开发中国人药物基因组信息库及观察早期肾移植术后病人CYP3A和ABCB1基因多态对环孢素A药代动力学的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类基因组计划实施以来,生物信息学得到了迅猛发展。它主要是利用数学、信息学、统计学、计算机等学科来研究生物学的问题,是分子生物学与信息技术(尤其是互联网技术)的结合体。其研究材料是基于计算机的海量生物学数据,其方法就是对生物学数据的收集、筛选、编辑、整理、管理、显示、计算及模拟。
     ‘生物信息学极大的影响了基因组学的一个分支学科——药物基因组学。在它的影响下,药物基因组学以前所未有的速度发展。然而,药物基因组学研究所产生的试验数据大多是分散和无结构化的,所以生物学家们要想获取集中有序的数据异常艰难。如果建立各种便于访问的药物基因组数据库则可以有效的解决这一问题。因此,我们研发了中国人药物基因组信息库(CPGxNet)。
     此外,我们还进行了一项关于早期肾移植术后病人CYP3A和ABCB1基因多态以及其组成的单倍型对环孢素A药代动力学影响的试验性研究。研究中,我们把CYP3A和ABCB1的分型结果用一种试探性的推测方法顺次和来自Web of Science、CPGxNet数据库中的相关数据进行了比较分析,以此来验证CPGxNet数据库报表数据的可靠性。
     本课题具体研究结果如下:
     1、开发了基于浏览器/服务器(B/S)架构完全免费的CPGxNet数据库,并通过互联网进行正式发布(网址:http://www.cpgxnet.net/);
     2、CPGxNet数据库目前共收录5个基因,98个单核苷酸多态位点(SNP),124种药物,1145条中国人药物相关基因突变记录,并还在持续收录中;
     3、本数据库中国人样本集信息以及由此的报表功能目前还未发现类似药物基因组数据库涉及,经分析验证可以认为这一模块对研究人员具有一定的参考价值,即可以帮助科研人员弄清楚当前药物基因组学在中国人方面的研究热点,比如涉及的种族、地域、大小、频率、表型、研究时间等;
     4、我们把试验分型数据(CYP3A4*1G、CYP3A5*3C、ABCB11236C>T、2677G>T/A和3435C>T的突变频率分别为26.2%、69%、65.5%、42.5%/14.3%和38.9%)和来自Web of Science、CPGxNet数据库的相关结果进行比较,验证了CPGxNet数据库生成报表数据的可靠性,提示了CPGxNet数据库具有一定的参考价值;
     5、我们把对数据库验证的分型数据通过单基因分析,进一步观察到CYP3A5*3C多态性与CYP3A5-CYP3A5AA单倍型和早期肾移植病人服用CsA的药代动力学具有相关性(P<0.05),而未发现CYP3A4*1G、ABCB11236C>T、ABCB12677G>T/A和ABCB13435C>T多态性以及CYP3A4-CYP3A5GG、ABCB11236-2677-3435TTT、CGC和TGC单倍型和病人的CsA药代动力学有相关性(P>0.05):
     6、我们为了确定CYP3A5*3C是否作为独立因素影响药物CsA的药代动力学,我们以CYP3A5*3C、年龄、血红蛋白、血尿素氮和血肌酐为自变量构建的多元线性回归模型,进一步观察到CYP3A5*3C和CsA的药代动力学具有最强的相关性(P<0.05)。
The rapid development of bioinformatics profits from the Human Genome Project. The bioinformatics is a kind of combination of molecular biology with information technology, especially on Internet, taking advantage of mathematics, informatics, statistics and computer to solve the biological problems. It is used for dealing with a huge of biological data by collection, processing, computing, simulation and so forth.
     The pharmacogenomics as a branch discipline of genomics has been greatly affected by bioinformatics so that it is developing at an unprecedented speed. However, the trial data produced by the studies on pharmacogenomics is mostly disperse and unstructured, and thus it is very difficult that biologists attempt to access them. If it is possible to develop all kinds of pharmacogenomics databases accessed easily to, the problem can be effectively solved. Therefore, we established the Chinese Pharmacogenomics Network (CPGxNet).
