小剂量糖皮质激素对类风湿关节炎骨代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     类风湿关节炎(rheumatoid arthritis,RA)是以慢性进行性对称性关节炎为主要临床表现的疾病,早期以关节的滑膜炎、细胞浸润、血管翳形成为主,中晚期累及软骨及骨质,导致骨质疏松,甚至关节结构出现破坏而引起畸形、功能障碍,从而增加了RA致残率。RA骨代谢异常可能与多种炎症因子的作用有关,过量炎症因子不仅可以造成持续性滑膜炎症,同时还可以激活破骨细胞,使骨吸收加速,造成快速骨流失破坏骨组织微环境导致关节损害。这是RA患者病程前3个月快速骨流失、关节损害的主要原因。近年来研究表明,RA疾病早期即可发生关节端的骨质疏松及不可逆的关节骨破坏,继而出现全身的骨质疏松症(osteoporosis,OP),有多达60%-80%的RA患者合并OP,严重影响患者生活质量,同时造成巨大的社会经济负担。糖皮质激素(Glucocorticoid,GC)因其强大的抗炎及免疫调节作用而广泛用于RA的治疗,但是,由于长期大量应用GC会导致骨质疏松症,增加骨折的发病率,因此其应用颇受争议。
     随着人们对小剂量糖皮质激素(low dose glucocorticoid,LGC)治疗RA认识的加深,对其疗效及对RA预后的改善有了新的期待,与GC引起骨的不良反应相比,GC可以控制RA患者炎症反应、降低疾病活动度,有减轻关节损害的作用,其积极的治疗作用可能部分抵消了它对骨的不良作用。
     GC的作用主要是通过与糖皮质激素受体(Glucocorticoid Receptor,GR)结合实现的,近年来的研究认为糖皮质激素受体可能参与了RA的发病。miRNA是一类内源性短小非编码RNA,能够在转录后水平上对基因的表达进行负调控。新近研究还发现miRNA表达异常可能是RA发病的分子机制之一,在RA关节滑膜、滑液、外周血中都有异常表达的miRNA,它们可能与RA炎症过程、骨流失、关节骨及软骨的破坏密切相关。
     本研究拟应用LGC短疗程治疗RA,通过观察RA患者骨代谢的变化、GR mRNA表达的变化、miRNA表达的变化以及NK细胞对RA患者骨代谢异常的影响,探讨LGC的作用机制,为指导临床工作提供客观依据。
     目的:
     1.研究小剂量糖皮质激素短疗程治疗对RA骨代谢的影响;
     2.研究LGC对人类糖皮质激素受体hGRα和hGRβmRNA表达的影响;
     3.研究LGC对RA miRNA表达及其靶基因的影响。
     4.研究RA对骨代谢的影响。通过以上研究,探讨LGC对RA骨代谢的作用机制,为指导临床工作提供客观依据。
     方法:
     选取绝经后女性早期类风湿关节炎病情活动患者为研究对象,并选取同期于体检中心体检的绝经后健康女性为对照组。入选患者随机分为小剂量糖皮质激素治疗组(LGC组)和非激素治疗组(NGC组),在试验开始时和3个月时分别测量炎症指标(IL-6、IL-1α、TNF-α、CRP和ESR)、骨代谢标志物(骨形成标志物BGP、BAP和PICP,骨吸收标志物uDPD和CTX)和骨密度;应用逆转录实时荧光定量聚合酶链反应(RT-FQ-PCR)检测外周血单个核细胞hGRα和hGRβ mRNA的表达情况;应用基因芯片技术对LGC治疗前后的患者进行miRNA分析,并对miRNA靶基因进行鉴定,应用KEGG数据库对差异表达的miRNA聚类结果进行注释。
     结果:
     1.绝经后早期RA疾病活动患者低骨量和骨质疏松症发病率高于健康对照组(P<0.05),差异有统计学意义。
     2.与健康对照组相比,RA患者外周血中炎症指标IL-6、IL-1α及TNF-α水平明显增高(P<0.01),骨形成标志物BGP、BAP和PICP明显降低(P<0.05),骨吸收标志物uDPD和CTX明显增高(P<0.05)。
     3.基线时,LGC组与NGC组间各观察指标均无明显统计学差异(P>0.05)。试验3个月时, NGC组的IL-6、IL-1α、CRP及ESR明显下降,与基线时相比,有统计学差异(P<0.05);LGC组的IL-6、IL-1α、CRP及ESR明显下降,与基线时相比,有显著统计学差异(P<0.01);两组相比,LGC组IL-1α明显降低,有统计学差异(P<0.05)。试验3个月时,两组相比,LGC组的骨形成标志物检测值有所增加,骨吸收标志物检测值有所下降,但无明显统计学差异(P>0.05)。与基线时相比,两组在3个月时BMD略有增高,但无统计学差异(P>0.05)。
     4.基线时,RA患者外周血单个核细胞hGRα mRNA和hGRβ mRNA的表达均高于健康对照组(P<0.01)。
     5.试验3个月时,LGC组hGRα mRNA表达水平明显降低,但仍高于健康对照组(P<0.05),与基线时比较,差异有统计学意义(P<0.01);NGC组hGRα mRNA表达水平无显著降低(P>0.05);两治疗组间hGRα mRNA表达水平比较差异有统计学意义(P<0.05)。
     6.试验3个月时,LGC组和NGC组hGRβ mRNA的表达水平均无显著变化(P>0.05)。
     7.人miRNA芯片实验:根据变化倍数和差异分数两项参数得到LGC治疗前后样本差异最显著的miRNA13个(hsa-miR-34a、 hsa-miR-134、 hsa-miR-200b、hsa-miR-106b*、hsa-miR-1281、hsa-miR-188-5p、hsa-miR-202*、hsa-miR-219-1-3p、hsa-miR-455-5p、hsa-miR-513b、hsa-miR-521、hsa-miR-548f和hsa-miR-645),经LGC治疗后这些miRNA表达均上调。
     8.通过对外周血相关miRNA及其靶基因ULBP2和配体基因NKG2D的表达水平进行验证,LGC治疗后has-miR-34a表达水平上调(P<0.05),靶基因ULBP2和配体基因NKG2D表达水平均下调(P<0.05)。
     9.通过对13个表达下调的miRNA靶基因聚类分析,应用KEGG数据库对聚类结果进行注释,共得到4个差异显著的KEGG通路(校正后P<0.00001),分别是细胞黏着斑信号通路、mTOR信号通路、趋化因子信号通路和凋亡信号通路。
     结论:
     1.绝经后女性早期RA疾病活动患者低骨量、骨质疏松症发病率高于正常人。
     2.小剂量糖皮质激素短期治疗可以通过控制炎症使早期类风湿关节炎患者骨形成增加、抑制骨吸收、减少骨流失。
     3.小剂量糖皮质激素短期治疗早期类风湿关节炎对骨代谢无负性影响,不会增加骨质疏松症发病率。
     4. hGRα mRNA和hGRβ mRNA表达增加可能与RA发病有关,LGC可显著降低RA患者外周血单个核细胞hGRα mRNA表达。
     5.小剂量糖皮质激素治疗RA可以使外周血13个miRNA(hsa-miR-34a、hsa-miR-134、 hsa-miR-200b、 hsa-miR-106b*、 hsa-miR-1281、 hsa-miR-188-5p、hsa-miR-202*、 hsa-miR-219-1-3p、 hsa-miR-455-5p、 hsa-miR-513b、 hsa-miR-521、hsa-miR-548f、hsa-miR-645)表达上调,其中has-miR-34a在外周血及膝关节滑液中表达上调最明显。
     6.小剂量糖皮质激素可以通过上调has-miR-34a表达,负调控靶基因ULBP2,改变NKG2D活性,降低NK细胞活性。
     7.小剂量糖皮质激素可以上调RA患者外周血miRNA表达,对与其靶基因有关的信号通路起抑制作用。
     8.小剂量糖皮质激素可以降低NK细胞活性,减少RA骨流失,对关节侵蚀起保护作用。
Background:
     Rheumatoid arthritis(RA)is a chronic, progressive, systemic, autoimmune disease. Thepathogenesis is synovitis, cellular infiltration and pannus in early RA, involvement ofcartilage and bone,destruction of joint leading to deformity and functional impairment andosteoporosis(OP) with increasing disorder in mid-term and late. Bone metabolism disordersinvolve in many kinds of inflammatory cytokines leading to persistence synovitis, activitedosteoblast and increased resorption of bone in RA, which play a key role of more rapid boneloss and joint destruction at the onset of3months of disease. Within the past few years,studies have shown that periarticular bone loss as well as irreversible damage is an earlyfeature of the disease with an increased risk of generalized OP complication of60%-80%resulting in decreased quality of life and huge economic burden. Over the past decades,glucocorticoids (GC) are the most widely used anti-inflammatory and immunomodulatoryagents in RA owing to their strong anti-inflammatory and immunosuppressor effect.However, there have been controversial for inlovement of osteoporosis and increased risk offractures.
