280.
    126. McCabe P F, Leaver C J. Programmed cell death in cell cultures. Plant Molecular Biology,2000, 44(3):359-368.
    127. Mcconkey D J, Orrenius S. The role of calcium in the regulation of apoptosis. Biochem Biopys Res Commum,1997,239(2):357-366.
    128. Mittler R, Lam E. Insitu detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiology,1995,108(2):489-493.
    129. Mittler R, Lam E. Sacrifice in the face of foes:Pathogeninduced Programmed cell death in Plants. Trends microbial,1996,4(1):10-15.
    130. Moffitt P. A methyl green-pyronin technique for demon-strating cell death in the Murine Tumour S180. Cell biology international,1994,18(6):677-679.
    131. Morgan PW, Drew MC, Jordan WR. Ethylene signal transduction and programmed cell death during aerenchyma formation in maize roots. Plant Physiology,1997,114:31-33.
    132. Muntz K. Protein dynamics and proteolysis in plant vacuoles. Journal of Experimental Botany,2007, 58 (10):2391-2407.
    133.Neill S J, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal Experiment Botany,2002,53(372):1237-1247.
    134. Nomura K, Komamine A. Identification and isolation of single cells that produce somatic embryos at a high ferquence in a carot suspension culture. Plant Physiology,1985,79(4):98-991.
    135.Nooden L D, Singh S, Letham D S. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiology,1990,93(1):33-39.
    136. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a signal mediating the wound response of tomato plants. Science,1996,274(5294):1914-1917.
    137. Obara K, Kuriyama H, Fukuda H. Direct Evidence of Active and Rapid Nuclear Degradation Triggered by Vacuole Rupture during Programmed Cell Death in Zinnia. Plant Physiology,2001, 125(2):615-626.
    138. Oishi M Y, Bewley JD. Premature drying, fluridone-treatment and embryo isolation during development of maize kernels (Zea mays L.) induce germination, but the protein synthetic responses are different. Potential regulation of germination and protein synthesis by abscisic acid. Journal of Experimental Botany,1992,43(6):759-767.
    139. Olvera-Carrillo Y, Salanenka Y, Nowack M K. Control of programmed cell death during plant reproductive development. Signaling and Communication in Plants,2012,14:171-196.
    140. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death:the calcium-apoptosis link. Nature Reviews Molecular Cell Biology,2003,4:552-565.
    141. Orzaez D, Granell A. DNA frgmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant Journal,1997,11(1):137-144.
    142. Oscar L, Raquel P, Jose J. Ethylene Response Factor integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell,2003,15(1):165-178.
    143. Ostling O, Johanson KJ. Microelectrophoretic study of radiation induced DNA damages in individual mammalian cells. Biochem Biophs Res Commun,1984,12(3):291-298.
    144. Pan J W, Chen H, Gu Q. Environmental stress-in-duced programmed cell death in higher plants. Genetics,2002,24(3):385-383.
    145. Panda H S, Srivastava R, Bahadur D. Stacking of lamellae in Mg/Al hydrotalcites:Effect of metal ion concentrations on morphology. Materials Research Bulletin,2008,43(6):1448-1455.
    146. Panda S K, Singha LB, Khan MH. Does aluminum phytotoxicity induce oxidative stress in greengram (Vigna radiata)?Bulg J Plant Physiol,2003,29(1-2):77-86.
    147. Patricia RSB, Marcelo M, Renato A J. Aluminum-induced oxidative stress in maize. Phytochemistry, 2003,62(2):181-189.
    148. Paul C B, Russell L J. Cell death of barley aleuronic protoplasts is mediated by reactive oxygen species. Plant Journal,2001,25(1):19-29.
    149. Paul F M, Christopher J L. Programmed cell death in cell culture. Plant Molecular Biology,2000, 44(3):359-368.
    150. Pedroso M C, Magalhaes J R, Durzan D. Nitric oxide induces cell death in Taxus cells. Plant Science, 2000,157(2):173-180
    151. Peitsch M C, Polzar B, Stephan H, Crompton T, MacDonald H R, Mannherz H G, Tschopp J. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). Journal of the EMBO.1993,12(1):371-377.
    152. Pennell Rl, Lamb C. Programmed cell death in Plants. The Plant Cell,1997,9(7):1157-1168.
    153. Pia Run eberg-Roos, Mart S. Phytepsin, abarly vacuolar asparticprot einase, is highly expressed during autolysis of deceloingt racheary element and sievecells. The Plant Journal,1998,15 (1): 139-145.
    154. Raimund T, Carmen A, Andrea L. WY-14,643 and other agonists of the peroxisome proliferator-activated receptor reveal a newmodel of action for salicylic acid in soybean disease resistance. Planta,2001,212:888-895.
    155. Raz V, Fluhr R. Ethylene signal is transduced via proteins phosphorylation events in plant. Plant cell, 1993,5(5):523-530.
    156. Ross J, O'Neill D. New interactions between classical plant hormones. Trends in Plant Science,2001, 6(1):2-4.
    157. Saniewski M, Nowacki J, Czapski J. The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. Journal Plant Physiology,1987a,129(1-2):175-180.
    158. Saniewski M, Urbanek H, Czapski J. Effect of methyl jasmonate on ethylene production, chlorophyll degradation, and polygalacturonase activity in tomatoes. Journal Plant Physiology,1987b,127: 177-181.
    159. Simeonova E, Sikora A, Charzynska M, Mostowska A. Aspects of programmed cell death during leaf senescence of mono-and dicotyledonous plants. Protoplasma,2000,214(1-2):93-101.
    160. Sivaguru M, Yamamoto Y, Rengel Z, Ahn SJ, Matsumoto H. Early events responsible for aluminum toxicity symptoms in suspension-cultured tobacco cells. New Phytologist,2005,165(1):99-109.