     In addition, we evaluate the effect of CYP3A and ABCB1gene polymorphisms on cyclosporine A (CsA) pharmacokinetics in the post-renal transplant recipients by a clinical trial. In the present study, we first compared the results from our clinical trial with the data from Web of Science, and then with the correlated results from the CPGxNet database by a kind of tentative reckoning method to validate the reliability of the CPGxNet report forms data.
     Our findings are as follows:
     1. Have developed a completely free CPGxNet database based on the Browse/Server (B/S) structure, and the online site is http://www.cpgxnet.net/.
     2. At present, collection information in the CPGxNet included5genes,98single nucleotide polymorphisms (SNP),124kinds of drugs and1145variant records. The update in the database will continue in future.
     3. The Chinese sample sets and the report form function of the CPGxNet database play an important role in reference for the researchers. The module can help researchers make it clear the current research hot spots on pharmacogenomics in Chinese, which involved in the race, region, size, frequency, phenotype, and research time.
     4. We compared the results from our trial for126Chinese post-renal transplant recipients with the data including in Web of Science and in the CPGxNet, and determined that the data of the CPGxNet report forms were reliable. Therefore, we draw a conlusion that the CPGxNet database has an important reference value.
     5. By the single gene analysis, we observed the correlation between CYP3A5*3C/CYP3A4-CYP3A5AA and CsA pharmacokinetics in early post-renal transplant recipients (P<0.05), and but we did not find that the correlation between CYP3A4*1G, ABCB11236C>T,2677G>T/A,3435C>T/CYP3A4-CYP3A5AA, ABCB11236-2677-3435and CsA pharmacokinetics (P>0.05);
     6. By constructing a multivariate linear regression model, we found that there still existed this correlation between CYP3A5*3C and CsA pharmacokinetics (P<0.05).
引文
[1]Rastogi SC, Mendiratta N, Rastogi P.Bioinformatics:Methods and Applications:Genomics, Proteomics and Drug Discovery[M]:PHI Learning Pvt. Ltd.,2006.
    [2]张阳德.生物信息学[M]:科学出版社,2004.
    [3]孙啸,陆祖宏,谢建明.生物信息学基础[M]:清华大学出版社有限公司,2005.
    [4]王翼飞,史定华.生物信息学:智能化算法及其应用[M]:化学工业出版社,2006.
    [5]Yockey HP.Symposium on information theory in biology, Gatlinburg, Tennessee, October 29-31,1956[A]1958.
    [6]Claverie JM.Do we need a huge new centre to annotate the human genome?[J].Nature,2000,403(6765):12.
    [7]李霞.生物信息学[M]:人民卫生,2010:478.
    [8]生物信息学大事记.上海:中国科学院上海生命科学研究院生物信息中心,[2012]. http://www.biosino.org/bioinformatics/dashiji.htm.
    [9]成新华.基于医药经销管理系统的数据仓库的设计研究[D].成都理工大学,2003.
    [10]胡君.基于数据仓库的科研管理系统设计与实现[D].中国地质大学(武汉),2011.
    [11]张敏辉,高晓玲.基于生物信息学数据库的研究与应用[J].中国科技信息,2010(22):44-45.
    [12]Nucleic Acids Research. The United Kingdom:Oxford Journals, [2012]. http://www.oxfordjournals.org/nar/database/c/.
    [13]郜恒骏,郭一.消化道肿瘤的4P医学离我们还很远吗[J].中华内科杂志,2010,49(4):286-87.
    [14]Klein TE, Altman RB.PharmGKB:the pharmacogenetics and pharmacogenomics knowledge base[J].Pharmacogenomics J,2004,4(1):1.
    [15]Thorn CF, Klein TE, Altman RB.PharmGKB:the pharmacogenetics and pharmacogenomics knowledge base[J].Methods Mol Biol,2005,311:179-91.
    [16]Owen RP, Klein TE, Altman RB.The education potential of the pharmacogenetics and pharmacogenomics knowledge base (PharmGKB)[J]. Clin Pharmacol Ther,2007,82(4):472-75.
    [17]Pharmacogenomics Knowledge Base.:The United States:Stanford University, [2012]. http://www.pharmgkb.org/.
    [18]Pharmacogenetics of Membrane Transporters Database.:The United States: UCSF Pharmacogenetics of Membrane Transporters, [2012]. http://pharma cogenetics.ucsf. edu/.