     The effect of low-dose glucocorticoid (LGC) in RA includes inhibiting inflammatoryresponse, decreasing disease activity and reducing the joint damage, which brings newexpect about efficacy and prognosis of RA. The benefits anti-inflammatory effect of LGCmay partially courteract their negative effect on bone.
     GC exert their effects mainly through the glucocorticoid receptor (GR). Recent studiesdemonstrate that GR is involved in pathogenesis of RA. MicroRNAs (miRNAs) are a kind ofendogenous, small, noncoding single-stranded RNA molecules that negatively regulate geneexpression at the post-transcriptional level. Recent studies have uncovered dysregulatedmiRNA expression in RA in the afflicted synovium,synovial fluid and the peripheralcirculation, suggesting that abnormalities in miRNA expression may contribute to themolecular mechanisms of the inflammation,bone loss and cartilage damage.
     Therefore, the aim of the present study is to evaluate the bone metabolism, GR mRNAexpression, miRNA expression and the activity of NK cell in early activity RA patientsreceiving LGC short-term therapy, which will explore the mechanisms of LGC and provide data for clinic.
     Objective:
     1. To investigate the effects of short-term LGC on bone metabolism in RA;
     2. To investigate the effects of short-term LGC on expression levels of hGRα and hGRβmRNA in RA;
     3. To investigate the effects of short-term LGC on expression levels of miRNA andtarget gene in RA;
     4. To investigate the influence of RA disease on bone metabolism;
     5. To investigate the mechanisms of LGC in RA and provide data for clinic.
     Methods:
     Postmenopausal female patients of early activity RA and healthy postmenopausalfemale controls sampled at medical examination center at the same time period were studied.Patients were randomly assigned to low-dose glucocorticoid therapy group (LGC group) ornon-glucocorticoid therapy group (NGC group). Biomedical markers including inflammationmarkers (IL-6, IL-1α, TNF-α, CRP and ESR), bone metabolism markers (bone formationmarkers: BGP, BAP and PICP; bone resorption markers: uDPD and CTX) and bone massdensity (BMD) were measured for both RA groups at baseline and3-month trail. Expressionlevels of hGRα and hGRβ mRNA in peripheral blood mononuclear cells was determinedwith real time fluorescent quantitative PCR for both RA groups at baseline and3-month trail.All the detections were compared with healthy controls at baseline. microRNA expressionlevels were detected with gene microarrays for LGC group at baseline and3-month trail.Cluster analysis using microRNA expression data was also performed. And, target genes ofdifferentially expressed microRNAs were predicted and analyzed with KEGG database.
     Results:
     1. The rate of low bone mass and osteoporosis were higher in postmenopausal femalepatients of early activity RA than in healthy controls (P<0.05).
     2. In both RA groups, inflammation markers (IL-6, IL-1α and TNF-α) weresignificantly higher(P<0.01), bone formation markers (BGP, BAP and PICP) weresignificantly lower (P<0.05), and bone resorption markers (uDPD and CTX) weresignificantly higher (P<0.05) compared with healthy controls at baseline.
     3. There was no significant difference observed for all measured indexes (P>0.05)between LGC and NGC groups at baseline. At3-month trail, inflammation markers (IL-6, IL-1α, CRP and ESR) decreased dramatically in both NGC group (P<0.05) and LGC group(P<0.01); while IL-1α level was even lower in LGC group than in NGC group (P<0.05).The levels of bone formation markers were higher, while the levels of bone resorptionmarkers were lower in LGC group than in NGC group, but no significant difference werefound (P>0.05). At3-month trail, BMD increased slightly in both group, but no significantdifference were found (P>0.05), either.
     4. At baseline, both levers of hGRα and hGRβ mRNA in two RA groups weresignificantly higher than that in healthy controls (P<0.01).
     5. At3-month trail, the levers of hGRα mRNA in LGC group were significantlydecreased (P<0.01), however, it was still higher than that in healthy controls (P<0.05).While the levers of hGRα mRNA in NGC group were not obviously decreased comparedwith baseline (P>0.05), and there was significant difference between LGC and NGC groups(P<0.05).
     6. At3-month trail, there was no significant difference was found about the levers ofhGRβ mRNA in both LGC and NGC groups compared with baseline (P>0.05).
     7. Thirteen differentially expressed microRNAs were identified according to foldchange and diffscore. They are hsa-miR-34a, hsa-miR-134, hsa-miR-200b, hsa-miR-106b*,hsa-miR-1281, hsa-miR-188-5p, hsa-miR-202*, hsa-miR-219-1-3p, hsa-miR-455-5p, hsa-miR-513b, hsa-miR-521, hsa-miR-548f and hsa-miR-645. After LGC treatment, all theabove listed microRNAs were up-regulated.
     8. Verification experiments replicated the result that hsa-miR-34a expression level wasup-regulated after3-month LGC therapy(P<0.05), and further proved that two target genesof hsa-miR-34a (ULBP2and NKG2D) were down-regulated(P<0.05).
     9. KEGG pathway analysis of target genes of the thirteen differentially expressedmicroRNAs revealed4most relevant pathways (adj P<0.00001), they are focal adhesionkinase signaling pathway, mTOR signaling pathway, chemokine signaling pathway andapoptosis signaling pathway.
     Conclusions:
     1. The rate of low bone mass and osteoporosis were higher in postmenopausal femalepatients of early activity RA than in healthy controls.
     2. LGC short-term therapy can increase bone formation, inhibit bone resorption and reduce bone loss through alleviating inflammation respones in early RA patients.
     3. There is no negative effect of LGC short-term therapy on bone metabolism and thereis no increase on the rate of osteoporosis in RA patients.
     4. Increased expression of hGRα and hGRβ mRNAs may involved in the onset of RA.LGC can decrease hGRα mRNA expression in peripheral blood mononuclear cells in RApatients.
     5. LGC can up-regulate the expression of thirteen microRNAs (hsa-miR-34a、hsa-miR-134、 hsa-miR-200b、 hsa-miR-106b*、 hsa-miR-1281、 hsa-miR-188-5p、hsa-miR-202*、 hsa-miR-219-1-3p、 hsa-miR-455-5p、 hsa-miR-513b、 hsa-miR-521、hsa-miR-548f、hsa-miR-645), and the expression of hsa-miR-34a in peripheral blood andknee synovial fluid were up-regulated most in the all.
     6. LGC may down-regulate ULBP2expression, change NKG2D activity and reduceNK cell activity through up-regulation of hsa-miR-34a.
     7. LGC can up-regulate certain microRNAs in peripheral blood and inhibit signalingpathways which their target genes involved.
     8. LGC can decrease NK cell activity, reduce bone loss and prevent erosion of joint inRA.
引文
[1] van Staa TP, Geusens P, Bijlsma JW, et al. Clinical assessment of the long-term risk offracture in patients with rheumatoid arthritis [J]. Arthritis Rheum,2006,54(10):3104-3112.
    [2] Kim SY, Schneeweiss S, Liu J, et al. Risk of osteoporotic fracture in a largepopulation-based cohort of patients with rheumatoid arthritis [J]. Arthritis Res Ther,2010,12(4):R154.
    [3] Jacobs JWG, De Nijs RNJ, Lems WF, et al. Bone metabolism in rheumatoid arthritis [J].Clin Exp Rheumatol,2000,18(5Suppl21): S5-11.
    [4] van Schaardenburg D, Nielen MM, Lems WF, et al. Bone metabolism is altered inpreclinical rheumatoid arthritis [J]. Ann Rheum Dis,2011,70(6):1173-1174.
    [5] Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaBligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis [J].Bone,2002,30(2):340-346.
    [6] Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervene-tion [J]. Nat Rev Drug Discov,2012,11(3):234-250.
    [7] Korczowska I, Olewicz-Gawlik A, Trefler J, et al. Does low-dose and short-termglucocorticoids treatment increase the risk of osteoporosis in rheumatoid arthritis femalepatients?[J]. Clin Rheumatol,2008,27(5):565-572.
    [8] Roldán JF, Del Rincón I, Escalante A. Loss of cortical bone from the metacarpaldiaphysis in patients with rheumatoid arthritis: independent effects of systemicinflammation and glucocorticoids [J]. J Rheumatol,2006,33(3):508-516.
    [9] Wassenberg S, Rau R, Zeidler H, et al. A dose of only5mg prednisolone daily retardsradiographic progression in early rheumatoid arthritis-the Low-Dose Prednisolone Trial[J]. Clin Exp Rheumatol,2011,29(5Suppl68):S68-72.
    [10] Ishimi Y, Miyaura C, Jin CH, et al. IL-6is produced by osteoblasts and induces boneresorption [J]. J Immunol,1990,145(10):3297-3303.
    [11] Suzuki Y, Mizushima Y. Osteoporosis in rheumatoid arthritis [J]. Osteoporosis Int.1997,7(Suppl3):S217-222.
