赤泥脱硫剂净化低浓度硫化氢废气的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究了利用氧化铝厂赤泥制备脱硫剂,净化低浓度硫化氢(H_2S)废气。该脱硫剂净化效率高,制备工艺简单,能耗少,而且再生方法简单易行,并且可以回收单质硫,具有一定的经济效益。
     本研究对赤泥制备脱硫剂,净化低浓度硫化氢(H_2S)废气进行了较全面的实验室研究和机理研究,主要成果包括:(1)以氧化铝厂赤泥为原料,筛选添加剂,并优化各制备工艺参数,制得性能最佳的脱硫剂,制备的最佳配方为:赤泥占80%、分散剂SM-9占10%、活性助剂RC1和ROH均占5%。最佳制备工艺为:以赤泥附液作润滑剂,挤条机挤条成型,焙烧温度为350℃,焙烧时间为4小时。(2)赤泥脱硫剂性能指标如下:比表面积为206.96m~/g,总孔容为0.31cm~3/g,平均孔径为37A;正压强度为7N/cm~2,侧压强度为33N/cm~2。(3)H_2S的入口浓度、空间速度、脱硫温度、原料气中的氧含量及相对湿度、赤泥脱硫剂的含水量和粒径大小等因素对脱硫性能有重要影响,高浓度H_2S、低空速、常温、原料气被水饱和、氧含量>0.5%、小粒径且含水量在10~15%之间的脱硫剂有利于提高脱硫性能。(4)由脱硫过程动力学研究表明,赤泥脱硫剂脱硫反应为一级不可逆反应,常温且有水分条件下,极限脱硫精度可达0.477×10~(-3)~6.36X10~(-3)ppm,脱硫速度正比于固相氧化铁的含量。(5)再生时,空气流量0.2~0.7l/min,再生温度控制在65~90℃之间时,再生效果较好,且又不至生成SO_2,减少了大气污染。(6)赤泥脱硫剂可将黄磷尾气中H_2S浓度脱除至2ppm以下,多次吸附后硫容逐渐下降,累积硫容可达42.5%。
     以上研究成果,不但为含硫废气提供了较好的净化技术,而且也为日益严峻的工业固体废物的处理开辟了一条新途径。
In this study, the adsorbents prepared by red mud from aluminum industry were conducted to purify the waste gas contained hydrogen sulfide with the low concentration. The desulfurization process was featured with high purification efficiency, simple preparation method, and low energy consumption, ease to regenerate and recover the elementary sulfur. Also, the available adsorbents were suited to control H2S pollution.
    In this paper, the completed experimental investigation on the preparation of red mud adsorbents and the purification of the waste gas contained low concentration hydrogen sulfide were studied, and the research results achieved included: ( 1) The main component of the adsorbents were red mud from aluminum industrial waste, which contained 80% red mud, the dispersion agent-SM-9 at 10% of the main component weight and two of activated agents-RC1 and ROH both at 5% of the main component weight. The red mud wastewater from aluminum industry was used as the wetting agent for the mixture. Granules were made of the mixture by extruding that were subjected to thermal treatment under the appropriate temperature of 350 for 4 hour as the right calcification time, then the adsorbents were prepared. (2 ) The character index of red mud adsorbents were as following: the surface areas of 206.96m2/g, the total pore volume of 0.31 cm3/g, the average pore diameter of 3 7A, the perpendicular intensity of 7 N/cm2, and the side
    intensity of 3 3 N/cm2 . (3) From the experimental results, it could be concluded that a significant effect was posed by the original concentration of hydrogen sulfide, volume velocity, desulphuration temperature, oxygen content and relative humidity of original gas, the diameter and water content of adsorbent. The use of high concentration H2S, low volume velocity, normal temperature, original gas contained more than o.5% oxygen and completely saturated by water, and smaller adsorbents with 10~ 15% water content was advantageous to the improvement of purification efficiency. (4) Through the study of desulphuration dynamics, the desulphuration reaction was one order and irreversible reaction. Under the conditions of normal temperature, at the presence of water, the limited desulphurated concentration could be obtained 0.477 10-3~6.36 10-3ppm, and the desulphuration velocity was directly proportional to the content of iron sesquioxide in the solid phase. (5) In the process of regeneration, the excellent re
    generation efficiency was obtained by adjusting the air flow between 0.2
    1/min and 0.7 1/min, the regeneration temperature at the range of 65 and 90 , then sulfur
    
    
    
    dioxide(SO2) could not be produced, which was not emerged air pollution. ( 6 ) The prepared red mud adsorbents were further applied in purifying the yellow phosphorus tail gas, and the H2S concentration in the tail gas was decreased to less than 2ppm. After the several alternative adsorption and desulphuration, the total H2S adsorption capacity of red mud adsorbents was achieved to 42.5 % .