    [19]Stryke D, Huang CC, Kawamoto Met al.SNP analysis and presentation in the Pharmacogenetics of Membrane Transporters Project[J].Pac Symp Biocomput, 2003:535-47.
    [20]PharmaADME. Canada:University of Montreal, [2012]. http://www. pharmaadme. org/joomla/.
    [21]CYP450 Allele Nomenclature Committee. The Kingdom of Sweden: Karolinska, [2012]. http://www.cypalleles.ki.se/index.htm.
    [22]UGT Nomenclature Commitee. Canada:Pharmacogenomics Laboratory, [2012]. http://www.pharmacogenomics.pha.ulaval.ca/cms/ugt_alleles.
    [23]NAT Gene Nomenclature. The United States:University of Louisville, [2012]. http://louisville.edu/medschool/pharmacology/consensus-human-arylamine-n-a cetyltransferase-gene-nomenclature/.
    [24]Knox C, Law V, Jewison Tet al.DrugBank 3.0:a comprehensive resource for 'omics' research on drugs[J].Nucleic Acids Res,2011,39(Database issue): D1035-41.
    [25]Wishart DS, Knox C, Guo ACet al.DrugBank:a comprehensive resource for in silico drug discovery and exploration[J].Nucleic Acids Res,2006,34(Database issue):D668-72.
    [26]Wishart DS, Knox C, Guo ACet al.DrugBank:a knowledgebase for drugs, drug actions and drug targets[J].Nucleic Acids Res,2008,36(Database issue): D901-06.
    [27]韩云.基于三层架构的网络教学平台的设计与实现[D].中国海洋大学,2010.
    [28]李振刚.基于.NET的三层架构教学平台的设计与实现[D].天津大学,2005.
    [29]李述浩.基于三层架构数据库设计理论[J].现代营销,2011(10):231.
    [30]唐玉琦,宋义秋.三层C/S模式体系结构研究[J].科技资讯,2009(9):5.
    [31]樊银亭,何鸿云.基于客户机/服务器体系的二层与三层结构研究[J].计算机应用研究,2001,18(12):23-24,40.
    [32]李书杰,李志刚.B/S三层体系结构模式[J].河北理工学院学报,2002,24(z1):25-28,34.
    [33]徐其帅.面向对象软件开发方法的实例分析[D].浙江大学计算机科学与技术学院浙江大学,2008.
    [34]王书爱.面向对象程序设计的应用[J].电脑知识与技术,2011,07(29):7289-90,7299.
    [35]肖基毅.面向对象程序设计中的数据抽象及应用[J].湘潭大学自然科学学报,1999,21(2):125-27.
    [36]Ahmed M.ASP.NET web developer's guide[M]. Rockland, Mass.,2002.
    [37]Core C# and.NET[M]. Upper Saddle River, NJ,2006.
    [38]孙俊,李正明,杨继昌.ASP技术与ASP.Net技术的比较[J].微型机与应用,2003,22(1):6-07,60.
    [39]Programming Microsoft Windows with C#[M]. Redmond, Wash.,2002.
    [40]崔永红.Visual C#.NET程序设计[M],2011.
    [41]李壮.新编C#程序设计入门[M],2008.
    [42]Database Management System.:Wikipedia:The Free Encyclopedia, [2012]. http://en.wikipedia.org/wiki/Database.
    [43]吴孝丽,周焱,耿惊涛.ORACLE数据库安全策略和方法[J].煤炭技术,2011,30(5):113-16.
    [44]梁正友,苏德富,吕立坚et al.Linux系统下Sybase数据库及管理[J].计算机应用研究,2001,18(2):101-03.
    [45]Inside Microsoft SQL server 2005 query tuning and optimization[M]. Redmond, Wash.,2008.
    [46]兰旭辉,熊家军,邓刚.基于MySQL的应用程序设计[J].计算机工程与设计,2004,25(3):442-43,468.
    [47]Moes G.Beginning MySQL[M]. Indianapolis, Ind.,2005.
    [48]Foy BD, Phoenix T.Learning Perl[M].5th ed. Sebastopol, [Calif.],2008:328.
