溶胶—凝胶法制备钛酸铝薄膜的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先创新性地用硝酸铝(Al(NO_3)_3·9H_2O)替代铝醇盐作为铝源,钛酸丁酯作为钛源,采用水解溶胶-凝胶法(HSG)制备钛酸铝薄膜。在此基础上,以无水三氯化铝和四氯化钛为前驱体原料,乙醇为氧供体,在国际上首次采用非水解溶胶-凝胶法(NHSG)制备钛酸铝薄膜。同时本文还首次对NHSG法制备的钛酸铝进行了稳定化掺杂改性。运用偏光显微镜、DTA-TG、XRD、Zeta电位计、FE-SEM等测试手段优化了HSG法和NHSG法制备钛酸铝镀膜溶胶的工艺、不同基片的镀膜工艺以及薄膜的热处理工艺,并对两种方法所制钛酸铝薄膜的性能进行了初步研究;借助FT-IR对比研究了HSG法和NHSG法制备钛酸铝的溶胶-凝胶转变过程。结果表明:
     HSG法制备钛酸铝薄膜时,制备镀膜溶胶的最优工艺参数如下:前驱体浓度为0.6mol/L、乙酰丙酮与钛酸丁酯的摩尔比为1:1、pH值为1、陈化时间为72h;优化的镀膜工艺为:浸渍提拉速度为1mm/s、3次镀膜、对多孔的莫来石基片和表面粗糙的碳化硅基片每次浸渍时间分别为30s和10s;在HSG法制得的钛酸铝凝胶中,铝多以Al~(3+)的形式富集于Ti-O-Ti凝胶网络之间,钛酸铝薄膜的合成温度为1350℃;制得的薄膜具有较好的抗铝熔体侵蚀性能和良好的抗硝酸钠熔体腐蚀性能。
     NHSG法制备钛酸铝薄膜时,优选AGSE作为溶剂,制备镀膜溶胶的最优工艺参数如下:前驱体浓度为0.6mol/L、四丁基溴化铵用量为0.5g/100ml溶胶、陈化温度为110℃、陈化时间为8h;在NHSG法制得的钛酸铝凝胶中形成了Al-O-Ti键合,钛酸铝薄膜的合成温度为750℃;所制的薄膜具有较好的抗硝酸钠熔体腐蚀性能,热处理温度升至1350℃后,薄膜的抗硝酸钠熔体腐蚀性能较750℃时有明显提高。
     此外本文还运用XRD、FT-IR及热膨胀仪等测试手段对NHSG法制备的钛酸铝进行了稳定化掺杂改性的初步研究,结果表明:以乙醇铁、乙醇镁或醋酸镁为稳定掺杂剂时,铁、镁离子能在1050℃低温下进入钛酸铝的晶格:镁掺杂时,镁稳定剂须在铝、钛前驱体发生缩聚反应之后引入;乙醇铁、乙醇镁和两者复合掺杂后样品平均热膨胀系数(20~1000℃)由掺杂前的8.779×10~(-6)/℃分别降至0.578×10~(-6)/℃、0.502×10~(-6)/℃和-0.140×10~(-6)/℃,为NHSG法所制钛酸铝薄膜的改性打下了坚实的基础。
Aluminum titanate film has been prepared by hydrolytic sol-gel method (HSG) creatively using aluminum nitrate to substitute for aluminium alkoxide as aluminum source, tetrabutyl titanate as titanium source. Based on this, aluminum titanate film has also been prepared by nonhydrolytic sol-gel method (NHSG) for the first time internationally using anhydrous aluminum chloride and titanium tetrachloride as precursors, ethanol as oxygen donor. Meanwhile, the aluminum titanate prepared via nonhydrolytic sol-gel route has firstly been stabilized by doping modification. The preparation process of aluminum titanate coating sol, coating technology of different substrates and heat treatment process of film has been optimized by polarizing microscope, DTA-TG, XRD, Zeta potentiometer, FE-SEM and so on. The performance of aluminum titanate film prepared by above two methods has been preliminarily studied. The sol-gel transition process of aluminum titanate prepared by the two methods has also been comparatively researched by FT-IR. The study shows the following results.
