植物水势在线无创伤自动监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物水势是一个决定植物体中水运动方向和限度的物理量,也是植物水分生理中一个基本度量单位。它在许多科学研究领域都占有十分重要的地位。因此,作为科学研究的方法手段——植物水势监测技术倍受人们关注。目前,植物水势测量技术主要用于植物水分生理的基础研究,但是运用到其它研究领域,如节水农业和基于植物生理的设施农业环境调控等,现有的测量技术都存在着诸多缺陷。为了满足与植物水势相关的科学领域所需要的方法学要求,并促进植物水势测量技术本身的发展,本文进行了植物水势在线无创伤自动监测技术的研究。
     本文的研究内容主要涉及以下几个方面:
     1.在仔细分析现有植物水势测量技术原理及优缺点和所开发的植物水势测量仪的基础上,考虑植物水分扩散的动态特性,研究样品水分无阻尼自然扩散,其上方空气的暂态过程与水势的关系,设计了研究植物水势在线无创伤自动监测技术的试验装置。
     2.基于对植物水势在线、快速、无创伤、自动监测的目的,对试验装置的性能进行了试验分析,经试验分析,所设计的试验装置符合本课题研究的要求。
     3.利用所设计的试验装置和不同浓度的氯化钠溶液进行在线无创伤自动监测植物水势的试验研究分析,并建立了一些监测植物水势的模型,经过比较分析,确定最优地能实现在线无创伤自动监测植物水势的模型;然后运用此模型对不同浓度氯化钾溶液的水势进行测定,以及与美国Wescor公司生产的植物及土壤水势测定仪进行比较测试试验,通过对这些比较验证试验的分析,认为此模型在植物水势在线无创伤自动监测方面具有其可行性。
     4.在所设计的试验装置基础上,根据所研究的植物水势在线无创伤自动监测技术,对整个植物水势在线无创伤自动监测系统进行了初步设计。
     论文最后对研究成果进行了总结,毕竟此项技术的研究只是初次尝试,还存在着许多问题,有待今后作进一步的分析研究。
As a parameter describing the direction and amount of water movement in the body of plants,water potential is a fundamental physiological parameter of plants which plays important role in many fields of scientific research. So measuring techniques of plant water potential as means of scientific research is intensively interested. While at present various measuring techniques of plant water potential have been developed and used mainly for the study of plant physiology,these existing measuring techniques are not well fit for other application fields such as water-saving agriculture and monitoring and control of structured agriculture environments. In order to meet the requirements of methodology in the study of plant water potential and promote the development of related measuring techniques,the paper is dedicated to the research of on-line non-invasive automatic monitoring technique of plant water potential.
    The paper expounds on the following aspects.
    Firstly,on the basis of analysis of current techniques for measuring plant water potential and with the dynamic characteristics of vapor diffusion in consideration,the relationship between the transient process of humidity at the position of the sensor and the water potential of the plant sample is studied in depth,and the corresponding testing apparatus for the on-line non-invasive automatic monitoring of plant water potential is designed.
    Secondly,with the demands of monitoring plant water potential in mind,the apparatus has been tested with satisfactory results
    Thirdly,utilizing that testing apparatus and NaCl solutions at 20 C,a study is preformed to investigate the on-line non-invasive automatic monitoring technique of plant water potential,with some models of monitoring plant water potential properly established. Results show that the second model of monitoring plant water potential is desirable after comparing. Then,comparative measurements are done with KC1 solutions,using both the testing apparatus and the commercial Wescor water
    
    
    potential meter. Positive results are obtained on the feasibility of the model used for on-line non-invasive automatic monitoring of plant water potential.
    Finally,the design of a practical system for the on-line non-invasive automatic monitoring of plant water potential is presented on the basis of the above research work.
    At the end of the paper,the results of the research are summarized for further improvement.
引文
[1] Acevedo, E, et al, Diurnal Growth Trends, Water potential, and Usmotic Adjustment of Maize and Sorghum Leaves in the Field, 1979, plant physiol. 64(3):476-480.
    [2] ALVIM, P. de T., A new type of porometer for measuring stomatal opening and its use in irrigation studies. In: ECKARDT, F. E. (ed.): Methodology of Plant Eeo-Physiology. (Arid Zone Res.25). Pp 325-329. UNESCO,Paris 1965.