    [49]Barry P.Bioinformatics, biocomputing and Perl:an introduction to bioinformatics computing skills and practice[M]. Chichester,2004:485.
    [50]韩双旺,鲍丽红,李德录et al.基于ASP.NET与SVG的WebGIS实现技术研究[J].测绘科学,2009,34(2):157-60.
    [51]Asian Network for Pharmacogenomics Research. korea:Inje University College of Medicine, Busan, Korea, [2012]. http://www.asianpr.org/index.php.
    [52]TCM Database. China:Taiwan, [2012]. http://tcm.lifescience.ntu.edu. tw/index.html.
    [53]席移山.基于可缩放矢量图形的智能文档系统设计与实现[D].华中科技大 学,2005.
    [54]何薇,徐邦跃.可缩放矢量图形规范SVG与它的支持工具.中国计算机用户协会信息系统分会2003年信息技术交流大会,计算机工程与应用.北京;2003.
    [55]Danovitch GM.Handbook of kidney transplantation[M].4th ed. Philadelphia, 2005:542.
    [56]Whirl-Carrillo M, McDonagh EM, Hebert JMet al.Pharmacogenomics knowledge for personalized medicine[J].Clin Pharmacol Ther,2012,92(4): 414-17.
    [57]Squassina A, Manchia M, Manolopoulos VGet al.Realities and expectations of pharmacogenomics and personalized medicine:impact of translating genetic knowledge into clinical practice[J].Pharmacogenomics,2010,11(8):1149-67.
    [58]Vethe NT, Midtvedt K, Asberg Aet al.[Drug interactions and immunosuppression in organ transplant recipients][J].Tidsskr Nor Laegeforen, 2011,131(20):2000-03.
    [59]Kuypers DR.Immunotherapy in elderly transplant recipients:a guide to clinically significant drug interactions[J].Drugs Aging,2009,26(9):715-37.
    [60]Zhu B, Liu ZQ, Chen GLet al.The distribution and gender difference of CYP3A activity in Chinese subjects[J].Br J Clin Pharmacol,2003,55(3): 264-69.
    [61]Kuehl P, Zhang J, Lin Yet al.Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression[J].Nat Genet,2001,27(4):383-91.
    [62]Haufroid V.Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition[J].Curr-Drug Targets, 2011,12(5):631-46.
    [63]Wada M.Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response[J].Cancer Lett,2006, 234(1):40-50.
    [64]Frazer KA, Murray SS, Schork NJet al.Human genetic variation and its contribution to complex traits[J].Nat Rev Genet,2009,10(4):241-51.
    [65]Dong ZL, Li H, Chen QXet al.Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hysterectomy in Chinese Han population[J].J Clin Pharm Ther,2012,37(2): 153-56.
    [66]Miura M, Satoh S, Kagaya Het al.Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients[J].Pharmacogenomics,2011,12(7):977-84.
    [67]Zhang W, Yuan JJ, Kan QCet al.Influence of CYP3A5*3 polymorphism and interaction between CYP3A5*3 and CYP3A4*1G polymorphisms on post-operative fentanyl analgesia in Chinese patients undergoing gynaecological surgery[J].Eur J Anaesthesiol,2011,28(4):245-50.
    [68]冀玮.SLC22A1和SLC21A6遗传多态性对口服降糖药药代动力学和药效学的影响[D].中南大学,2009.
    [69]郭栋.尿苷二磷酸葡萄糖醛酸基转移酶1A(UGT1A)某些常见突变的临床遗传药理学研究[D].中南大学,2010.
    [70]黄琼.ADRB3基因新突变的功能及与疾病易感性的关联研究和SLC30A8、 IGF2BP2基因多态性对瑞格列奈疗效的影响[D].中南大学,2010.
    [71]周宏灏.新编遗传药理学[M]:人民军医出版社,2011:230.
    [72]Colombo D, Ammirati E.Cyclosporine in transplantation-a history of converging timelines[J] J Biol Regul Homeost Agents,2011,25(4):493-504.
    [73]Masuda S, Inui K.An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients[J].Pharmacol Ther,2006, 112(1):184-98.
    [74]Garcia-Saiz M, Lopez-Gil A, Alfonso let al.Factors influencing cyclosporine blood concentration-dose ratio[J].Ann Pharmacother,2002,36(2):193-99.