    Undoubtedly, the achievements above were critical to purify the waste gas contained low concentration hydrogen sulfide , but also this technology was developed in order to comprehensively apply the industrial solid waste, which could attain the goal of environmental protection.
引文
[1] 《三废治理与利用》编委会,三废治理与利用.北京:化学工业出版社,1995
    [2] 朱世勇,环境与工业氧化净化技术.北京:化学工业出版社、环境科学与工程出版中,2001
    [3] 郝吉明,马广大,大气污染控制工程.北京:高等教育出版社,2002
    [4] 王国兴,黄新伟等,活性炭精脱硫剂的开发及应用,洁净煤技术,1997,3(3):25-28
    [5] 叶敬东,王国兴等,EAC-2型、EAC-3型活性炭精脱硫剂的研究,天然气化工,1998,23(2):17~21
    [6] Przepiorski J, Yoshida S, Oya A. Structure of K_2CO_3-loaded activated carbon fiber and its deosorization ability against H_2S gas. Carbon, 1999, 37:1881-1890
    [7] 谭小耀.浸渍活性炭脱除过程的研究:[博士论文].大连:中科院大连化物所,1995
    [8] Turk A, Mahmood K, Mozaffari J. Activated carbon systems for removal of light gases. Ann NY Acad Science, 1992, 661:221~227
    [9] Bandosz TJ, Le Q. Evaluation of surface properties of exhausted carbon used as H_2S adsorbents in sewage treatment plants. Carbon, 1998, 36:39~44
    [10] Turk A, Mahmood K, Mozaffari J. Activated carbon for air purification in New York City's sewage treatment plants. Water Sci Technol, 1993, 27:121~126
    [11] M.P.Cal, B.W. Strickler, A.A.Lizzio, S.K.Gangwal. High temperature hydrogen sulfide adsorption on activated carbon. Journal of Carbon, 2000(38):1767-1774.
    [12] Junji MASUDA, Joji FUKUYAMA, Satoshi FUJII. Influence of concurrent substances on removal of hydrogen sulfide by activated carbon. Chemosphere, 1999, 39(10): 1611~1616
    [13] K.S.W. Sing, D.H.Everett, R.A.W. Haul, L.Moscou, R.A.Pierotti, J.Rouquerol, T. Siemieniewska. Pure Appl. Chem. 1985, 57:603
    [14] 侯相林等,硫化氢的高温脱除,煤炭转化,1995,18(3):70-75
    [15] 侯相林等,氧化铁细粒子用于高温脱除硫化氢的研究,环境科学,1996,17(4):57-60
    [16] 李彦旭等,氧化铁脱硫剂高温煤气脱硫行为的研究,燃料化学,1998,26(4):130-134
    [17] Mcinnes R, Royen R V. Desulfuricing flue gases. Chemical Engineering, 1990, 97(9): 124-127
    [18] A M.Akvarez, S. G. Marchetti, M.V. Cagnoli, J. F. Bengoa, R. C. Mercader,
    
    A.A. Yeramian. Study of the Fe/zeolite-L system Part 2: CO and H_2 chemisorption behavior. Applied Surface Science, 2000, 165:100~108
    [19] 施亚钧等,气体脱硫.上海:上海科学技术出版社,1986
    [20] 列伊捷斯,污染气体的净化,.北京:化学工业出版社,1987
    [21] F.C.Riesenfeld, A.L.Kohl. Gas purification, 1974, 342~362
    [22] A.L.科耳,F.C.里森费尔德.,气体净化.北京:化学工业出版社,1987
    [23] 太原工业大学煤化工研究所.TG氧化铁常(低)温精脱硫技术的发展及应用,工业催化,1994,1:44~51
    [24] 胡典明,王国兴等,EF-2型特种氧化铁常温精脱硫剂的研制,天然气化工,1999,24(2):31~35
    [25] Sibel Ozdemir, Tevifik Bardakci. Hydrogen sulfide removal from coal gas by zinc titanate sorbent. Separation Purification Technology, 1999, 16:225~234
    [26] Maurizio Casarin, Chiara Maccato, Andrea Vittadini. An LCAO-LDF study of the chemisorption of H_2O and H_2S on ZnO (0001) and ZnO (1010). Surface Science, 1997, 377-379:587~591
    [27] 王恩过,张栓兵,郭汉贤,T305脱硫剂脱除H_2S反应宏观动力学行为,工业催化,1993,(4):21~28
    [28] 马坚,卞文章,孙小玲,氧化锌脱硫剂的研制,精细石油化工文摘,1999,13(2):68~70