    [3] B.斯拉维克著,张崇浩等译.植物与水分关系研究法[M].北京:科学出版社,1986.
    [4] BALDES, E. J.,JOHNSON, A. F.,The thermo-electric osmometer; its construction and use.Biodynamica 47:1-11 S,1939.
    [5] BALDES, E. J., Theory of the thermo-electric measurement of osmotic pressure. Biodynamica 46: 1-8, 1939.
    [6] BARRS, H. D., FREEMAN, B., BLACKWELL, J., CECCATO, R.D., Comparisons of leaf water potential and xylem water potential in tomato plants. Aust. J. boil. Sci. 23: 485-487, 1970.
    [7] BARRS, H. D., KRAMER, P.J., Water potential increase in sliced leaf tissue as a cause of error in vapor phase determinations of water potential. Plant Physiol. 44: 959-964, 1969.
    [8] BARRS, M. D., SLATYER, R. O., Experience with three vapour methods for measuring water potential in plants. In: ECKARDT, F. E. (ed.): Methodology of Plant Eeo-Physiology. (Arid Zone Res. 25). Pp. 369-384. UNESCO, Paris 1965.
    [9] BARRS, H. D., WEATHERLEY. P. E., A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. boil. Sci. 15:413-428, 1962.
    [10] BARRS, H. D., Comparison of water potentials in leaves as measured by tow types of thermocouple psychrometer. Aust. J. boil. Sci.18: 36-52, 1965a.
    [11] BARRS, H. D., Heat of respiration as a possible cause of error in the estimation by psychrometric methods of water potential in plant tissue. Nature 203:1136-1137, 1964.
    [12] BARRS, H. D., Psychrometric measurement of leaf water potential: lack of error attributable to leaf permeability. Science 149: 63-65, 1965a.
    [13] BEARCE, B. C., KOHL, H. C. Jr., Measuring osmotic pressure of sap within live cells by means of a visual melting point apparatus. Plant Physiol. 46: 515-519,1970.
    [14] BECK, W. A., Osmotic pressure, osmotic value and suction tension. Plant Physiol.3: 413-440, 1928.
    
    
    [15] BEGG, J. E., TURNER, N. C., Water potential gradients in field tobacco. Plant Physiol. 46: 343-346, 1970.
    [16] BELCHER, D. J., CUYDENDALL, T. R., SACK, H. S., The measurement of soil moisture and density by neutron and gamma-ray scattering. Tech. Rep. 127 CAA, USA, 1950.
    [17] Blum, a., Sullivan, c. y., eastin, j. d., On the pressure chamber technique for estimating leaf water potential in sorghum. Agron. J. 65: 337-338, 1973.
    [18] BOUGET, S. J., ELRICK, D. E., TANNER, C. B., Electrical resistance units for moisture measurements: their moisture hysteresis, uniformity and sensitivity. Soil Sci. 86: 298-304, 1958.
    [19] Box, J.E. Jr., Design and calibration of a thermocouple which uses the Peltier effects. In: International Symposium on Humidity and Moisture. Vol. 11. Pp.101-121. Reinhold Publ. Co., New York 1965a.
    [20] Boyer, J. S., GHOEASHY, S. R., Rapid field measurement of leaf water potential in soybean, agron. J. 63: 344-345, 1971.
    [21] Boyer, J. S., KNIPLING, E. B., Isopiestic technique for measuring leaf waer potentials with a thermocouple psychrometer. Proc. Nat. Acad. Sci. USA 54:1044-1051, 1965.
    [22] Boyer, J. S., Isopiestic technique: measurement of accurate leaf water potentials. Science 154: 1495-1460, 1966.
    [23] Boyer, J. S., Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 46: 233-235, 1970.
    [24] Boyer, J. S. Leaf water potentials measure with a pressure chamber. Plant Physiol. 42: 133-137, 1967a.
    [25] Boyer, J. S., Matric potentials of leaves. Plant Physiol. 42: 213-217,1967b.
    [26] Boyer, J. S., Measurement of the water status of plants. Annu. Rev. Plant Physiol. 20: 351-364,1969.