    [75]Roy JN, Lajoie J, Zijenah LSet al.CYP3A5 genetic polymorphisms in different ethnic populations[J].Drug Metab Dispos,2005,33(7):884-87.
    [76]Kuehl P, Zhang J, Lin Yet al.Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression[J].Nat Genet,2001,27(4):383-91.
    [77]Hu YF, Qiu W, Liu ZQet al.Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation[J].Clin Exp Pharmacol Physiol,2006,33(11):1093-98.
    [78]Qiu XY, Jiao Z, Zhang Met al.Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients[J].Eur J Clin Pharmacol,2008,64(11):1069-84.
    [79]Bouamar R, Hesselink DA, van Schaik RHet al.Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation[J].Ther Drug Monit,2011,33(2):178-84.
    [80]Turolo S, Tirelli AS, Ferraresso Met al.Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation[J].Pharmacol Rep,2010,62(6):1159-69.
    [81]Shi XJ, Geng F, Jiao Zet al.Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects:a population pharmacokinetic analysis[J].J Clin Pharm Ther, 2011,36(5):614-24.
    [82]Zeng Y, He YJ, He FYet al.Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects[J].Acta Pharmacol Sin,2009,30(4):478-84.
    [83]Qiu F, He XJ, Sun YXet al.Influence of ABCB1, CYP3A4*18B and CYP3A5*3 polymorphisms on cyclosporine A pharmacokinetics in bone marrow transplant recipients[J].Pharmacol Rep,2011,63(3):815-25.
    [84]Fukushima-Uesaka H, Saito Y, Watanabe Het al.Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population[J].Hum Mutat,2004,23(1):100.
    [85]Haufroid V.Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition[J].Curr Drug Targets, 2011,12(5):631-46.
    [86]Santoro A, Felipe CR, Tedesco-Silva Het al.Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients[J].Pharmacogenomics,2011, 12(9):1293-303.
    [87]Azarpira N, Aghdaie MH, Behzad-Behbahanie Aet al.Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation[J].Exp Clin Transplant,2006, 4(1):416-19.
    [88]Wang Y, Wang C, Li Jet al.Effect of genetic polymorphisms of CYP3A5 and MDR1 on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem[J].Eur J Clin Pharmacol,2009,65(3):239-47.
    [89]Hu RH, Lee PH, Tsai MK.Clinical influencing factors for daily dose, trough level, and relative clearance of tacrolimus in renal transplant recipients[J]. Transplant Proc,2000,32(7):1689-92.
    [90]Staatz CE, Goodman LK, Tett SE.Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors:Part I[J].Clin Pharmacokinet,2010,49(3):141-75.
    [91]Chu XM, Hao HP, Wang GJet al.Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients[J].Acta Pharmacol Sin,2006,27(11):1504-08.
    [92]Li L, Li CJ, Zheng Let al.Tacrolimus dosing in Chinese renal transplant recipients:a population-based pharmacogenetics study[J].Eur J Clin Pharmacol, 2011,67(8):787-95.
    [93]Lamba JK, Lin YS, Schuetz EGet al.Genetic contribution to variable human CYP3A-mediated metabolism[J].Adv Drug Deliv Rev,2002,54(10):1271-94.
    [94]Tang HL, Ma LL, Xie HGet al.Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients:a meta-analysis[J].Pharmacogenet Genomics,2010,20(9):525-31.
    [95]Fukushima-Uesaka H, Saito Y, Watanabe Het al.Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population[J].Hum Mutat,2004,23(1):100.
    [96]Cheung CY, Op DBR, Wong KMet al.Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus pharmacokinetic profile of Chinese renal transplant recipients[J].Pharmacogenomics,2006,7(4):563-74.
    [97]Cascorbi I, Gerloff T, Johne Aet al.Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects[J].Clin Pharmacol Ther,2001,69(3):169-74.
    [98]Kim RB, Leake BF, Choo EFet al.Identification of functionally variant MDR1 alleles among European Americans and African Americans [J]. Clin Pharmacol Ther,2001,70(2):189-99.
    [99]Kroetz DL, Pauli-Magnus C, Hodges LMet al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene[J].Pharmacogenetics,2003,13(8):481-94.