     When aluminum titanate film is prepared by HSG method, the optimum procedure parameters are as follows: the precursors concentration is 0.6mol/L, the molar ratio of acetylacetone to butyl titanate equals to 1 : 1, the pH value and aging time are 1 and 72h, respectively. The optimal coating parameters are as follows: vertical sliding velocity is 1mm/s, coating for three times, the dipping time for porous mullite substrate and coarse silicon carbide substrate are 30s and 10s separately. In the aluminum titanate gel prepared by HSG method, the aluminum is located among the Ti-O-Ti gel net in the form of Al~(3+), which leads to the synthesis temperature of aluminum titanate is as high as 1350℃. The film has a good performance of antierosion to aluminum melt and sodium nitrate melt.
     AGSE is the optimal solvent when the aluminum titanate film is prepared by NHSG method. The optimum procedure parameters are as follows: the precursors concentration equals to 0.6mol/L, the dosage of tetrabutyl ammonium bromide is 0.5g/100ml sol, the aging temperature and the aging time are 110℃and 8h, respectively. The Al-O-Ti bond is formed in the aluminum titanate gel prepared by NHSG method which results in the synthesis temperature of aluminum titanate film decrease to 750℃. The film has a good performance of anticorrosion to sodium nitrate melt and the performance is improved obviously when the heat treat temperature rise to 1350℃.
     In addition, the stabilization doping modification to aluminum titanate prepared by NHSG method has also been preliminarily studied by XRD, FT-IR and thermal expansion instrument. The results show that magnesian ion and iron ion can be dopped into the lattice of aluminum titanate at a low temperature of 1050℃when magnesium ethoxide, iron ethoxide or magnesium acetate was used as dopant. Magnesium dopants should be added after the polycondensation of aluminum and titanium precursors. The average thermal expansion coefficients of samples(20℃to 1000℃) decrease from 8.779×10~(-6)/℃before modification to 0.578×10~(-6)/℃, 0.502×10~(-6)/℃and -0.140×10~(-6)/℃separately when using iron ethoxide, magnesium ethoxide and their compound as dopants.
引文
[1]Thomas,H.A.,Stevens,R.Aluminum Titanate:A Literature Review[J].Br.Ceram.Trans.1989(6):144-151.
    [2]Tawei,S.B.,Nancy,R.B.,Jesse,J.B.Sol-Gel β-Aluminum Titanate Thin Flim Coating[P].US Patents.US005407479A.1995-04-18.
    [3]Stefan,H.,Stefan,T.N.,Masahiro,Y.Structural models for inter-growth structures in the phase system Al_2O_3-TiO_2[J].J.Solid state Chemistry.2005(178):2919-2928.
    [4]滕祥红,李贵佳.钛酸铝陶瓷的研究现状及产业化发展趋势.陶瓷.2002(2):10-12.
    [5]靳喜海,梁波,陈玉茹.钛酸铝陶瓷.中国陶瓷.1997(6):33-36.
    [6]Joseph,J.A.,Knocville,T.Aluminum Titanate Crucible for Molten Uranium[P].US Patents.US3890140.1975-06-17.
    [7]Kato,E.,Daimon,K.,Takahashi.Decomposition temperature of Al_2TiO_5[J].J.Am.Ceramic Soc.1980(6):355-361.
    [8]方青,张联盟,沈强.MgTi_2O_5对Al_2TiO_5的合成、分解及烧结的影响.武汉理工大学学报.1998(24):44-48.
    [9]刘智恩,赵庆敏,袁建君.添加剂对热压钛酸铝陶瓷性能与结构的影响.无机材料学报.1995(4):433-438.
    [10]Tilloca,G.Thermal stabilization of aluminium titanate an properties of aluminum titanate solid solutions[J].Journalo Materials Science.1991(26):2809-2814.
    [11]Thomas,H.A.,Stevens,R.Aluminum Titanate:A Literature Review[J].Br Ceram.Trans.1989(88):229--233.