    [12] Oelzner P, Franke S, Muller A, et al. Relationship between soluble markers of immuneactivation and bone turnover in postmenopausal women with rheumatoid arthritis [J].Rheumatology (Oxford),1999,38(9):841-847.
    [13] Smoak KA, Cidlowski JA. Mechanisms of glucocorticoid receptor signaling duringinflammation [J]. Mech Ageing Dev,2004,125(10-11):697-706.
    [14] Yudt MR, Jewell CM, Bienstock RJ, et al. Molecular origins for the dominant negativefunction of human glucocorticoid receptor beta. Mol Cell Biol,2003,23(12):4319-4330.
    [15] Webster JC, Oskley rh, Jewell CM, et al. Proinflammatory cytokines regulate humanglucocorticoid receptor gene expression and lead to the accumulation of the dominantnegative beta isoform: a mechanism for the generation of glucocorticoid resistance [J].Proc Natl Acad Sci U S A,2001,98(12):6865-6870.
    [16]李薇,于孟学,王国锋,等.糖皮质激素受体在类风湿关节炎外周血单个核细胞中表达水平的研究[J].北京医学,2008,30(4):208-211.
    [17] Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles [J].Cell,2009,136(1):26-36.
    [18] Vandenboom Ii TG, Li Y, Philip PA, et al. MicroRNA and cancer: tiny molecules withmajor implications [J]. Curr Genomics,2008,9(2):97-109.
    [19] Croce CM, Calin GA. miRNAs, cancer, and stem cell division [J]. Cell,2005,122(1):6-7.
    [20] Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity andinflammatory diseases [J]. J Cell Mol Med,2009,13(1):24-38.
    [21] Bhanji RA, Eystathioy T, Chan EK, et al. Clinical and serological features of patientswith autoantibodies to GW/P bodies [J]. Clin Immunol,2007,125(3):247-256.
    [22] Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheralblood mononuclear cells from rheumatoid arthritis patients [J]. Arthritis Res Ther,2008,10(4):R101.
    [23] Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146in rheumatoidarthritis synovial tissue [J]. Arthritis Rheum,2008,58(5):1284-1292.
    [24] Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovialfibroblasts and synovial tissue in rheumatoid arthritis [J]. Arthritis Rheum,2008,58(4):1001-1009.
    [25] Duroux-Richard I, Jorgensen C, Apparailly F. miRNAs and rheumatoidarthritis-promising novel biomarkers [J]. Swiss Med Wkly,2011,141:w13175.
    [26] Gabriel SE. Why do people with rheumatoid arthritis still die prematurely?[J]. AnnRheum Dis,2008,67(Suppl3):iii30-34.
    [27] Carmona L, Cross M, Williams B, et al. Rheumatoid arthritis [J]. Best Pract Res ClinRheumatol,2010,24(6):733-745.
    [28] H m l inen H, Kautiainen H, Kaarela K, et al. The development of bone mineraldensity and the occurrence of osteoporosis from15to20years of disease onset inpatients with rheumatoid arthritis [J].Clin Exp Rheumatol,2005,23(2):193-198.
    [29] Henriksen K, Bollerslev J, Everts V, et al. Osteoclast activity and subtypes as a functionof physiology and pathology--implications for future treatments of osteoporosis [J].Endocr Rev,2011,32(1):31-63.
    [30] Pitt P, Compston J, Trivedi P, et al. Systemic bone changes accompanying earlyrheumatoid arthritis in patients treated with nonsteroidal antiinflammatory drugs alone[J]. Clin Orthop Relat Res,1994,298:250-258.
    [31] Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in theRANKL/RANK/OPG system [J]. Am J Nephrol,2007,27(5):466-478.
    [32] Sano H. The Role of Lipid Mediators in the Pathogenesis of Rheumatoid Arthritis[J].Inflammation and Regeneration,2011,31(2):151-156.
    [33] Taki H, Sugiyama E, Kuroda A, et al. Interleukin-4inhibits interleukin-11productionby rheumatoid synovial cells [J]. Rheumatology (Oxford),2000,39(7):728-731.
    [34] Edwards CJ, Williams E. The role of interleukin-6in rheumatoid arthritis-associatedosteoporosis [J]. Osteoporos Int,2010,21(8):1287-1293.
    [35] Danks L, Sabokbar A, Gundle R, et al. Synovial macrophage-osteoclast differentiationin inflammatory arthritis [J]. Ann Rheum Dis.2002,61(10):916-921.
    [36] Schett G. Cells of the synovium in rheumatoid arthritis. Osteoclasts [J]. Arthritis ResTher,2007,9(1):203.
    [37] Kong YY, Feige U, Sarosi L, et al. Activated T cells regulate bone loss and jointdestruction in adjuvant arthritis through osteoprotegerin ligand [J]. Nature,1999,402:304-309.
    [38] Cutolo M, Sulli A, Villaggio B, et al. Relations between steroid hormones and cytokinesin rheumatoid arthritis and systemic lupus erythematosus [J]. Ann Rheum Dis,1998,57(10):573-577.
    [39] MacAdams MR, White RH, Chipps BE. Reduction of serum testosterone levels duringchronic glucocorticoid therapy [J]. Ann Intern Med,1986,104(5):648-651.
    [40] Boers M, Verhoeven AC, Markusse HM, et a1. Randomised comparison of combinedstep-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone inearly rheumatoid arthritis [J]. Lancet,1997,350(9074):309-318.
    [41] Donnan PT, Libby G, Boyter AC, et al. The population risk of fractures attributable tooral corticosteroids [J]. Pharmacoepidemiol Drug Saf,2005,14(3):177-186.
    [42] Nishimura J, Ikuyama S. Glucocorticoid-induced osteoporosis: pathogenesis andmanagement [J]. J Bone Miner Metab,2000,18(6):350-352.
    [43] Solomon DH, Katz JN, Jacobs JP, et al. Management of glucocorticoid-inducedosteoporosis in patients with rheumatoid athritis: rates and predictors of care in anacademic rheumatology practice [J]. Arthritis Rheum,2002,46(12):3136-3142.
    [44]刘忠厚,杨定焯,朱汉民,等.中国人原发性骨质疏松症诊断标准(试行)[J].中国骨质疏松杂志,1999,5(1):1-3.
    [45] Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoidarthritis: a review [J]. Br J Rheumatol,1996,35(4):309-322.
    [46] Vosse D, de Vlam K. Osteoporosis in rheumatoid arthritis and ankylosing spondylitis [J].Clin Exp Rheumatol,2009,27(4Suppl55):S62-67.
    [47] Schett G. Rheumatoid arthritis: inflammation and bone loss [J]. Wien Med Wochenschr,2006,156(1-2):34-41.
    [48] Joosten LA, Helsen MM, Saxne T, et al. IL-1alpha beta blockade prevents cartilage andbone destruction in murine type II collagen-induced arthritis, whereas TNF-alphablockade only ameliorates joint inflammation [J]. J Immunol,1999,163(9):5049-5055.
    [49] Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates jointdisease in murine collagen-induced arthritis [J]. Proc Natl Acad Sci U S A,1992,89(20):9784-9788.
    [50] Thorbecke GJ, Shah R, Leu CH, et al.Involvement of endogenous tumor necrosis factoralpha and transforming growth factor beta during induction of collagen type II arthritisin mice [J]. Proc Natl Acad Sci U S A,1992,89(16):7375-7379.
    [51] Seriolo B, Paolino S, Sulli A, et al. Bone metabolism changes during anti-TNF-alphatherapy in patients with active rheumatoid arthritis[J]. Ann N Y Acad Sci,2006,1069:420-427.
    [52] Smolen JS, Emery P. Infliximab:12years of experience [J]. Arthritis Res Ther,2011,13(Suppl1):S2.
    [53] Nanki T, Nagasaka K, Hayashida K, et al. Chemokines regulate IL-6and IL-8production by fibroblast-like synoviocytes from patients with rheumatoid arthritis [J]. JImmunol,200l,167(9):538l-5385.
    [54] Gravallese EM, Manning C, Tsay A, et al. Synovial tissue in rheumatoid arthritis is asource of osteoclast differentiation factor [J]. Arthritis Rheum,2000,43(2):250-258.
    [55]Takayanagi H, Iizuka H, Juji T, et al. Involvement of receptor activator of nuclear factorkappB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes inrheumatoid arthritis [J]. Arthritis Rheum,2000,43(2):259-269.
    [56] Ehrchen J, Steinmüller L, Barczyk K, et al. Glucocorticoids induce differentiation of aspecifically activated, anti-inflammatory subtype of human monocytes [J]. Blood,2007,109(3):1265-1274.
    [57] Pitzalis C, Pipitone N, Perretti M. Regulation of leukocyte-endothelial interactions byglucocorticoids [J]. Ann N Y Acad Sci,2002,966:108-118.
    [58] Toh ML, Yang Y, Leech M, Santos L,et al. Expression of mitogen-activated proteinkinase phosphatase1, a negative regulator of the mitogen-activated protein kinases, inrheumatoid arthritis: up-regulation by interleukin-1beta and glucocorticoids [J]. ArthritisRheum,2004,50(10):3118-3128.