    [29] 郑文华译,在高温下使用MnO/i-Al_2O3脱除燃气中的硫化氢,国外炼焦化学,1996,(2):108-113
    [30] 万晨,沙兴中等,铜锰高温煤气脱硫剂的研究 Ⅰ.脱硫工艺条件对脱硫剂性能的影响,燃料化学学报,1998,26(5):400~405
    [31] 吴根等,微生物脱硫技术的现状及以发展前景,环境保护,2001,1:21-22
    [32] 张家忠.低浓度H_2S液相催化氧化研究:[工程硕士学位论文].北京:清华大学环境科学与工程系,2002
    [33] 马文,王新强,倪炳华,微波催化法分解硫化氢的研究,石油与天然气化工,1997,26(1):37-40
    [34] 吴政,崔成民,强碱性离子交换纤维对H_2S-CO_2混合气体吸附分离及分离的研究,石油化工,1999,28(12):810-812
    [35] 王睿,石冈,工业气体中H_2S的脱除方法,天然气工业,1999,19(3):80-84
    [36] 何运昭,硫化氢尾气的净化,环境导报,1997,1:16-20
    [37] R.P.H.Gasset[美国]著,金属的化学吸附和催化作用导论,赵壁英等译,北京:北京大学出版社,1991
    [38] 李文杰,董翠英,化学吸收—湿式催化氧化法对硫化氢的治理,石油化工环境保护,1998,2:42-44
    
    
    [39] 王学谦.硫化氢废气的燃烧这—吸收法净化研究:[硕士学位论文].昆明:昆明理工大学环境科学与工程学院,2001
    [40] 尹中林,中国拜耳法氧化铝生产技术的发展方向,轻金属,2000,4:25-28
    [41] 励衡隆,西澳赤泥干堆技术开发和实践,有色金属(冶炼部分),1993,4:42-45.
    [42] 杨绍文等,氧化铝生产赤泥的综合利用现状及进展,矿产保护与利用,1999,6:46-49
    [43] 王立堂,山铝赤泥不排放的探讨.轻金属.1997,(6):17-19
    [44] 何波,关于回收赤泥中铁的研究现状,轻金属,1996,12:23-26
    [45] Maneesh Singh, S.N.Upadhayay, P.M.Prasad. Preparation of iron rich cements using red mud. Cement and Concrete Research, 1997, 27(7): 1037~1046
    [46] Vincenzo M. Sglavo, Renzo Campostrimi, et al. Bauxite 'red mud' in the ceramic industry. Part 1: thermal behaviour. Journal of European Ceramic Society, 2000, 20:235~244
    [47] Vincenzo M. Sglavo, Stefano Maurina, et al. Bauxite 'red mud' in the ceramic industry. Part 2: production of clay-based ceramics. Journal of European Ceramic Society, 2000, 20:245-252
    [48] Bosnijatskij G.P, et al. Method of Producing the Sorbent for Hydrogen Sulfide.Russ.RU 2,088,329 (Cl.B01J20/06), 27 AUG
    [49] H.Soner Altundogan, Sema Altundogan, Fikret Tueman, Memnune Bildik. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management, 2000, 20:761~767
    [50] Vinod K. Gupta, Monika Gupta, Saurabh Sharma. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Research, 2000, 35(5): 1125~1134
    [51] G.Akay, B.Keskinler, A. Cakicf, U. Danis. Phosphate removal from water by red mud using crossflow microfilteration. Water Research, 1997, 32(3): 717~726
    [52] Edward C. Thornton, James E. Amonette. Hydrogen sulfide gas treatment of Cr(Ⅵ)-contaminater sediment samples from a plating-waste disposal site-implications for in-situ remediation. Environmental Science Technology, 1999, 33:4096~4101
    [53] 朱炳辰,化学反应工程.北京:化学工业出版社,2001
    [54] Smith J M. Chemical Engineering Kinetics. New York:McGraw-Hill, 3rd., Chapter 14, 1981
    [55] Levenspiel O. Chemical Reaction Engineering. New York: John Wiley and Sons, 2nd ed. Chapter 12, 1972
    
    
    [56] Carberry J J. Chemical and Catalytic Reaction Engineering. New York: McGraw-Hill, Chapter 7, 1976
    [57] Ishida. M. and Wen C Y. Comparison of kinetic and diffusional model for solid-gas reaction. AICHE, J., 1968, 14(2): 311~317
    [58] Szekely J., Evans J W. and Sohn H. Y Gas-Solid Reaction.Academic Press, 1976;中译本,胡道和译,气一固反应.北京:中国建筑工业出版社,1986.