    [27] Boyer, J. S., Relationship of water potential to growth of leaves. Plant Physiol. 43: 1056-1062, 1968.
    [28] Brastad, W. A., Borchardt, L. F., Electric hygrometer of small dimensions. Rev. Sci. Instr. 24: 1143-1144, 1953.
    [29] Brix, H., Errors in measurement of leaf water potential of some woody plants with the Schardakow dye method. Forest. Branch, Can. Dep. Forest. Prbl. 1164:5-11,1966.
    [30] Brown, R. W., Measurement of water potential with thermocouple psychrometers:Construction and applications. USDA Forest Res. Paper INT-80, Pp: 1-27 1970.
    [31] C-52 Sample Chamber Instruction/Service Manual.(?)1978, 1986, 2001 Wescor, Inc. M-2740.
    
    
    [32] Campbell, E. C., Campbell, G. S., Barlow, W. K., A dewpoint hygrometer gor water potential measurement. Agr. Meteorol. 12:113-121, 1973.
    [33] Campbell, G. S., Gardner, W. H., Psychrometric measurement of soil water potential: temperature and bulk density effects.Proc. Soil Sci. Soc. Amer.35: 8-12,1971.
    [34] Campbell, G. S., Trull, J. W., Gardner, W. H., A welding technique for Peltier thermocouple psychrometers. Proc. Soil Sci. Soc. Amer. 32: 887-889, 1968.
    [35] Campbell, G. S., Zollinger, W. D., Taylor, S. A., Sample changer for thermocouple psychrometers: construction and some applications. Agron. J. 58: 315-318,1966.
    [36] Cary,J. W., Fisher, H. D.,Plant water potential gradients measured in the field by freezing point. Physiol. Plant. 24: 397-402, 1971.
    [37] Condon, B. N., Millar, B. D., Newhouse, I., Bryan, A. J., A semi-automatic :measuring system for Spanner type thermocouple psychometer. Sci. Instr. (J. Phys.E) 4: 575-579, 1971.
    [38] Dalton, F. N., Rawlins, S. L., Design criteria for Peltier-effect thermocouple psychrometer. Soil Sci.105: 12-17, 1968.
    [39] Duniway, J. M., Comparison of pressure chamber and thermocouple psychrometr determination of leaf water status in tomato. Plant Physiol. 48: 106-107, 1971.
    [40] E.S.马丁,M.E.唐金.气孔[M].北京:科学出版社,1987.
    [41] Ehlig, C. F., Measurement of energy status of water in plants with a thermocouple psychrometer. Plant Physiol. 37: 288-290, 1962.
    [42] Fiscus, E. F.,In situ measurement of root-water potential. Plant Physiol.50: 191-193, 1972.
    [43] Gardner, W. R., Ehlig, C. F., Physical aspects of the internal water relations of plant leaves. Plant Physiol. 40: 705-710, 1965.
    [44] Gardner, W. R., Dynamic aspects of water availability to plants. Soil Sci. 89: 63-73, 1960a.
    [45] Goode, J. E., Hegarty, T. W., Measurement of water potential of leaves by methods involving immersion in sucrose solutions. Nature 276: 109-110, 1965.
    [46] Grimes D. W., et al, Climate normalized cotton leaf water potential for irrigation scheduling.. Agric. Water Manage, 1987, 12: 293~304.
    [47] Grimes D. W., et al, Relation of cotton growth and yield to minim leaf water potential. Crop Sci.,1982, 22: 134~139.
    [48] Hellmuth, E. O., Grieve, B. J., Measurement of water potential of leaves with particular reference to the Shardakow method. Flora 159: 147-167,1970.
    [49] HR-33T Dew Point Microvoltmeter Instruction/Service Manual. (?)1978, 1986, 2001 Wescor, Inc. M2820-1.
    
    
    [50] Hsieh, J. J. C., Hungate, F. P., Temperature compensated Peltier psychrometer for measuring plant and soil water potentials. Soil Sci. 110: 253-257, 1970.
    [51] Ingvalson, R. D., Oster, J. D., Rawlins, S. L., Hoffman, G. J., Measurement of water potential in soil with a combined thermocouple psychrometer and salinity sensor. Proc. Soil Sci. Amer. 34: 570-574, 1970.