    [59] Tanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression[J]. Prostaglandins Other Lipid Mediat,2002,68-69:95-114.
    [60] McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses:interactions between nuclear factor-kappa B and steroid receptor-signaling pathways [J].Endocr Rev,1999,20(4):435-459.
    [61] De Bosscher K, Vanden Berghe W, Haegeman G.. The interplay between theglucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecularmechanisms for gene repression [J]. Endocr Rev,2003,24(4):488-522.
    [62] Saklatvala J, Dean J, Clark A. Control of the expression of inflammatory response genes[J]. Biochem Soc Symp,2003,70:95-106.
    [63] Gille J, Reisinger K, Westphal-Varghese B, et al. Decreased mRNA stability as amechanism of glucocorticoid-mediated inhibition of vascular endothelial growth factorgene expression by cultured keratinocytes [J]. J Invest Dermatol,2001,117(6):1581-1587.
    [64]Kotake S, Udagawa N, Hakoda M, et al. Activated human T cells directly induceosteoclastogenesis from human monocytes: possible role of T cells in bone destructionin rheumatoid arthritis patients [J]. Arthritis Rheum,2001,44(5):1003-1012.
    [65] Yudoh K, Matsuno H, Osada R, et al. Decreased cellular activity and replicativecapacity of osteoblastic cells isolated from the periarticular bone of rheumatoid arthritispatients compared with osteoarthritis patients [J]. Arthritis Rheum,2000,43(10):2178-2188.
    [66] Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinicalperspectives [J]. J Endocrinol Invest,2005,28(10Suppl):8-13.
    [67] Gundberg CM. Biochemical markers of bone formation [J]. Clin Lab Med,2000,20(3):489-501.
    [68] Kr ger H, Risteli J, Risteli L, et al. Serum osteocalcin and carboxyterminal propeptideof type I procollagen in rheumatoid arthritis [J]. Ann Rheum Dis,1993,52(5):338-342.
    [69] Bromley M,Woolley DE.Chondroclasts and osteoclasts at subchondral sites of erosionin the rheumatoid joint.Arthritis Rheum,1984,27(9):968-975.
    [70] Gravallese EM, Harada Y, Wang JT, et al. Identification of cell types responsible forbone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis [J]. Am J Pathol,1998,152(4):943-951.
    [71] Srivastava AK, MacFarlane G, Srivastava VP, et al. A new monoclonal antibody ELISAfor detection and characterization of C-telopeptide fragments of type I collagen in urine[J]. Calcif Tissue Int,2001,69(6):327-336.
    [72] Lipton A, Demers L, Daniloff Y. Increased urinary excretion of pyridinium cross-linksin cancer patients [J]. Clin Chem,1993,39(4):614-618.
    [73] Suzuki M, Takahashi M, Miyamoto S, et al. The effects of menopausal status anddisease activity on biochemical markers of bone metabolism in female patients withrheumatoid arthritis [J]. Br J Rheumatol,1998,37(6):653-658.
    [74] Lems WF, Gerrits MI, Jacobs JW, et al. Changes in (markers of) bone metabolismduring high dose corticosteroid pulse treatment in patients with rheumatoid arthritis [J].Ann Rheum Dis,1996,55(5):288-293.
    [75] Cortet B, Flipo RM, Pigny P, et al. Is bone turnover a determinant of bone mass inrheumatoid arthritis?[J]. J Rheumatol,1998,25(12):2339-2344.
    [76] Haugeberg G, Uhlig T, Falch JA, et al. Bone mineral density and frequency ofosteoporosis in female patients with rheumatoid arthritis: results from394patients in theOslo County Rheumatoid Arthritis register [J]. Arthritis Rheum,2000,43(3):522-530.
    [77]徐胜前,邵宜波,徐建华.类风湿关节炎患者骨密度变化的临床研究[J].临床内科杂志,2004,21(11):763-765.
    [78] Haugeberg G, rstavik RE, Uhlig T, et al. Bone loss in patients with rheumatoidarthritis: results from a population-based cohort of366patients followed up for twoyears [J]. Arthritis Rheum,2002,46(7):1720-1728.
    [79] Haugeberg G, rstavik RE, Uhlig T, et al. Clinical decision rules in rheumatoidarthritis: do they identify patients at high risk for osteoporosis? Testing clinical criteriain a population based cohort of patients with rheumatoid arthritis recruited from the OsloRheumatoid Arthritis Register [J]. Ann Rheum Dis,2002,61(12):1085-1089.
    [80] Reed SD, Vollan TA, Svec MA. Pregnancy outcomes in women with reumatoid arthritisin Washington State [J]. Matern Child Health J,2006,10(4):361-366.
    [81] Steinbuch M, Youket TE, Cohen S. Oral glucocorticoid use is associated with anincreased risk of fracture [J]. Osteoporos Int,2004,15(4):323-328.
    [82] Reid IR. Glucocorticoid-induced osteoporosis: assessment and treatment [J]. J ClinDensitom,1998,1(1):65-73.
    [83] Baltzan MA, Suissa S, Bauer DC, et al. Hip fractures attributable to corticosteroid use.Study of Osteoporotic Fractures Group [J]. Lancet,1999,353(9161):1327.
    [84] Buckley LM. Clinical and diagnostic features of glucocorticoid-induced osteoporosis [J].Clin Exp Rheumatol,2000,18(5Suppl21):S41-S43.
    [85] Verhoeven AC, Boers M. Limited bone loss due to corticosteroids; a systematic reviewof prospective studies in rheumatoid arthritis and other diseaes [J]. J Rheumatol,1997,24(8):1495-1503.
    [86] Van Staa T, Leufkens HG, Abenhaim L, et al. Use of oral corticosteroids and risk offractures [J]. J Bone Miner Res,2000,15(6):993-1000.
    [87] Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone [J]. Ann N Y AcadSci,2002,966:73-81.
    [88] Reid IR, Ibbertson HK. Evidence for decreased tubular reabsorption of calcium inglucocorticoid-treated asthmatics [J]. Horm Res,1987,27(4):200-304.
    [89] Patschan D, Loddenkemper K, Buttgereit F. Molecular mechanisms of glucocorticoid-induced osteopo-rosis [J]. Bone,2001,29(6):498-505.
    [90] Dalbeth N, Callan MF. A subset of natural killer cells is greatly expanded withininflamed joints [J]. Arthritis Rheum,2002,46(7):1763-1772.
    [91] Pridgeon C, Lennon GP, Pazmany L, et al. Natural killer cells in the synovial fluid ofrheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negativephenotype [J]. Rheumatology(Oxford),2003,42(7):870-878.
    [92] Jensen T, Hansen M, Madsen JC, et al. Serum levels of parathyroid hormone andmarkers of bone metabolism in patients with rheumatoid arthritis. Relationship todisease activity and glucocorticoid treatment [J]. Scand J Clin Lab Invest,2001,61(6):491-501.
    [93] Marhoffer W, Schatz H, Stracke H, et al. Serum osteocalcin levels in rheumatoidarthritis:a marker for accelerated bone turnover in late onset rheumatoid arthritis [J]. JRheumatol,1991,18(8):1158-1162.
    [94] Todoerti M, Scirè CA, Boffini N, et al. Early disease control by low-dose prednisonecomedication may affect the quality of remission in patients with early rheumatoidarthritis [J]. Ann N Y Acad Sci,2010,1193:139-145.
    [95] Hebbar PB, Archer TK. Chromatin remodeling by nuclear receptors [J]. Chromosoma,2003,111(8):495-504.
    [96] Eggert M, Kluter A, Rusch D, et al. Expression analysis of the glucocorticoid receptorand the nuclear factor-kB subunit p50in lymphocytes from patients with rheumatoidarthritis [J]. J Rheumatol,2002,29(12):2500-2506.
    [97] Neeck G, Kluter A, Dotzlaw H, et al. Involvement of the glucocorticoid receptor in thepathogenesis of rheumatoid arthritis [J]. Ann N Y Acad Sci,2002,966:491-495.
    [98] Van Everdingen AA, Huisman AM, Wenting MJ, et al. Down regulation ofglucocorticoid receptors in early-diagnosed rheumatoid arthritis [J]. Clin Exp Rheumatol,2002,20(4):463-468.
    [99] Cobra JF, Melo MR, Faria CD, et al. Simultaneous evaluation of in vivo glucocorticoidsensitivity and expression of glucocorticoid receptor alpha-isoform in rheumatoidarthritis patients [J]. Arq Bras Endocrinol Metabol,2009,53(1):24-30.
    [100] Onda K, Rimbara E, Hirano T, et al. Role of mRNA expression of transcription factorsin glucocorticoid sensitivity of peripheral blood mononuclear cells and disease state inrheumatoid arthritis [J]. J Rheumatol,2004,31(3):464-469.