    [100]Bandur S, Petrasek J, Hribova Pet al.Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients[J].Transplantation,2008,86(9):1206-13.
    [101]Hermann M, Enseleit F, Fisler AEet al. Cyclosporine CO-versus C2-monitoring over three years in maintenance heart transplantation[J].Swiss Med Wkly,2011, 141:w13149.
    [102]Knight SR, Morris PJ.The clinical benefits of cyclosporine C2-level monitoring: a systematic review[J].Transplantation,2007,83(12):1525-35.
    [103]Sommerer C, Schnitzler P, Meuer Set al.Pharmacodynamic monitoring of cyclosporin A reveals risk of opportunistic infections and malignancies in renal transplant recipients 65 years and older[J].Ther Drug Monit,2011,33(6): 694-98.
    [104]Zhu H, Ge W.Future of the pharmacogenomics of calcineurin inhibitors in renal transplant patients[J].Pharmacogenomics,2011,12(11):1505-08.
    [105]El-Sankary W, Plant NJ, Gibson GGet al.Regulation of the CYP3A4 gene by hydrocortisone and xenobiotics:role of the glucocorticoid and pregnane X receptors[J].Drug Metab Dispos,2000,28(5):493-96.
    [106]Woillard JB, Rerolle JP, Picard Net al.Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up[J].Clin Pharmacol Ther,2010, 88(1):95-100.
    [1]张学军.全基因组关联分析对银屑病遗传学研究的启示[J].浙江大学学报(医学版),2009,38(4):333-337.
    [2]Henseler T, Christophers E. Psoriasis of early and late onset:characterization of two types of psoriasis vulgaris[J].J Am Acad Dermatol,1985,13(3):450-456.
    [3]Lebwohl M. Psoriasis[J].Lancet,2003,361(9364):1197-1204.
    [4]Yip S Y. The prevalence of psoriasis in the Mongoloid race[J].J Am Acad Dermatol,1984,10(6):965-968.
    [5]Braathen L R, Botten G, Bjerkedal T. Prevalence of psoriasis in Norway[J].Acta Derm Venereol Suppl (Stockh),1989,142:5-8.
    [6]Zhang X J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J].Nat Genet,2009,41 (2):205-210.
    [7]Duffy D L, Spelman L S, Martin N G. Psoriasis in Australian twins[J].J Am Acad Dermatol,1993,29(3):428-434.
    [8]O'Rielly D D, Rahman P. Pharmacogenetics of psoriasis[J].Pharmacogenomics, 2011,12(1):87-101.
    [9]张伟,贺毅憬,周宏灏.有机阴离子转运多肽1B1的遗传药理学进展[J].中国临床药理学与治疗学,2008,13(7):721-729.
    [10]单婷婷,董瑞华,秦小清,等.药物基因多态性与个体化用药的研究进展[J].医药导报,2010,29(1):64-67.
    [11]Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands[J].Endocr Rev,2005,26(5):662-687.
    [12]冯建兵,王淑琴,彭媛香,等.卡泊三醇软膏联合糠酸莫米松乳膏治疗寻常型银屑病60例[J].医药导报,2011,30(12):1565-1567.
    [13]Chen M L, Perez A, Sanan D K, et al. Induction of vitamin D receptor mRNA expression in psoriatic plaques correlates with clinical response to 1,25-dihydroxyvitamin D3[J].J Invest Dermatol,1996,106(4):637-641.
    [14]Ryan C, Menter A, Warren R B. The latest advances in pharmacogenetics and pharmacogenomics in the treatment of psoriasis [J].Mol Diagn Ther,2010,14(2):81-93.
    [15]Uitterlinden A G, Fang Y, Van Meurs J B, et al. Genetics and biology of vitamin D receptor polymorphisms[J].Gene,2004,338(2):143-156.
    [16]Kostner K, Denzer N, Muller C S, et al. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer:a review of the literature[J].Anticancer Res,2009,29(9):3511-3536.
    [17]Halsall J A, Osborne J E, Potter L, et al. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma[J].Br J Cancer,2004,91(4): 765-770.
    [18]Halsall J A, Osborne J E, Pringle J H, et al. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis[J].Pharmacogenet Genomics,2005,15(5):349-355.