    [12]江伟辉.一种改性钛酸铝材料的制备方法.中国专利:200610005315.0,2006-01-12,
    [13]Nguyen,T.,Brown,J.J.High Temperature Alkli Corrosion of Dense SiC and Si_3N_4Coated with CMZP and Mg-Doeped Al_2TiO_5 in Coal Gas.Virginia Polytechnic Institute and State University.1997-04-17.
    [14]Thierry,H.C.,Nguyen.CMZP and Mg-doped Al_2TiO_5 Thin Film Coatings for High Temperature Corrosion Protection of Si_3N_4 Heat Exchangers.Virginia Polytechnic Institute and State University Materials Science and Engineering.1998-05-13.
    [15]Pickrell,G.R.,Sun,T.,Brown,J.J.High Temperature Alkali Corrosion of Ceramics Polytechnic Institute and State University Materials Science and Engineering.1994-11-31.
    [16]Kang,G.,Thesis,M.Department of Materials Science and Engineering.Virginia Polytechnic Institute & State University.1994-05-13.
    [17]Blacksburg,S.,Kaohsing,Taiwan.Magnesium Doped β-Alimium Titanate Thin Film Coating[P].US Patents.US005565245A.1996-10-15.
    [18]Thierry,H.C.,Nguyen.CMZP and Mg-doped Al_2TiO_5 Thin Film Coatings for High Temperature Corrosion Protection of Si_3N_4 Heat Exchangers.Virginia Polytechnic Institute and State University.1998-05-17.
    [19]Taylor,D.J.,Dunbar,P.B.A Case Study in Striation Prevention by Targeted Formulation Adjustment:Aluminum Titanate Sol-Gel Coatings[J].Chem.Mater.2002(14):1488-1492.
    [20]Nguyen,T.,Shaokai,Y.,Brown,J.J.Corrosion Resistant Coating For SiC and Si_3N_4Ceramics.Virginia Polytechnic Institute and State University.1998-09-01.
    [21]Innocenzi,P.,Martucci,A.,Armelao,L.Sol-Gel Synthesis of β-Al_2TiO_5 Thin Films at Low Temperature[J].Chem.Mater.2000(2):517-524.
    [22]Innocenzi,P.,Martucci,A.,Armelao,L.Low temperature synthesis of Mg_xAl_(2(1-x))Ti_((1+x))O_5 films by sol-gel processing[J].Chem.Mater.2005(12):3587-3591.
    [23]Shanmugham,S.,Liaw,P.k.Development of sol-gel derived coatings for Nicalon TM/SiC composites,Advanced Synthesis and Processing of Composites and Advanced Ceramics Ⅱ.Ceramic Transactions.2000(79):71-78.
    [24]Dong,H.K.,Cheng,N.S.Properties of aluminum titanate films prepared by chemical vapor deposition under different aluminum butoxide inputs[J].Thin Solid Films.2005(78):109-115.
    [25]Dong,H.K.,Tzeng,K.H.Growth and properties of titania and aluminum titanate thin films[J].Thin Solid Films.2002(31):497-502.
    [26]Tadashi,H.,Fumiyoshi,O.Coated Fused Alumina and Production Process Thereof [P].US Patents.US005633084A.1997-05-27.
    [27]黄仲涛,增昭槐,钟邦范.无机膜技术及应用.北京:中国石化出版社.1998:24-91.
    [28]丁星兆,董远达.溶胶-凝胶薄膜工艺及其应用.材料导报.1993(3):10-17.
    [29]Hedeland,Y.Chiral Separation of Amines by Non-Aqueous Capillary Electrophoresis using Low Molecular Weight Selectors.Acta Universitatis Upsaliensis Uppsala.2006.
    [30]Vioux,A.Nonhydrilytic Sol-Gel Routes to Oxides[J].Chem.Mater.1997(9):2292-2299.
    [31]Vioux,A.,Leclercq,D.Non-aqueous routes to sol-gel[J].Heterogen.Chem.Rev.1996(1):65-73.