    [101] Cavalcante LO, Melo MR, Dinis VG, et al. Quantitation of glucocorticoid receptoralpha and NF-κB pathway mRNA and its correlation with disease activity inrheumatoid arthritis patients [J]. Genet Mol Res,2010,9(4):2300-2310.
    [102] Goecke A, Guerrero J. Glucocorticoid receptor beta in acute and chronic inflammatoryconditions:clinical implications [J]. Immunobiology,2006,211(1-2):85-96.
    [103] Rico H, Hernandez ER, Gomez-Castresana F, et al. Osteopenia in rheumatoid arthritis:a biochemical, hormonal and histomorphometric study [J]. Clin Rheumatol.1990,9(1):63-68.
    [104] Bamberger CM, Bamberger AM, de Castro M, et a1. Glucocorticoid receptor beta, apotential endogenous inhibitor of glucocorticoid action in humans [J]. J Clin Invest,1995,95(6):2435-2441.
    [105] Hollenberg SM, Weinberger C, Ong ES, et a1. Primary structure and expression of afunctional human glucocorticoid receptor cDNA [J]. Nature,1985,318(6047):635-641.
    [106] Oakley RH, Sar M, Cidlowski JA. The human glucocorticoid receptor beta isoform.Expression, biochemical properties, and putative function [J]. J Biol Chem,1996,271(16):9550-9559.
    [107] Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoidreceptor isoforms [J]. Ann N Y Acad Sci,2004,1024:102-123.
    [108] Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids [J].Immunol Allergy Clin North Am,2005,25(3):45l-468.
    [109]McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses:interactions between nuclear factor-kappa B and steroid receptor-signaling pathways[J]. Endocr Rev,1999,20(4):435-459.
    [110] Hafezi-Moghadam A, Simoncini T, Yang Z, et al. Acute cardiovascular protectiveeffects of corticosteroids are mediated by non-transcriptional activation of endothelialnitric oxide synthase [J]. Nat Med,2002,8(5):473-479.
    [111] Cato AC, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signalingpathways [J]. Sci STKE,2002,2002(138):RE9.
    [112] Verrière VA, Hynes D, Faherty S, et al. Rapid effects of dexamethasone on intracellularpH and Na+/H+exchanger activity in human bronchial epithelial cells [J]. J Biol Chem,2005,280(43):35807-35814.
    [113] Limbourg FP, Huang Z, Plumier JC, et al. Rapid nontranscriptional activation ofendothelial nitric oxide synthase mediates increased cerebral blood flow and strokeprotection by corticosteroids [J]. J Clin Invest,2002,110(11):1729-1738.
    [114] Solito E, de Coupade C, Parente L,et al. IL-6stimulates annexin1expression andtranslocation and suggests a new biological role as class II acute phase protein [J].Cytokine,1998,10(7):514-521.
    [115] Mizuno H, Uemura K, Moriyama A, et al. Glucocorticoid induced the expression ofmRNA and the secretion of lipocortin1in rat astrocytoma cells [J]. Brain Res,1997,746(1-2):256-264.
    [116] Antonicelli F, De Coupade C, Russo-Marie F, et al. CREB is involved in mouseannexin A1regulation by cAMP and glucocorticoids [J]. Eur J Biochem,2001,268(1):62-69.
    [117] Kim SW, Rhee HJ, Ko J, et al. Inhibition of cytosolic phospholipase A2by annexin I.Specific interaction model and mapping of the interaction site [J]. J Biol Chem,2001,276(19):15712-15719.
    [118] Roviezzo F, Getting SJ, Paul-Clark MJ, et al. The annexin-1knockout mouse: what ittells us about the inflammatory response [J].J Physiol Pharmacol,2002,53(4Pt1):541-553.
    [119] Lim LH, Solito E, Russo-Marie F, et al. Promoting detachment of neutrophils adherentto murine postcapillary venules to control inflammation:effect of lipocortin1[J]. ProcNatl Acad Sci U S A,1998,95(24):14535-14539.
    [120] Pitzalis C, Pipitone N, Perretti M. Regulation of leukocyte-endothelial interactions byglucocorticoids [J]. Ann N Y Acad Sci,2002,966:108-118.
    [121] Kassel O, Sancono A, Kr tzschmar J, et al. Glucocorticoids inhibit MAP kinase viaincreased expression and decreased degradation of MKP-1[J]. EMBO J,2001,20(24):7108-7116.
    [122] Lasa M, Abraham SM, Boucheron C, et al. Dexamethasone causes sustainedexpression of mitogen-activated protein kinase (MAPK) phosphatase1andphosphatase-mediated inhibition of MAPK p38[J]. Mol Cell Biol,2002,22(22):7802-7811.
    [123] Derijk RH, Schaaf MJ, Turner, G, et al. A human glucocorticoid gene variant thatincreases the stability of the glucocorticoid receptor beta-isoform mRNA is associatedwith rheumatoid arthritis [J]. J Rheumatol,2001,28(11):2383-2388.
    [124] Mechanisms of corticosteroid resistance in rheumatoid arthritis: a putative role for thecorticosteroid receptor beta isoform [J]. Ann N Y Acad Sci,2002,966:39-48.
    [125] Celec P. Nuclear factor kappa B--molecular biomedicine: the next generation [J].Biomed Pharmac other,2004,58(6-7):365-371.
    [126] Schaaf MJ, Cidlowski JA. AUUUA motifs in the3’UTR of human glucocorticoidreceptor alpha and beta mRNA destabilize mRNA and decrease receptor proteinexpression [J]. Steroids,2002,67:627-636.
    [127] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.
    [128] Rajewsky N, Socci ND.Computational identification of microRNA targets [J]. DevBiol,2004,267(2):529-535.
    [129] Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in abig field [J]. Immunity,2007,26(2):133-137.
    [130] Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles [J].Cell,2009,136(1):26-36.
    [131] Furer V, Greenberg J D, Attur M, et al. The role of microRNA in rheumatoid arthritisand other autoimmune diseases [J]. Clin Immunol,2010,136(1):1-15.
    [132] Alsaleh G, Suffert G, Semaan N, et al. Bruton’s tyrosinekinase is involved inmiR-346-related regμlation of IL-18release by lipopolysaccharide-activatedrheumatoid fibroblast-like synoviocytes [J]. J Immunol,2009,182(8):5088-5097.
    [133] Smith LK, Shah RR, Cidlowski JA. Glucocorticoids modulate microRNA expressionand processing during lymphocyte apoptosis [J]. J Biol Chem,2010,285(47):36698-36708.
    [134] Duroux-Richard I, Presumey J, Courties G, et al. MicroRNAs as new player inrheumatoid arthritis [J]. Joint Bone Spine,2011,78(1):17-22.
    [135] Dostie J, Mourelatos Z, Yang M, et al. Numerous microRNPs in neuronal cellscontaining novel microRNAs [J]. RNA,2003,9(2):180-186.
    [136] Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlasbased on small RNA library sequencing [J]. Cell,2007,129(7):1401-1414.
    [137] Chang TC, Wentzel EA, Kent OA, et a1. Transactivation of miR-34a by p53broadlyinfluences gene expression and promotes apoptosis [J]. Mol Cell,2007,26(5):745-752.
    [138] Niederer F, Trenkmann M, Ospelt C, et al. Downregμlation of microRNA-34a inrheumatoid arthritis synovial fibroblasts promotes apoptosis resistance [J]. ArthritisRheum,2011, doi:10.1002/art.34334.
    [139]Mistry AR, O'Callaghan CA. Regulation of ligands for the activating receptor NKG2D[J]. Immunology,2007,121(4):439-447.
    [140] Maasho K,Opoku-Anane J, Marusina AI, et al. NKG2D is a costimulatory receptor forhuman naive CD8+T cells [J]. J Immunol,2005,174(8):4480-4484.
    [141] Sutherland CL, Chalupny NJ, Schooley K, et al. ML16-bindingproteins, novel MHCclass I-related proteins, bind to NKG2D and activate multiple signaling pathways inprimary NK cells [J]. J Immunol,2002,168(2):671-679.
    [142] R lle A, Mousavi-Jazi M, Eriksson M, et al. Effects of human cytomegalovirusinfection on ligands for the activating NKG2D receptor of NK cells: up-regulation ofML16-binding protein (ULBP)1and ULBP2is counteracted by the viral ML16protein [J].J Immunol,2003,171(2):902-908.
    [143] Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicityof activated and expanded CD8+T cells [J]. Blood,2004,103(8):3065-3072.
    [144] Bryceson YT, March ME, Ljunggren HG, et al. Activation, coactivation, andcostimulation of resting human natural killer cells [J]. Immunol Rev,2006,214:73-91.
    [145] Cheent K, Khakoo SI. Natural killer cells: integrating diversity with function [J].Immunology,2009,126(4):449-457.
    [146] Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in humandisease [J]. Semin Immunol,2008,20(6):343-352.
    [147] de Matos CT, Berg L, Micha lsson J, et al. Activating and inhibitory receptors onsynovial fluid natural killer cells of arthritis patients: Role of CD94/NKG2A in controlof cytokine secretion [J]. Immunology,2007,122(2):291-301.