    161. Solomon M, Belenghi B, Delledonne M. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell,1999,11 (3):431-443.
    162. Sugiyama M, Ito J, Aoyagi S. Endonucleases. Plant Molecular Biology,2000,44(3):387-397.
    163. Swidzinski J A, Sweetlove L J, Leaver C J. A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. The Plant Journal,2002,30 (4):431-446.
    164. Teper-Bamnolker P, Buskila Y, Lopesco Y, Ben-Dor S, Saad I, Holdengreber V, Belausov E, Zemach H, Ori N, Lers A, Eshel D. Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiology.2012,158(4):2053-67.
    165.Thelen M P, Northcote DH. Identification and purification of nuclease from Zinna elegans L. apotential molecula rmarker for xylog enesis. Planta,1989,179(2):181-195.
    166. Wacker P R, Sikorska M. New aspects of the mechanism of DNA fragmentation in apoptosis. Biochem Cell Biology,1997,75(4):287-299.
    167. van Doom W G, Balk P A, van Houwelingen A M, Hoeberichts F A, Hall R D, Vorst O, van der Schoot C. Gene expression during anthesis and senescence in Iris flowers. Plant molecular biology, 2003,53(6):845-863.
    168. Vilani F. Benndettelli S, Paciucci M, Cherubini M, Pigliucci M. Genetic variation and differentiation between natural populations of chestnut(Castanea sative Mill) From Italy. In:Fineschi S, Malvoti M E, Cannata F eds. Biochemical Markers in the Population Genetics of Forest Trees. The hague:SPB academic Publishing,1991, pp 91-103.
    169. van Doom W G. Beers E P, Dang J L, Franklin-Tong V E, Gallois P, Hara-Nishimura I, Jones A M, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV. Morphological classification of plant cell deaths. Cell Death and Differentiation,2011,36(18):1241-1246.
    170. van Doom WG, Woltering EJ. Many ways to exit? Cell death categories in plants. Trends in Plant ScienceTrends Plant Sci,2005,10(3):117-122.
    171. Varnier AL, Maxeyrat-Gourbeyre F, Sangwan RS, Clement C. Programmed cell death progressively models the development of anther sporophytic tissues from thetapetum and is triggered in pollen grains during maturation. Journal of Structural BiologyJ Struct Biol,2005,152(2):118-128.
    172. Visser E, Voesenek L. Acclimation to soil flooding-sensing and signal-transduction. Plant and Soil, 2005,274(1):197-214.
    173. Wang H, Li J, Bostock RM. Apoptosis:a functional paradigm for programmed plant cell death induced by a host-selective phytoxin and invoked during development. Plant Cell,1996,8(3):375-379.
    174. Wang M, Hoekstra S, Van Bergen S. Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Molecular BiologyPlant Mol Biol,1999, 39(3):489-501.
    175. Wang, M, Oppedijk BJ, Lu X, Van Duijn V, Schilperoort R A. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Molecular BiologyPlant Mol Biol,1997, 32(6):1125-1134.
    176. Wojciechowska M, Olszewska MJ. Endosperm degradation during seed development of Echinocystis lobata (Cucurbitaceae) as a manifestation of programmed cell death (PCD) in plants. Folia Histochemicaet Cytobiologia,2003,41(1),41-50.
    177. Wu H M, Cheng A Y. Programmed cell death in plant reproduction. Plant Molecular Biology,2000, 44(3):267-281.
    178. Wu Z L, Fang LY, Wang J. Analysis of genetic relationship of 15 vitis germplasm resources by ISSR markers. Journal of Fruit Science,2006,23(4):605-608.
    179. Xiong H Y, Li YS, Li L J. A unique form of cell death occurring in meristematic root tips of completely submerged maize seedlings. Plant Science,2006,171 (5):624-631.
    180. Xu N, Shi G X, Zeng X M. Damage to DNA primary structure and antioxidant enzymes in Lemon minor induced by Hg2+. Acta Phytoecologica Sin,2003,27(3):299-303.
    181. Xu Y, Hanson M R. Programmed cell death during pollination induced petal senescence in petunia. Plant Physiology,2000,122(4):1323-1333.
    182. Yamada T, Ichimura K, Wouter G. van Doom WG. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. Journal of Experimental Botany,2006,57(14):3543-3552.
    183. Yamada T, Takatsu Y, Kasumi M, Manabe T, Hayashi M, Marubashi W, Niwa M. Novel evaluation method of flower senescence in frsssia (ferrsia hybrida) based on apoptosis as an indicator. Plant Biotechnology,2001,18(3):215-218.
    184. Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation as an early symptom triggered by alluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology,2001, 125(1):199-208.
    185. Yamamoto T, Tanaka T, Kotobuki K, Matsuta N. Characterization of simple sequence repeats in Japanese chestnut. Journal of Horticultural Science & Biotechnology,2003,78(2):197-203.
    186. Young T E, Gallie D R, Demason D. Ethylene-mediated programmed cell death during maize endosperm development of wildtype and shrukon2 genotypes. Plant Physiology,1997, 115(2):737-751.
    187. Young T E, Gallie D R. Programmed cell death during endosperm development. Plant Molecular Biology,2000.44(3):283-301.
    188. Young T E, Gallie D R. Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Molecular Biology,2000,42(2):397-414.
    189. Zhang Y, Liu P, Song J M, Xu G D, Cai M Z, Wang T T. Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Plant Nutrition and Fertilizer Science,2009,15(4):763-770.
    190. Zhou J, Zhu H, Dai Y R. Effect of ethrel on apoptosis in carrot protoplasts. Plant Growth Regulation, 1999,27(2):119-123.
    191. Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P. Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytologist,2003,161 (2):557-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700