    [59] 鞭岩、森山昭.冶金反应工程学.东京:养贤堂,1972;中译本,蔡志鹏,谢裕生译.冶金反应工程学.北京:科学出版社,1981
    [60] 许贺卿,气一固反应动力学.北京:原子能出版社,1993
    [61] 葛庆仁.气一固反应动力学.北京:原子能出版社,1991
    [62] Carberry J J. A Boundary-layer model of fluid-partical mass transfer in fixed beds. AICHE J., 1960.6: 460~463
    [63] Szekeley J and Evans J W. A structural model for gas-solid reactions. Chem. Eng. Sci., 1970, 25:1091~1107
    [64] Ramachandran P A and Smith J M. A single-pore model for gas-solid noncatalytic reactions. AICHE J, 1977, 23:362~375
    [65] Park J Y and Levenspiel O. The cracking core model for the reaction of solid particles. Chem. Eng. Sci., 1975, 30:1207~1214
    [66] 赵九生等,催化剂生产原理.北京:科学出版社,1986
    [67] 杨世杰等,平果铝厂赤泥的物相分析,中南工业大学学报,1996,5:569~572
    [68] 王尚弟,孙俊全,催化剂工程导论.北京:化学工业出版社,2001
    [69] 迪特尼奥尔斯科戈[苏],化工基本过程与设备设计教科书.北京:化学工业出版社,1988
    [70] M.Jaroniee[波兰], R.Madey[美国],非均匀固体上的物理吸附.北京:化学工业出版社,1997
    [71] Tsuchiai H, Ishzuka T, Nakamura H et al. Study of flue gas desulfurization adsorbent from coal fly ash: Effect of the adorbent on the acivity. Ind. Eng. Chem. Res., 1996, 35:2322-2326
    [72] B.A.J. Latif and J. W. Smith, Oxidation of hydrogen sulfide to elemental sulfur on an activated carbon bed in the presence of iron (Ⅲ) chloride aerosol, Powder Technology, 1980, 27:143~148
    [73] 天津大学化工技术基础实验教研室编,化工基础实验技术.天津:天津大学出版社,1989
    [74] 高正中,实用催化.北京:化学工业出版社,1996
    [75] 郑尚志,闻望,铁基脱硫剂的化学形态,同济大学学报,1995.23(6):677~682
    [76] J. Masuda, J. Fukuyama, and S. Fujii, Effects of temperature and humidity on
    
    the removal of hydrogen sulfide by activated carbon, J. Japan Soc. Atmos. Environ, 1998, 33(1): 10~15
    [77] A.N.Kaliva, J.W. Smith, Oxidation of low concentrations of hydrogen sulfide by air on a fixed activated carbon bed, The Canadian J. Of Chemical Engineering, 1983, 61:208~212
    [78] Davis W T, Keener T C. Chemical kinetical studies in dry sorbents. Final report, DOE/FC/10/84-1. 1982
    [79] Blythe I, Xu F and Ye Z. Useful experimental technique for the study of heterogeneous reactions. Chem. Eng. Technol., 1992, 15:151-156
    [80] Nadezhda L. Filippova. Adsorption isotherms on planar surface under flow conditions by ellipsometry. Chemical Engineering Science, 1999, 54:35~40
    [81] Jietare Lee, Dong Hyun Kim. High-order approximations for noncyclic and cyclic adsorption in a particle. Chemical Engineering Science, 1997, 53(6): 1209-1221
    [82] 张栓兵,郭汉贤等,T305型脱硫剂脱除H_2S的颗粒的宏观动力学研究:(Ⅰ) 脱硫动力学特征,化学反应工程与工艺,1992,9(3):274~280
    [83] 王过,张栓兵,郭汉贤,T305型脱硫剂脱除H_2S的颗粒的宏观动力学研究:(Ⅱ) 脱硫动力学模型及颗粒曲节因子,化学反应工程与工艺,1995,11(4):348~353
    [84] 郭汉贤,刘明清,干法氧化铁脱硫的动力学特征:(Ⅰ) 过程描述及SLP型吸附性能,太原工学院学报,1983,3(3):105~112
    [85] 郭汉贤,刘明清,干法氧化铁脱硫的动力学特征:(Ⅱ)本征动力学及宏观动力学,太原工学院学报,1983,3(3):113~128
    [86] 刘来红,王世宏,恶臭物质及其净化利用,轻工环保,2000,2:36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700