    [148] S derstr m K, Stein E, Colmenero P, et al. Natural killer cells triggerosteoclastogenesis and bone destruction in arthritis [J]. Proc Natl Acad Sci U S A.2010,107(29):13028-13033.
    [149] Teitelbaum SL. Bone resorption by osteoclasts [J]. Science,2000,289(5484):1504-1508.
    [150] Walsh NC, Crotti TN, Goldring SR, et al. Rheumatic diseases: The effects ofinflammation on bone [J]. Immunol Rev,2005,208:228-251.
    [151] Geusens PP, Landewé RB, Garnero P, et al. The ratio of circulating osteoprotegerin toRANKL in early rheumatoid arthritis predicts later joint destruction [J]. ArthritisRheum,2006,54(6):1772-1777.
    [152] Cohen SB, Dore RK, Lane NE, et al. Denosumabtreatment effects on structuraldamage, bone mineral density, and bone turnover in rheumatoid arthritis: Atwelve-month, multicenter, randomized, double-blind, placebo-controlled, phase IIclinical trial [J]. Arthritis Rheum,2008,58(5):1299-1309.
    [153] Ren B, Yu G, Tseng GC, et al. MCM7amplification and overexpression are associatedwith prostate cancer progression [J]. Oncogene,2006,25(7):1090-1098.
    [154] Lanza G, Ferracin M, Gafà R, et al. mRNA/microRNA gene expression profile inmicrosatellite unstable colorectal cancer [J]. Mol Cancer,2007,6:54.
    [155] Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92clusters in the control of transforming growth factor beta signaling [J]. Cancer Res,2008,68(20):8191-8194.
    [156] Visone R, Croce CM. MiRNAs and cancer [J]. Am J Pathol,2009,174(4):1131-1138.
    [157] Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class ofbiomarkers for diagnosis of cancer and other diseases [J]. Cell Res,2008,18(10):997-1006.
    [158] West, A E, Griffith EC, Greenberg ME. Regulation of transcription factors by neuronalactivity [J]. Nature Rev Neurosci,2002,3(12):921-931.
    [159] Tay YM, Tam WL, Ang YS, et al. MicroRNA-134modulates the differentiation ofmouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanogand LRH1[J]. Stem Cells,2008,26(1):17-29.
    [160] Kelleher RJ3rd, Govindarajan A, Tonegawa S. Translational regulatory mechanisms inpersistent forms of synaptic plasticity [J]. Neuron,2004,44(1):59-73.
    [161] Chang S, Johnston RJ Jr, Fr kjaer-Jensen C, et al. MicroRNAs act sequentially andasymmetrically to control chemosensory laterality in the nematode [J]. Nature,2004,430(7001):785-789.
    [162] Ossovskaya V, Lim ST, Ota N, et al. FAK nuclear export signal sequences [J]. FEBSLett,2008,582(16):2402-2406.
    [163] Totoń E, Rybczyńska M. The characteristics of focal adhesion kinase (FAK) and itsrole in carcinogenesis [J/OL]. Postepy Hig Med Dosw(Online),2007,61:303-309
    [2007-05-16]. http://www.phmd.pl.
    [164] Wisniewska M, Bossenmaier B, Georges G, et al. The1.1A resolution crystal structureof the p130cas SH3domain and ramifications for ligand selectivity [J]. J Mol Biol,2005,347(5):1005-1014.
    [165] Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion[J]. Curr Opin Genet Dev,2004,14(1):92-101.
    [166] Tomar A, Lim ST, Lim Y, et al. A FAK-p120RasGAP-p190RhoGAP complexregulates polarity in migrating cells [J]. J Cell Sci,2009,122(Pt11):1852-1862.
    [167] Brun J. Proteasome inhibition as a novel therapy in treating rheumatoid arthritis [J].Med Hypotheses,2008,71(1):65-72.
    [168] Shahrara S, Castro-Rueda HP, Haines GK, et al. Differential expression of the FAKfamily kinases in rheumatoid arthritis and osteoarthritis synovial tissues [J]. ArthritisRes Ther,2007,9(5):R112.
    [169] Duong LT, Lakkakorpi PT, Nakamura I, et al. PYK2in osteoclasts is an adhesionkinase, localized in the sealing zone, activated by ligation of alpha(v)beta3integrin,and phosphorylated by src kinase [J]. J Clin Invest,1998,102(5):881-892.
    [170] Wang Q, Xie Y, Du QS, et al. Regulation of the formation of osteoclastic actin rings byproline-rich tyrosine kinase2interacting with gelsolin [J]. J Cell Biol,2003,160(4):565-575.
    [171] Tanaka S, Takahashi N, Udagawa N, et al. Possible involvement of focal adhesionkinase, p125FAK, in osteoclastic bone resorption [J]. J Cell Biochem,1995,58(4):424-435.
    [172] Kim I, Kim HG, Moon SO, et al. Angiopoietin-1induces endothelial cell sproutingthrough the activation of focal adhesion kinase and plasmin secretion [J]. Circ Res,2000,86(9):952-959.
    [173] Maru Y, Hanks SK, Shibuya M. The tubulogenic activity associated with an activatedform of Flt-1kinase is dependent on focal adhesion kinase [J]. Biochim Biophys Acta,2001,1540(2):147-153.
    [174] Matsumoto Y, Tanaka K, Hirata G, et al. Possible involvement of the vascμlarendothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and thecell proliferation of osteoclast precursor cells in arthritic joints [J]. J Immunol,2002,168(11):5824-5831.
    [175] Gilmore AP, Romer LH. Inhibition of focal adhesion kinase (FAK) signaling in focaladhesions decreases cell motility and proliferation [J]. Mol Biol Cell,1996,7(8):1209-1224.
    [176] Gregory SG, Barlow KF, McLay KE, et al. The DNA sequence and biologicalannotation of human chromosome1[J]. Nature,2006,441(7091):315-321.
    [177] Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKBby the rictor-mTOR complex [J]. Science,2005,307(5712):1098-1101.
    [178] Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt tofollow [J]. Trend Biech Sci,2001,26(11):657-664.
    [179] Hay N, Sonenberg N. Upstream and downstream of Mtor [J]. Genes Dev,2004,18(16):1926-1945.
    [180] Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway inhuman disease [J]. Nat Genet,2005,37(1):19-24.
    [181] Martin DE, Hall MN. The expanding TOR signaling network [J]. Curr Opin Cell Biol,2005(2),17:158-166.
    [182] Xu G, Zhang W, Betram P, et al. Pharmacogenomic profiling of thePI3K/PTEN-AKT-mTOR pathway in common human tumor [J]. Int J Oncol,2004,24(4):893-900.
    [183] Fingar DC, Blenis J. Target of rapamycin(TOR): an integrator of nutrient and growthfactor signals and coordinator of cell growth and cell cycle progression[J]. Oncogene,2004,23(18):3151-3157.
    [184] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism [J].Cell,2006,124(3):471-484.
    [185] Gupta M, Dillon SR, Ziesmer SC, et a1. A proliferation-inducing ligand mediatesfollicular lymphoma B-cell proliferation and cyclin D1expression throughphosphatidylinositol3-kinase-regulated mammalian target of rapamycin activation [J].Blood,2009,113(21):5206-5216.
    [186] Wu T, Mohan C. The AKT axis as a therapeutic target in autoimmune diseases[J].Endocr Metab Immune Disord Drug TargeTS,2009,9(2):145-150.
    [187] Patke A, Mecklenbr uker I, Erdjument-Bromage H, et a1.BAFF controls B cellmetabolic fitness through a PKC beta-and Akt-dependent mechanism [J]. J Exp Med,2006,203(11):2551-2562.
    [188] Debnath I, Roundy KM, Weis JJ, et a1. Analysis of the regulatory role of BAFF incontrolling the expression of CD21and CD23[J]. Mol Immunol,2007,44(9):2388-2399.
    [189] Reedquist KA, Ludikhuize J, Tak PP. Phosphoinositide3-kinase signalling and FoxOtranscription factors in rheumatoid arthritis [J]. Biochem Soc Trans,2006,34(Pt5):727-730.
    [190] Okada Y, Morodomi T, Enghild JJ, et al. Matrix metalloproteinase2from humanrheumatoid synovial fibroblasts. Purification and activation of the precursor andenzymic properties [J]. Eur J Biochem,1990,194(3):721-730.
    [191] Hanemaaijer R, Sorsa T, Konttinen YT, et al. Matrix metalloproteinase-8is expressedin rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosisfactor-alpha and doxycycline [J]. J Biol Chem,1997,272(50):31504-31509.
    [192] Müller-Ladner U, Kriegsmann J, Franklin BN, et al. Synovial fibroblasts of patientswith rheumatoid arthritis attach to and invade normal human cartilage when engraftedinto SCID mice [J]. Am J Pathol,1996,149(5):1607-1615.
    [193] Laragione T, Gulko PS. mTOR regulates the invasive properties of synovial fibroblastsin rheumatoid arthritis [J]. Mol Med,2010,16(9-10):352-358.