    [32]Acosta,S.,Arnal,P.,Vioux,A.A general nonhydrolytic sol-gel route to oxides[C]. Mater.Res.Soc.Symp.Proc.1994(346):43--54.
    [33]Hay,J.N,Raval,H.M.Preparation of inorganic oxides via a nonhydrolytic sol-gel route[J].J.Sol-Gel Sci.Technol.1998(30):109-112.
    [34]Bourget,L.,Corriu,R.J.,Vioux,A.Nonhydrolytic sol-gel routes to silica[J].J.Non-Cryst.Solids.1998(3):81-91.
    [35]Pascal,A.,Robert,J.P,Dominique,L.A solution Chemistry Study of Nonhydrolytic Sol-Gel Routes to Titania.J.Mater.Chem.1997(9):694-698.
    [36]Timothy,J.T.,Tiffany,E.D.,Jane,F.B.Synthesis of TiO_2 Nanocrystals by Nonhydrolytic Solution-Based Reactions.J.Am.Chem.Soc.1999(121):1613-1614.
    [37]Jin,J.,Soon,G.K.,Taekyung,Y.Large-Scale Synthesis of TiO_2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of Ecoli.J.Phys.Chem.B.2005(109):15297-15302.
    [38]Zhao-Xiang Deng,Cheng Wang,Ya-Dong Li.New Hydrolytic Process For Producing Zirconium Dioxide,Tin Dioxide,and Titanium Dioxide Nanoparticles[J].J.Am.Chem.Soc.2002(11):2837-2839.
    [39]Andrianainarivelo,M.,Corriu,R.J.,Leclercq,D.Nonhydrolytic sol-gel process:Aluminum titanate gels[J].Chem.Mater.1997(5):1098-1102.
    [40]Andrianainafivelo,M.,Corriu,R.J.,Leclercq,D.Nonhydrolytic sol-gel process:Zirconium titanate gels[J].J.Mater.Chem.19!97(2):279-284.
    [41]Andrianainarivelo,M.,Robert,C.,Leclercq,D.Mixed oxides SiO_2-ZrO_2 and SiO_2-TiO_2 by a Nonhydrolytic Sol-Gel route[J].J.Mater.Chem.1996(10):1665-1671.
    [42]Lafond,V.,Mutin,P.H.,Vioux,A.Control of the Texture of Titania-Sillica Mixed Oxides Prepared by Nonhydrolytic Sol-Gel[J].Chem.Mater.2004(25):5380-5386.
    [43]Pascal,A.,Robert,J.P.,Corriu,D.L.Preparation of anatase,brookite and rutile at low temperature by nonhydrolytic sol-gel methods[J].J.Mater.Chem.1996(12):1925-1932.
    [44]Tracy,L.,Theompson,John,T.Surface Studies of Photoactivation of TiO_2-New Photochemical Processes[J].Chem.Rev.2006(106):4428-4453.
    [45]江伟辉,包镇红.聚乙二醇对非水解溶胶-凝胶法制备TiO_2薄膜结构及性能的影响(英文).硅酸盐学报.2008(2):187-191.
    [46]江伟辉,包镇红.非水解溶胶-凝胶法制备TiO_2光催化薄膜.硅酸盐学报.2008(11):1508-1513.
    [47]张夏虹,杨建华,曾兆华.溶胶-凝胶法制备二氧化钛纳米粒子及再光固化体系中的稳定分散.高分子学报.2006(6):750-754.
    [48]李传峰,钟顺和.溶胶-凝胶法合成聚酰亚胺二氧化钛杂化膜.高分子学报. 2002(3):326-330.
    [49]宋建静,曲远方.溶胶-凝胶法制备BaTiO_3薄膜的研究.电子元件与材料.2004(23):7-9.
    [50]张文魁,童希立,黄辉.溶胶-凝胶法制备钙钛矿型纳米钛酸锶.中国有色金属学报.2005(4):407-409.
    [51]李琰,潘庆谊,陈海华.聚乙二醇/纳米氧化镍溶胶体系稳定性的研究.材料科学与工程学报.2004(22):263-266.