    [52] IRA N.LEVINE[美]著,褚德萤等译.物理化学(上、下册)[M].北京大学出版社,1987.
    [53] Jones, H. G., Modelling diurnal trades of leaf water potential in transpiring wheat, J. Appl. Ecol.,1978, No.15, pp: 613~626.
    [54] Knipling, E. B., Measurement of leaf water potential by the dye method. Ecology 48: 1038-1041, 1957a.
    [55] Knipling, E.B., Kramer, P. J., Comparison of the dye method with the thermocouple psychrometer for measuring leaf water potentials. Plant Physiol.42: 1315-1320, 1967.
    [56] Knipling, E.B., Comparison of the dye method with the thermocouple psychrometer method for measuring leaf water potentials. Plant Physiol. 40(suppl.) ⅹⅹⅹⅴ-ⅹⅹⅹⅴⅠ, 1965.
    [57] Kramer PJ. An Early Kiscussion of Cell Water Relation in Thermodynamic Terminology. Newsletter of Amer Soc Plant Physiol, 1984. 115
    [58] L.朗格,L.卡彭 E.D.舒尔策编,樊梦康等译.水分与植物生活-问题怀研究现状 [M].北京:科学出版社,1985.
    [59] Lambert, J. R., Schilfgaarde, J. Van: A method of determining the water potential of intact plants. Soil Sci. 100: 1-9, 1965.
    [60] Lang, A. R. G., Barrs, H. D., An apparatus for measuring water potentials in the xylem of intact plants. Aust. J. biol Sci.18: 487-497, 1965.
    [61] Lang, A. R. G., Psychrometric measurement of siol water potential in situ under cotton plants. Soil Sci. 106: 460-464, 1968.
    [62] Lopushinsdy, W., Klock, G., Construction details of ceramic bulb thermocouple psychrometers. Northwest Sci. Soc.Proc. 1970a.
    [63] manohar, M. S., Effict of the excision of leaf tissues on the measurement of their water potential with thermocouple psychrometer..Experientia 22:368, 1966d.
    [64] manohar, M. S., Measurement of water potential of intact plant tissues. Ⅰ. Design of a micro-thermocouple psyehrometer. J. exp. Bot. 17: 44-50, 1966a.
    [65] manohar, M. S., Measurement of water potential of intact plant tissues. Ⅱ. Factors affecting the precision of the thermocouple psychrometer technique. J. exp. Bot. 17: .51-56, 1966b.
    [66] Meidner, H., A critical study of sensor element diffusion porometers. J. exp. Bot. 21: 1060-1066, 1970.
    
    
    [67] Millar, A. A., Lang, A. R. G., Gardner, W. R., Four-terminal Peltier type thermocouple psychrometer for measuring water potential in nonisothermal systems.Agron.J.62: 705-708, 1970.
    [68] Millar. A. T. Jr., Studies on tissue water. Ⅰ. The determination of blood water by the distillation method.J.biol. Chem. 143: 65-73, 1942.
    [69] Millar. A. T. Jr., Studies on tissue water. Ⅱ. A macromodification of the distillation method for the determinarion of tissue water. J. biol.Chem.149:153-155, 1943.
    [70] Millar. B. D., Improved thermocouple psychrometer for the measurement of plant and soil water potential. Ⅰ. Thermocouple psychrometry and an improved instrument design. J. exp. Bot. 22: 875-890, 1971a.
    [71] Millar. B. D., Improved thermocouple psychrometer for the measurement of plant and soil water potential. Ⅱ. Opertation and calibration. J. exp. Bot. 22: 891-905, 1971b.
    [72] Moinat, A. D., An auto-irrigator for growing plants in the laboratory. Plant physiol. 18: 280-287, 1943.
    [73] Neumann, H. H. and Thurtell, G. W., A Peltier cooled thermocouple dewpoint hygrometer for in situ measurement of water potentials.In: Brown, R. W., Van Haveren, B. P. (eds.): Psychrometry in Water Relations Research, Utah Agrie.Exp. Sta, Logan 1973(in press).
    [74] Novero, R. P. et al, Leaf Water potential, Crop Growth Response, and microclimate of Dryland Rice Under Line Source Sprinkler Irrigation, 1985, Agricultural and Forest ,Meteorology, 35: 71~82.