    [19]Saeki H, Asano N, Tsunemi Y, et al. Polymorphisms of vitamin D receptor gene in Japanese patients with psoriasis vulgaris[J].J Dermatol Sci,2002,30(2): 167-171.
    [20]Dayangac-Erden D, Karaduman A, Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients [J].Arch Dermatol Res,2007,299(10):487-491.
    [21]Kontula K, Valimaki S, Kainulainen K, et al. Vitamin D receptor polymorphism and treatment of psoriasis with calcipotriol[J].Br J Dermatol,1997,136(6):977-978.
    [22]Lee D Y, Park B S, Choi K H, et al. Vitamin D receptor genotypes are not associated with clinical response to calcipotriol in Korean psoriasis patients[J].Arch Dermatol Res,2002,294(1-2):1-5.
    [23]Mee J B, Cork M J. Vitamin D receptor polymorphism and calcipotriol response in patients with psoriasis[J].J Invest Dermatol,1998,110(3):301-302.
    [24]Piacentini S, Polimanti R, Porreca F, et al. GSTT1 and GSTM1 gene polymorphisms in European and African populations [J].Mol Biol Rep,2011,38(2):1225-1230.
    [25]Klautau-Guimaraes M D, Hiragi C D, D'Ascencao R F, et al. Distribution of glutathione S-transferase GSTM1 and GSTT1 null phenotypes in Brazilian Amerindians[J].GENETICS AND MOLECULAR BIOLOGY,2005,28(1): 32-35.
    [26]Gabbani G, Pavanello S, Nardini B, et al. Influence of metabolic genotype GSTM1 on levels of urinary mutagens in patients treated topically with coal tar[J].Mutat Res,1999,440(1):27-33.
    [27]陈周,张建中.寻常型银屑病的外用药物[J].中国药物应用与监测,2005,2(5):34-37.
    [28]Koczan D, Guthke R, Thiesen H J, et al. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules[J].Eur J Dermatol,2005,15(4):251-257.
    [29]杨宝琦,赵娜,张福仁.银屑病光疗和光化学疗法的研究进展[J].中华皮肤科杂志,2005,38(3):195-197.
    [30]Ryan C, Moran B, Mckenna M J, et al. The effect of narrowband UV-B treatment for psoriasis on vitamin D status during wintertime in Ireland[J].Arch Dermatol,2010,146(8):836-842.
    [31]Osmancevic A, Landin-Wilhelmsen K, Larko O, et al. Vitamin D production in psoriasis patients increases less with narrowband than with broadband ultraviolet B phototherapy[J].Photodermatol Photoimmunol Photomed,2009, 25(3):119-123.
    [32]Ryan C, Renfro L, Collins P, et al. Clinical and genetic predictors of response to narrowband ultraviolet B for the treatment of chronic plaque psoriasis[J].Br J Dermatol,2010,163(5):1056-1063.
    [1]张学军.全基因组关联分析对银屑病遗传学研究的启示[J].浙江大学学报(医学版),2009,38(4):333-337.
    [2]Henseler T, Christophers E. Psoriasis of early and late onset:characterization of two types of psoriasis vulgaris[J].J Am Acad Dermatol,1985,13(3):450-456.
    [3]Lebwohl M. Psoriasis[J].Lancet,2003,361(9364):1197-1204.
    [4]Yip S Y. The prevalence of psoriasis in the Mongoloid race[J].J Am Acad Dermatol,1984,10(6):965-968.
    [5]Braathen L R, Botten G, Bjerkedal T. Prevalence of psoriasis in Norway[J].Acta Derm Venereol Suppl (Stockh),1989,142:5-8.
    [6]Zhang X J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J].Nat Genet,2009,41(2):205-210.
    [7]Duffy D L, Spelman L S, Martin N G. Psoriasis in Australian twins[J].J Am Acad Dermatol,1993,29(3):428-434.
    [8]O'Rielly D D, Rahman P. Pharmacogenetics of psoriasis[J].Pharmacogenomics, 2011,12(1):87-101.
    [9]张伟,贺毅憬,周宏灏.有机阴离子转运多肽1B1的遗传药理学进展[J].中国临床药理学与治疗学,2008,13(7):721-729.