    [52]周健儿,李会丽,王艳香.莫来石溶胶的制备及对钛酸铝粉体的包裹.复合材料学报.2007(1):97-103.
    [53]丁率捷,姜建华,朱源泰.溶胶-凝胶法制备不锈钢表面SiO_2-TiO_2-Al_2O_3-ZrO_2涂层.电镀与涂饰.2005(3):32-35.
    [54]陶洪亮,余桂有,杨南如.Sol-Gel法制备无支撑γ-Al_2O_3分离膜.硅酸盐通报.1999(4):26-30.
    [55]王宪德,郭丽娅.溶胶-凝胶镀膜技术综述(连载4).玻璃.2003(2):39-43.
    [56]陈道义,张军营.胶接基本原理.北京:科学出版社.1992:32-35.
    [57]夏鹏承,蒋百灵,张继源.Mg-Al系合金的强韧化研究进展.2007(28):665-668.
    [58]徐勇.耐熔融锌、铝腐蚀涂层的研究[硕士论文].济南:山东科技大学.2002.
    [59]江伟辉,魏恒勇,于云.以醇作氧供体的非水解溶胶-凝胶法制备钛酸铝的研究.材料导报.2007(2):431-434.
    [60]http://www.bmlink.com/bst/7194/
    [61]许红梅,潘献晓,费小丹.电化学合成法制备钛酸四丁酯的研究.化学世界.2006(9):544-547.
    [62]窦雁巍,徐明霞,徐延献.溶胶-凝胶法制备TiO_2薄膜中溶胶结构的研究.硅酸盐学报.2002(30):87-89.
    [63]包镇红.非水解溶胶-凝胶法制备TiO_2光催化薄膜的研究[硕士论文].景德镇:景德镇陶瓷学院.2007.
    [64]薛明俊,孙承绪.用Sol-Gel法制备钛酸铝微粉及其低膨胀陶瓷合成.华东理工大学学报(自然科学版).2000(1):66-69.
    [65]Joe,I.H.,Vasudevan,A.K.,Aruldhas,G.FTIR as a Tool to Study High-Temperature Phase Formation in Sol-Gel Aluminium Titanate.Journal of solid state chemistry.1997(131):181-184.
    [66]Lia,A.S.,Joanna,R.G.,Jitianu,A.Structural Evolution During Reaction to Form Aluminum Titanate from Sol-Gel Precursors.Mater.Manuf.Processes.2004(4):641-650.
    [67]Alain,C.P.Introduction to Sol-Gel Processing.Massachusetts:Kluwer Academic Publishers.1998:45-48.
    [68]Bradley,D.C.,Methrotra,R.C.,Gaul,D.P.Metal Alkoxides.New York:Academic Press,1978:1-25,116-122.
    [69]Bradley,D.C.,Hancock,D.C.,Wardlaw W.Titanium chloride alkoxides.J.Chem.Soc.1952,2773-2778.
    [70]魏恒勇,江伟辉,林健.非水解和水解溶胶-凝胶法合成钛酸铝粉体的比较研究.无机材料学报.2009(1):199-203.
    [71]Corriu,R.J.P.,Lectercq,D.,Mutin,P.H.Synthesis of MgHf(WO_4)_3 and MgZr (WO_4)_3 using a non-hydrolytic sol-gel method.Chem.Mater.1992,4,961-967.
    [72]Timothy,J.T.,Tiffany,E.,Denler.Preparation of Oxide Nanoerystals with Tunable Morphologies by the Moderate Hydrothermal Method:Insights from Rutile TiO_2.J.Am.Chem.Soc.1999(7):1613-1614.
    [73]Huang,Y.X,Senos,A.M.R.Template-based synthesis ofnanoseale Ag_2E(E=S,Se) dendrites.Mater.Res.Bull.,2002,37(1):99-110.
    [74]Kazuo,S.,Satoshi,K.,Yoshiyuki,A.Polymerization of α-Olefins with a Supported Ziegler-type Catalysts:Influence of Various Supports on the Polymerization Rate and the Tacticity of Polypropylene.1973(2):128-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700