    [75] O.L.郎格,L.卡彭,E.-D.舒尔策.水分与植物生活[M].北京:科学出版社,1985.
    [76] P.J.克雷默著,许旭旦等译.植物的水分关系[M].北京:科学出版社,1989.
    [77] Peck, A. J., Rabbidge, R. M., Soil water potential: direct measurement by a new technique. Science 151: 1385-1386, 1966a.
    [78] Peck, A. J., Theory of the spanner psycrometer. Ⅰ. The thermoeouple. Agr. Meteorol. 5: 433-447, 1968.
    [79] Peck, A. J., Theory of the spanner psycrometer. Ⅱ. Sample effects and equilibration. Agr. Meteorol. 6:111-124, 1969.
    [80] Post, K., Seeley, J. G., Automatic watering of greenhouse crops. Cornell Univ. Agr. Exp. Sta Bull. 793, 1943.
    [81] PS-10 Psychrometer/Hygrometer Switchhox Instruction. (?)1978, 1986, 2001 Wescor,Inc.
    [82] Rawlins, S. L.,Dalton, F. N., Psychrometric measurement of soil water potential without precise temperature control. Proc. Soil Sci. Soc. Amer.31:297-301,1967.
    
    
    [83] Rawlins, S. L., Some new methods for measuring the components of water potential. Soil Sci. 112: 8-16, 1971.
    [84] Rawlins, S. L., Systematic error in leaf water potential measurements with a thermocouple psychrometer. Science 146: 644-646, 1964.
    [85] Rawlins, S. L., Theory for thermocouple psychrometers used to measure water potential in soil and plant samples. Agr. Meteorol.3: 293-310,1966.
    [86] Read, D. W. L., Fleck, S. V., Pelton, W. L., Self-irrigating greenhouse pots.Agron. J. 54: 467-468, 1962.
    [87] Richards, L. A., Blood, H. L., Some improvements in auto-irrigator apparatus.- J. Agr. Res. 49: 115-121, 1934.
    [88] Roberts, B. R., Light as a source of error in estimates of water potential by vapor equilibration. Plant Physiol. 44: 937-938, 1969.
    [89] Roepke, R. R., Baldes, E. J., A critical study of the thermoelectric method of measuring vapor pressure. J. biol. Chem. 126: 349-360, 1938.
    [90] Roepke, R. R., The thermoelectric method of measuring vapor pressure. J. phys. Chem. 46: 359-366. 1942.
    [91] Stice, N. W., Booher, L.J.. Plastic tube irrigators with electric control. Calif. Agr. 19: 4-5, 1965.
    [92] Taylor, S. A., Measuring soil-water potential. In: Eckardt, F. E. (ed.): Metheodology of Plant Eco-Physiology. (Arid Zone Res. 25). Pp.149-157.UNESCO, Paris 1965.
    [93] Tinklin R., Note on the determination of leaf water-potential. New Phytol. 66: 85-88,1967.
    [94] V.弗里德,H.F.哈梅卡,U.布卢克斯[美]著,薛宽宏等译.物理化学[M].高等教出版社,1983.
    [95] VAN ANDEL, O. M., Determination of the osmotic value of exudation sap by means of the thermoelectric method of Baldes and Johnson. Proc. Kon. nederl. Akad.Wetensch. 55: 40-48, 1952.
    [96] VAN BAVEL, C. H. M., NAUSER, V. I., Soil moisture measurement with the neutron method. US Dept. Agr. Res. Serv. 41/70: 1-39, 1963.
    [97] VAN BAVEL, C. H. M., NIELSON, D. R., DAVIDSON, J. M., Calibration and characteristics of two neutron moisture probes. Proc.Soil Sci.Soc.Amer.25: 329-334, 1961.
    [98] VAN BAVEL, C. H. M., UNDERWOOD, D. N., SWANSON, R. W. A., Soil moisture measurement by neutron moderation, Soil. Sci. 82: 29-41, 1956.
    [99] VAN BAVEL, C. H. M., Measurement of soil moisture content by the neutron method: US Dept.Agr.41/24: 1-29, 1958.