    [10]单婷婷,董瑞华,秦小清,等.药物基因多态性与个体化用药的研究进展[J].医药导报,2010,29(1):64-67.
    [11]Shen S, O'Brien T, Yap L M, et al. The use of methotrexate in dermatology:a review[J].Australas J Dermatol,2012,53(1):1-18.
    [12]Van Dooren-Greebe R J, Kuijpers A L, Mulder J, et al. Methotrexate revisited: effects of long-term treatment in psoriasis[J].Br J Dermatol,1994,130(2): 204-210.
    [13]Heydendael V M, Spuls P I, Opmeer B C, et al. Methotrexate versus cyclosporine in moderate-to-severe chronic plaque psoriasis[J].N Engl J Med,2003,349(7):658-665.
    [14]Flytstrom I, Stenberg B, Svensson A, et al. Methotrexate vs. ciclosporin in psoriasis:effectiveness, quality of life and safety. A randomized controlled trial[J].Br J Dermatol,2008,158(1):116-121.
    [15]Ryan C, Menter A, Warren R B. The latest advances in pharmacogenetics and pharmacogenomics in the treatment of psoriasis [J].Mol Diagn Ther,2010,14(2):81-93.
    [16]Campalani E, Arenas M, Marinaki A M, et al. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis[J].J Invest Dermatol,2007,127(8):1860-1867.
    [17]Warren R B, Smith R L, Campalani E, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis[J].J Invest Dermatol,2008,128(8):1925-1929.
    [18]Frosst P, Blom H J, Milos R, et al. A candidate genetic risk factor for vascular disease:a common mutation in methylenetetrahydrofolate reductase[J].Nat Genet,1995,10(1):111-113.
    [19]Fisher M C, Cronstein B N. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity[J].J Rheumatol,2009,36(3):539-545.
    [20]Horie N, Aiba H, Oguro K, et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase[J].Cell Struct Funct,1995,20(3):191-197.
    [21]Kumagai K, Hiyama K, Oyama T, et al. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis[J].Int J Mol Med,2003,11(5):593-600.
    [22]Warren R B, Smith R L, Campalani E, et al. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms[J].Br J Dermatol,2009,160(2):438-441.
    [23]Hider S L, Thomson W, Mack L F, et al. Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX[J].Rheumatology (Oxford),2008,47(8):1156-1159.
    [24]Gottlieb A B, Krueger J G, Khandke L, et al. Role of T cell activation in the pathogenesis of psoriasis [J]. Ann N Y Acad Sci,1991,636:377-379.
    [25]Haider A S, Lowes M A, Suarez-Farinas M, et al. Identification of cellular pathways of "type 1," Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis[J].J Immunol, 2008,180(3):1913-1920.
    [26]Young H S, Summers A M, Read I R, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis[J].J Invest Dermatol,2006,126(2):453-459.
    [27]Lebwohl M, Christophers E, Langley R, et al. An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis[J].Arch Dermatol,2003,139(6):719-727.
    [28]Haider A S, Lowes M A, Gardner H, et al. Novel insight into the agonistic mechanism of alefacept in vivo:differentially expressed genes may serve as biomarkers of response in psoriasis patients[J].J Immunol,2007,178(11): 7442-7449.
    [29]O'Rielly D D, Roslin N M, Beyene J, et al. TNF-alpha-308 G/A polymorphism and responsiveness to TNF-alpha blockade therapy in moderate to severe rheumatoid arthritis:a systematic review and meta-analysis[J]. Pharmaco-genomics J,2009,9(3):161-167.
    [30]Gottlieb A B, Chamian F, Masud S, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques[J].J Immunol,2005,175(4):2721-2729.
    [31]Croxtall J D. Ustekinumab:a review of its use in the management of moderate to severe plaque psoriasis[J].Drugs,2011,71(13):1733-1753.
    [32]Chen X, Tan Z, Yue Q, et al. The expression of interleukin-23 (p19/p40) and inteleukin-12 (p35/p40) in psoriasis skin[J].J Huazhong Univ Sci Technolog Med Sci,2006,26(6):750-752.
    [33]Toichi E, Torres G, Mccormick T S, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis [J].J Immunol,2006,177(7):4917-4926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700