    [194] Carlson RP, Hartman DA, Tomchek LA, et al. Rapamycin, a potentialdisease-modifying antiarthritic drug [J]. J Pharmacol Exp Ther,1993,266(2):1125-1138.
    [195] Bruyn GA, Tate G, Caeiro F, et al. Everolimus in patients with rheumatoid arthritisreceiving concomitant methotrexate: a3-month, double-blind, randomised,placebo-controlled, parallel-group, proof-of-concept study [J]. Ann Rheum Dis.2008,67(8):1090-1095.
    [196] Szekanecz Z, Koch AE. Chemokines and angiogenesis [J]. Curr Opin Rheumatol,2001,13(3):202-208.
    [197] Mackay CR. Chemokines: immunology’s high impact factors [J]. Nat Immunol,2001,2(2):95-101.
    [198] Szekanecz Z, Kim J, Koch AE. Chemokines and chemokine receptors in rheumatoidarthritis [J]. Semin Immunol,2003,15(1):15-21.
    [199] Hosaka S, Akahoshi T, Wada C, et al. Expression of the chemokine superfamily inrheumatoid arthritis [J]. Clin Exp Immunol,1994,97(3):451-457.
    [200] Baier A, Meineckel I, Gay S, et al. Apoptosis in rheumatoid arthritis [J]. Curr OpinRheumatol,2003,15(3):274-279.
    [201] Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: live and let die [J]. AdvImmunol,1999,71:163-210.
    [202] Vallejo AN, Schirmer M, Weyand CM, et al. Clonality and longevity ofCD4+CD28null T cells are associated with defects in apoptotic pathways [J]. JImmunol,2000,165:6301-6307.
    [203] Catrina AI, Mlfgren AK, Lindblad S, et al. Low levels of apoptosis and high FLIPexpression in early rheumatoid arthritis synovium [J]. Ann Rheum Dis,2002,61(10):934-936.
    [204] Adams JL, Badger AM, Kumar S, et al. p38MAP kinase: molecular target for theinhibition of pro-inflammatory cytokines [J]. Prog Med Chem,2001,38:1-60.
    [205] Badger AM, Griswold DE, Kapadia R, et al. Disease-modifying activity of SB242235,a selective inhibitor of p38mitogen-activated protein kinase, in rat adjuvant-inducedarthritis [J]. Arthritis Rheum,2000,43(1):175-183.
    [206] Kumar S, Blake SM, Emery JG. Intracellular signaling pathways as a target for thetreatment of rheumatoid arthritis [J]. Curr Opin Pharmacol,2001,1(3):307-3l3.
    [207] Zhu QY, Liu Q, Chen JX, et al. MicroRNA-101targets MAPK phosphatase-1toregulate the activation of MAPKs in macrophages [J]. J Immunol,2010,185(12):7435-7442.
    [1] Dalbeth N, Callan MF. A subset of natural killer cells is greatly expanded within inflamedjoints [J]. Arthritis Rheum,2002,46(7):1763-1772.
    [2] Pridgeon C, Lennon GP, Pazmany L, et al. Natural killer cells in the synovial fluid ofrheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negativephenotype [J]. Rheumatology (Oxford),2003,42(7):870-878.
    [3] Sun JC, Lanier LL. Natural killer cells remember:an evolutionary bridge between innateand adaptive immunity?[J]. Eur J Immunol,2009,39(8):2059-2064.
    [4] Huntington ND, Vosshenrich CA, Di Santo JP. Developmental pathways that generatenatural-killer-cell diversity in mice and humans [J]. Nat Rev Immunol,2007,7(9):703-714.
    [5] Di Santo JP. Natural killer cell developmental pathways: a question of balance [J]. AnnuRev lmmunol,2006,24:257-286.
    [6]Freud AG, Becknell B, Roychowdhury S, et al. A human CD34(+) subset resides in lymphnodes and differentiates into CD56bright natural killer cells [J]. Immunity,2005,22(3):295-304.
    [7] Ikawa T, Fujimoto S, Kawamoto H, et al. Commitment to natural killer cells requires thehelix-loop-helix inhibitor Id2[J]. Proc Natl Acad Sci U S A,2001,98(9):5164-5169.
    [8] Blom B, Spits H. Development of human lymphoid cells [J]. Annu Rev lmmunol,2006,24:287-320.
    [9] Vosshenrich CA, García-Ojeda ME, Samson-Villéger SI, et al. A thymic pathway ofmouse natural killer cell development characterized by expression of GATA-3andCD127[J]. Nat Immunol,2006,7(11):1217-1224.
    [10] Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of humannatural killer cell differentiation in vivo [J]. J Exp Med,2006,203(4):1033-1043.
    [11] Loza MJ, Perussia B. The IL-12signature: NK cell terminal CD56+high stage andeffector functions [J]. J Immunol,2004,172(1):88-96.
    [12] Cooper MA, Fehniger TA, Turner SC,et al. Human natural killer cells: a unique innateimmunoregulatory role for the CD56(bright) subset [J]. Blood,2001,97(10):3146-3151.
    [13] Berahovich RD, Lai NL, Wei Z, et al. Evidence for NK cell subsets based on chemokinereceptor expression [J]. J Immunol,2006,177(11):7833-7840.
    [14] Bryceson YT, March ME, Ljunggren HG, et al. Activation, coactivation, andcostimulation of resting human natural killer cells [J]. Immunol Rev,2006,214:73-91.
    [15] Cheent K, Khakoo SI. Natural killer cells: integrating diversity with function [J].Immunology,2009,126(4):449-457.
    [16] Ljunggren HG, K rre K. In search of the‘missing self’: MHC molecules and NK cellrecognition [J]. Immunol Today,1990,11(7):237-244.
    [17] Smith HRC, Heusel JW, Mehta IK, et al. Recognition of a virus-encoded ligand by anatural killer cell activation receptor [J]. Proc Natl Acad Sci U S A,2002,99(13):8826-8831.
    [18] Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by hostmajor histocompatibility complex class I molecules [J]. Nature,2005,436(7051):709-713.
    [19] Valiante NM, Uhrberg M, Shilling HG, et al. Functionally and structurally distinct NKcell receptor repertoires in the peripheral blood of two human donors [J]. Immunity,1997,7(6):739-751.
    [20] Shilling HG, Young N, Guethlein LA, et al. Genetic control of human NK cell repertoire[J]. J Immunol,2002,169(1):239-247.
    [21] Boyington JC, Riaz AN, Patamawenu A, et al. Structure of CD94reveals a novel C-typelectin fold: implications for the NK cell-associated CD94/NKG2receptors [J].Immunity,1999,10(1):75-82.
    [22] Young NT, Uhrberg M. KIR expression shapes cytotoxic repertoires: a developmentalprogram of survival [J]. Trends Immunol,2002,23(2):71-75.
    [23] Aldemir H, Prod’homme V, Dumaurier MJ, et al. Cutting edge: lectin-like transcript1is a ligand for the CD161receptor [J]. J Immunol,2005,175(12):7791-7795.
    [24] Tomasello E, Bléry M, Vély F, et al. Signaling pathways engaged by NK cell receptors:double concerto for activating receptors, inhibitory receptors and NK cells [J]. SeminImmunol,2000,12(2):139-147.
    [25] Chalupny NJ, Sutherland CL, Lawrence WA, et al. ULBP4is a novel ligand for humanNKG2D [J]. Biochem Biophys Res Commun,2003,305(1):129-135.
    [26] Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity ofactivated and expanded CD8+T cells [J]. Blood,2004,103(8):3065-3072.
    [27] Takaki R, Hayakawa Y, Nelson A, et al. IL-21enhances tumor rejection through aNKG2D-dependent mechanism [J]. J ImmunoL,2005,175(4):2167-2173.
    [28] Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed byNKG2D and DAP10[J]. Science,1999,285(5428):730-732.
    [29] Hayakawa Y, Kelly JM, Westwood JA, et al.Cutting edge: tumor rejectionmediated byNKG2D receptor-ligand interaction is dependent upon perforin [J]. J Immunol,2002,169(10):5377-5381.
    [30] Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA onhuman tumors by proteolytic shedding [J]. J Immunol,2002,169(8):4098-4102.
    [31] Vankayalapati R, Garg A, Porgador A, et al. Role of NK cell-activating receptors andtheir ligands in the lysis of mononuclear phagocytes infected with an intracellularbacterium [J]. J Immunol,2005,175(7):4611-4617.
    [32] Olcese L, Cambiaggi A, Semenzato G, et al. Human killer cell activatory receptors forMHC class I molecules are included in a multimeric complex expressed by naturalkiller cells [J]. J Immunol,1997,158(11):5083-5086.
    [33] Carrington M, Wang S, Martin MP, et al. Hierarchy of resistance to cervical neoplasiamediated by combinations of killer immunoglobulin-like receptor and humanleukocyte antigen loci [J]. J Exp Med,2005,201(7):1069-1075.