    
    
    [100] Virgin, H. I., Anew method for the determination of the turgor of plant tissues. Physiol. Plant. 8: 954-962, 1955.
    [101] Waister, P. D., An improved thermocouple for assessing leaf water potential by vapour pressure measurement. Israel J.Bot.12: 192-196,1963b.
    [102] Waister, P. D., Precision of thermocouple psychrometers for measuring leaf water potential.Nature 205: 922-923, 1965.
    [103] 白瑞琴等.不同砧木苹果树水势日变化的研究[J].内蒙古农业大学学报,2000,21(1):63~68.
    [104] 柴宝峰等.刺槐和海红水势与环境因子的关系[J].山西大学学报,1996,19(2):223~227.
    [105] 柴宝峰等.晋西人工防护林乡土树种抗旱性研究[J].水土保持学报,2000,14(1):28~32.
    [106] 陈裕泉,李光著.现代传感器技术[M].浙江大学出版社,1995.
    [107] 崔远来.非充分灌溉优化配水技术研究综述[J],灌溉排水,2000,2(1):66~70.
    [108] 邓向前.几种作物叶片水势的初步研[J].华南农业大学学报,1991,12(1):62~67.
    [109] 樊梦康.植物水分关系的研究进展[J].植物生理生化进展,1983,(4):32~42.
    [110] 方锡涛.水势和热力学[J].植物生理学通讯,1990,(5):63~65.
    [111] 郭连生,田有亮.八种针阔叶幼树清晨叶水势与土壤含水量的关系及其抗旱性研究[J].生态学杂志,1992,11(2):4~7.
    [112] 郭连生,田有亮.对几种针阔叶树木耐旱性生理指标的研究[J].林业科学,1989,25(5):389~394.
    [113] 郭庆荣,李玉山.不同土水势处理春玉米生长发育及产量形成的影响[J].土壤通报,1995,26(2):66~69.
    [114] 郭维强,蒲如平,何英.浅析气源干燥处理的方法及应用[J].真空,2002,4:46-48.
    [115] 侯崇升.利用单片机实现的空气干燥器控制仪[J].传感器技术,2002,21(8):56-58.
    [116] 黄贺生.干燥器流程自动控制的设计[J].压缩机技术,1991,2:13-16.
    [117] 黄洪峰.土壤、植物、大气相互作用原理及模拟研究[M].北京:气象出版社,1997.
    [118] 黄明斌,董翠云.根径向水流导度测定技术的改进[J].植物学报,2000,42(9):927~930.
    [119] 黄明斌,邵明安.不同有效土壤水势下植物叶水势与蒸腾速率的关系[J].水利学报,1996,(3):1~6.
    [120] 黄兴法,李光永,曾德超.调亏灌溉-果园节水管理新技术[J].节水灌溉,2001,(2):12~14.
    [121] 霍裕平,郑久仁著.非平衡态统计理论[M].北京:科学出版社,1987.
    [122] 机电一体化技术应用实例编委会编.机电一体化技术应用实例[M].机械工业出版社,1994.
    
    
    [123] 江西省科学技术情报研究所《实用电工手册》编写组编.实用电工手册[M].江西人民出版社,1986.
    [124] 蒋汉文主编,热力学[M].高等教育出版社,1994.
    [125] 荆继红,韩双平.零通量方法原位测定给水度[J].地球学报,1998,19(4):423~428.
    [126] 荆家海.利用热电偶计测量水势[J].植物生理学通讯,1986,(1):51~53.
    [127] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994.
    [128] 雷延武,曾德超.高效节水农业研究[M].北京:科学出版社,1993.
    [129] 黎庆淮等.不同土水势对棉花影响[J].西南农业大学学报增刊,1989,(6):85~88.
    [130] 李大中,刘淑平,李永甫.火电厂空气干燥器PLC控制系统的设计与实现[J].热能动力工程,2000,15(86):140-141.
    [131] 李广弟.单片机基础[M].北京:北京航空航天大学出版社,1994.
    [132] 李合生.水势与植物[J].植物生理学通讯,1981,(3):53~60.
    [133] 李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究[J].生态学报,2000,20(3):418~422.
    [134] 李吉跃,太行山区主要造林树种耐旱特性的研究[J].北京林业大学学报,1991,13(增2):230~239.
    [135] 李军.检测技术与仪表[M].北京:轻工业出版社,1989.
    [136] 李庆梅,徐化成.油松P-V曲线主要水分参数随季节和种源的变化[J].植物生态与地植物学学报,1992,16(4):326~333.
    [137] 李正荣,徐详明.PLC在仪表空气干燥器程序控制中的应用[J].大氮肥,2000,23(6):420-421.
    [138] 梁保峰,邓爱武,边立秀等.PLC在空气干燥器控制系统中的应用[J].1997,3:19-22.
    [139] 林虔编.新编实用电工[M].中国水利水电出版社.1994.
    [140] 刘思春等.磁环境条件下土壤-植物连续系统水势的变化[J].土壤通讯,1997,28(5):207~215.
    [141] 刘思春等.非饱和土壤水分运动与热力学函数关系初探[J].土壤学报,2000,37(3):388~395.
    [142] 刘思春等.温度对非饱和土壤水分运动的影响[J].西北农业大学学报,2000,28(4):28~33.
    [143] 刘萱等.田间小麦叶片气孔对环境因子响应的模拟模型及叶片水分平衡的计算[J].植物生理学报,1988,14(2):136~144.
    [144] 柳建国,柯建国,陈长青.作物水势时空分布与其耐旱性[J].安徽农业技术师范学院学报,1999,13(1):63~66.
    [145] 龙华.植物的水势[J].生物学通报,1998,33(3):18~19,
    [146] 卢振民.作物与水分关系研究[M].北京:中国科学技术出版社,1992.
    
    
    [147] 孟祥增,王军,张延惠.智能水势测定仪[J].仪表技术与传感器,1996,(8):29~31.
    [148] 牟瑞干编.电工基础[M].海洋出版社,1987.
    [149] 阮成江,李代琼.半干旱黄土丘陵区沙豆沙棘叶水势及其影响因子[J].陕西林业科技,2000,(1):1~4.
    [150] 沙占祥著.照相机的构造与使用[M].长沙出版社,1985.
    [151] 山仑 黄占斌 张岁岐著.节水农业[M].北京:科学出版社,1986.
    [152] 山仑 黄占斌 张岁岐著.节水农业[M].广州:暨南大学出版社;北京:清华大学出版社,2000.
    [153] 上海电器科学研究所《中小型电机设计手册》编写组编.中小型电机设计手册[M].机械工业出版社,1994.
    [154] 沈蘩宜,刘覃.植物叶水势与蒸腾关系的理论探讨[J].植物生理学通讯,1991,27(3):227~229.
    [155] 孙春华.复合式空气干燥器在压缩空气后处理中的成功应用[J].节能技术,2001,4:41—42.
    [156] 孙谷畴.叶片水势降低对荔枝光合作用的影响[J].植物学报,1988,(1):99~102.
    [157] 孙魁明,张海彤编译.Mathematica工具软件大全[M].北京:中国铁道出版社,1994.
    [158] 汤瑞炽,王竹溪.离休活细胞水分关系的热力学论述[J].植物生理学通讯,1985,(3):42~46(原文载波J Phys Chem,1941.(45):443~453).
    [159] 滕元文.外界因子对杏叶水势调控的研究[J].植物学报,1991,33(1):69~77.
    [160] 田口玄一[日]著.测量技术的实验设计法[M].北京:机械工业出版社,1988.
    [161] 王邦锡.不同植物水分关系指标的主分量分析[J].植物生理学通讯,1986,(3):13~16.
    [162] 王剑平,王俊,应义斌等.农产品薄层干燥实验微机控制及数据采集系统[J].浙江大学学报,1998,24(2):148-152.
    [163] 王军,孟祥增.热电偶水势测定仪[J].传感器技术,1997,16(5):41~45.
    [164] 王俊,杜尧舜,王剑平等.梨的各项机械特性差异[J].农业机械学报,2000,31(6):58-60.
    [165] 王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性[J].植物生态学报,1996,20(6):486~501.
    [166] 王全九,王文焰.土壤水分运移热力学特性的研究[J].水土保持学报,1994,8(1):56~62.