    [34] Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage inautoimmune disease: hierarchy of protection/susceptibility conferred by HLA andkiller Ig-like receptor combinations in psoriatic arthritis [J]. J Immunol,2004,173(7):4273-4276.
    [35] Yen JH, Moore BE, Nakajima T, et al. Major histocompatibility complex classI-recognizing receptors are disease risk genes in rheumatoid arthritis [J]. J Exp Med,2001,193(10):1159-1167.
    [36] Momot T, Koch S, Hunzelmann N, et al. Association of killer cell immunoglobulin-likereceptors with scleroderma [J]. Arthritis Rheum,2004,50(5):1561-1565.
    [37] Katz G, Gazit R, Arnon TI, et al. MHC class I-independent recognition of NK-activatingreceptor KIR2DS4[J].J lmmunol,2004,173(3):1819-1825.
    [38] Zambello R, Falco M, Della Chiesa M, et al. Expression and function of KIR andnatural cytotoxicity receptors in NK-type lymphoproliferative diseases of granularlymphocytes [J]. Blood,2003,102(5):1797-1805.
    [39] Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of naturalkiller cell-triggering receptors in patients with acute myeloid leukemia [J]. Blood,2002,99(10):3661-3667.
    [40] Conigliaro P, Scrivo R, Valesini G, et al. Emerging role for NK cells in the pathogenesisof inflammatory arthropathies [J]. Autoimmun Rev,2011,10(10):577-581.
    [41] Lee IF, Qin H, Trudeau J, et al. Regulation of autoimmune diabetes by completeFreund’s adjuvant is mediated by NK cells [J]. J Immunol,2004,172(2):937-942.
    [42] XuW, Fazekas G, Hara H, et al. Mechanism of natural killer (NK) cell regulatory role inexperimental autoimmune encephalomyelitis [J]. J Neuroimmunol,2005,163(1-2):24-30.
    [43] Shi FD, Wang HB, Li H, et al. Natural killer cells determine the outcome of Bcell-mediated autoimmunity [J]. Nat Immunol,2000,1(3):245-251.
    [44] Ji H, Korganow AS, Mangialaio S, et al. Different modes of pathogenesis inT-cell-dependent autoimmunity: clues from two TCR transgenic systems [J]. ImmunolRev,1999,169:139-146.
    [45] Pazmany L. Do NK cells regulate human autoimmunity?[J]. Cytokine,2005,32(2):76-80.
    [46] Shi FD, van Kaer L. Reciprocal regulation between natural killer cells and autoreactiveT cells [J]. Nat Rev Immunol,2006,6(10):751-760.
    [47] Perricone R, Perricone C, De Carolis C, et al. NK cells in autoimmunity: a two-edgedweapon of the immune system [J]. Autoimmun Rev,2008,7(5):384-390.
    [48] Shi FD, Ljunggren HG, Sarvetnick N. Innate immunity and autoimmunity: fromself-protection to self-destruction [J]. Trends Immunol,2001,22(2):97-101.
    [49] Flodstr m M, Shi FD, Sarvetnick N, et al. The natural killer cell--friend or foe inautoimmune disease?[J]. Scand J Immunol,2002,55(5):432-441.
    [50] Johansson S, Berg L, Hall H, et al. NK cells: elusive players in autoimmunity [J].Trends Immunol,2005,26(11):613-618.
    [51] Villanueva J, Lee S, Giannini EH, et al. Natural killer cell dysfunction is adistinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophageactivation syndrome [J]. Arthritis Res Ther,2005,7(1):R30-R37.
    [52] Kelly A, Ramanan AV. Recognition and management of macrophage activationsyndrome in juvenile arthritis [J]. Curr Opin Rheumatol,2007,19(5):477-481.
    [53] Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in humandisease [J]. Semin Immunol,2008,20(6):343-352.
    [54] Jonsson AH, Yokoyama WM. Natural killer cell tolerance licensing andothermechanisms [J]. Adv Immunol,2009,101:27-79.
    [55] Chan AT, Kollnberger SD, Wedderburn LR, et al. Expansion and enhanced survival ofnatural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2inspondylarthritis [J]. Arthritis Rheum,2005,52(11):3586-3595.
    [56] de Matos CT, Berg L, Micha lsson J, et al. Activating and inhibitory receptors onsynovial fluid natural killer cells of arthritis patients: Role of CD94/NKG2A in controlof cytokine secretion [J]. Immunology,2007,122(2):291-301.
    [57] Tak PP, Kummer JA, Hack CE, et al. Granzyme-positive cytotoxic cells are specificallyincreased in early rheumatoid synovial tissue [J]. Arthritis Rheum,1994,37(12):1735-1743.
    [58] Müller-Ladner U, Kriegsmann J, Tschopp J, et al. Demonstration of granzyme A andperforin messenger RNA in the synovium of patients with rheumatoid arthritis [J].Arthritis Rheum,1995,38(4):477-484.
    [59] Goldbach-Mansky R, Suson S, Wesley R, et al. Raised granzyme B levels areassociated with erosions in patients with early rheumatoid factor positive rheumatoidarthritis [J]. Ann Rheum Dis,2005,64(5):715-721.
    [60] Kraan MC, Haringman JJ, Weedon H, et al. T cells, fibroblast-like synoviocytes, andgranzyme B+cytotoxic cells are associated with joint damage in patients with recentonset rheumatoid arthritis [J]. Ann Rheum Dis,2004,63(5):483-488.
    [61] Shibatomi K, Ida H, Yamasaki S, et al. A novel role for interleukin-18in humannatural killer cell death: high serum levels and low natural killer cell numbers inpatients with systemic autoimmune diseases [J]. Arthritis Rheum,2001,44(4):884-892.
    [62] Aramaki T, Ida H, Izumi Y, et al. A significantly impaired natural killer cell activity dueto a low activity on a per-cell basis in rheumatoid arthritis [J]. Mod Rheumatol,2009,19(3):245-252.
    [63] Lo CK, Lam QL, Sun L, et al. Natural killer cell degeneration exacerbates experimentalarthritis in mice via enhanced interleukin-17production [J]. Arthritis Rheum,2008,58(9):2700-2711.
    [64] S derstr m K, Stein E, Colmenero P, et al. Natural killer cells trigger osteoclastogenesisand bone destruction in arthritis [J]. Proc Natl Acad Sci U S A,2010,107(29):13028-13033.
    [65] Gerosa F, Baldani-Guerra B, Nisii C, et al. Reciprocal activating interaction betweennatural killer cells and dendritic cells [J]. J Exp Med,2002,195(3):327-333.
    [66] Piccioli D, Sbrana S, Melandri E, et al. Contact-dependent stimulation and inhibition ofdendritic cells by natural killer cells [J]. J Exp Med,2002,195(3):335-341.
    [67] Dalbeth N, Gundle R, Davies RJ, et al. CD56bright NK cells are enriched atinflammatory sites and can engage with monocytes in a reciprocal program ofactivation [J]. J Immunol,2004,173(10):6418-6426.
    [68] Chan A, Filer A, Parsonage G, et al. Mediation of the proinflammatory cytokineresponse in rheumatoid arthritis and spondylarthritis by interactions betweenfibroblast-like synoviocytes and natural killer cells [J]. Arthritis Rheum,2008,58(3):707-717.
    [69] Nedvetzki S, Sowinski S, Eagle RA, et al. Reciprocal regulation of human natural killercells and macrophages associated with distinctimmune synapses [J]. Blood,2007,109(9):3776-3785.
    [70] Rabinovich BA, Li J, Shannon J, et al. Activated, but not resting T cells can berecognized and killed by syngeneic NK cells [J]. J Immunol,2003,170(7):3572-3576.
    [71] Cerboni C, Zingoni A, Cippitelli M, et al. Antigen-activated human T lymphocytesexpress cell-surface NKG2D ligands via an ATM/ATRdependent mechanism andbecome susceptible to autologous NK-cell lysis [J]. Blood,2007,110(2):606-615.
    [72] Lu L, Ikizawa K, Hu D, et al. Regulation of activated CD4+T cells by NK cells via theQa-1-NKG2A inhibitory pathway [J]. Immunity,2007,26(5):593-604.
    [73] Leipe J, Grunke M, Dechant C, et al. Role of Th17cells in human autoimmune arthritis[J]. Arthritis Rheum,2010,62(10):2876-2885.
    [74] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin17-producing CD4+effectorT cells develop via a lineage distinct from the T helper type1and2lineages [J]. NatImmunol,2005,6(11):1123-1132.
    [75] Takayanagi H, Ogasawara K, Hida S, et al. T-cellmediated regulation ofosteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma [J].Nature2000,408:600-605.
    [76] Teitelbaum SL. Bone resorption by osteoclasts [J]. Science,2000,289(5484):1504-1508.
    [77] McInnes IB, al-Mughales J, Field M, et al. The role of interleukin-15in T-cell migrationand activation in rheumatoid arthritis [J]. Nat Med,1996,2(2):175-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700