    [167] 王小彬,蔡典雄,高绪科.作物的缺水反应及其抗旱生理适应性的调节[J].土壤,1997,(1):6~17.
    [168] 王新元 赵昌盛 陈宏恩编.节水型农业与节水技术的研究[M].气象出版社,1993.
    [169] 王耀德,冷增祥编.电气传动控制系统[M].东南大学出版社,1990.
    [170] 王也绩等.杨树苗木的生长节律和水分状况的昼夜变化[J].植物生理学通讯,1989,(3):39~41.
    
    
    [171] 王忠,顾蕴洁,杨龙寿.从化学势的组成引出水势概念[J].植物生理学通讯,2000,36(1):53~56.
    [172] 席章营,吴克宁等.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报,2000,34(1):7~12.
    [173] 徐锡申,张万箱等.使用物态方程理论导引[M].北京:科学出版社,1986.
    [174] 徐祝龄,王汶,衣纯真.作物水分胁迫监测的国内外研究进展[J],中国农业气象,1995,16(4):41~47.
    [175] 徐祖耀著.相变原理[M].北京:科学出版社,1988
    [176] 杨建昌等.水稻旱秧大田期需水特性与节水灌溉指标研究[J].中国农业科学,2000,33(2):1~9.
    [177] 杨剑平.植物生理学中水势概念教学方法探讨[J].北京农学院学报,1997,12(1):114~115.
    [178] 杨文斌,杨茂仁.蒸腾速率、阻力与叶内外水势和光强关系的研究[J].内蒙古林业科技,1996,(3、4);53~57.
    [179] 杨晓光,于沪宁.冬小麦、夏玉米水分胁迫监测系统[J].生态农业研究,2000,8(1):27~29.
    [180] 杨兴瑶编.电气传动及应用[M].化学工业出版社,1994.
    [181] 叶军等.FCH水培樱桃番茄生长及有关生理特性研究[J].西北农业学报,1998,7(4):72~74.
    [182] 曾德超,彼得·杰里.果树调亏灌溉密植节水增产技术的研究与开发[M].北京:北京农业大学出版社,1994.
    [183] 张府娥,王斌端.不同果树(品种)凋萎湿度的研究[J].北京林业大学学报,2000,22(1):95~98.
    [184] 张富仓,李志军,康绍忠.用热电偶湿度计测定土壤水势的方法研究[J].西北农林科技大学学报(自然科学版),2001,29(1):55~58.
    [185] 张广车,黄俊钦,罗先和.气、湿敏传感器动态校准和动态性能改进研究[J].仪器仪表学报,2002,23(2):118~120.
    [186] 张建民等著.机电一体化系统设计[M].北京理工大学出版社,1995.
    [187] 张君常.运用能量概念研究土壤及生物科学是今后发展必然趋势[J].陕西农业科学,1980,(6):12~16.
    [188] 张俊哲等著.无损检测技术及具应用[M].北京:科学出版社,1993.
    [189] 张力君,曹自成.测定植物组织水势的小液流滴速增量法[J].植物生理学通讯,1991,27(5):379~380.
    [190] 张力君,曹自成,测定植物组织水势的小液流滴速增量法[J].植物生理学通讯,1991,27(5):379~380.
    [191] 张立军,封壮.LOGO!模块在空气干燥器控制系统中的应用[J].石油化工自动化,2001,3:43-45.
    
    
    [192] 张水成.对“植物组织水势的测定”实验的改进意见[J].驻马店师专学报(自然科学版),1991,6(2):73~74.
    [193] 张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报,2000,24(3):280~283.
    [194] 张喜英.叶水势反映冬小麦和夏玉米水分亏缺程度的试验[J],植物生理学通讯,1993,33(4):249~253.
    [195] 张一平等.温度对土壤水势影响的研究[J].土壤学报,1990,27(4):454~458.
    [196] 赵元杰,孙永强,张鹤年.新疆策勒县棉花合理蹲苗期试验研究[J].新疆农业科学,2000,(1):9~11.
    [197] 钟伯亮,倪树槐,卢文翔等著.照相机原理选购使用维修[M].电子工业出版社,1992.
    [198] 朱祖祥.土壤水分能量概念及其意义[J].土壤学进展,1979,(1):1~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700