微小孔及阵列孔微细电火花加工的若干基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小孔和阵列孔加工一直是机械加工领域的难题之一。微细电火花加工技术的非接触式加工、无明显宏观作用力和“以柔克刚”等特点,使其在加工微小孔、阵列孔,尤其在加工难加工材料小孔时具有明显的优势。因此,微小孔和阵列孔的微细电火花加工技术已成为当前微细加工技术研究与应用的热点。
     然而在微小孔微细电火花加工过程中也存在着明显的局限性,如工具电极损耗大、放电状态不稳定、加工效率低等问题,阻碍了加工过程的顺利进行。通常采取电极旋转、电极削边、定时抬刀和超声复合加工等辅助策略来改善极间放电状态以降低电极损耗、提高加工效率和加工状态的稳定性。尽管如此,由于电火花放电过程的复杂性和随机性,对放电过程基础理论的研究,特别是对放电过程中材料蚀除过程和电蚀产物排出过程的研究尚存在诸多不足,已成为制约微小孔和阵列孔微细电火花加工技术发展与应用的瓶颈。为此,本文在分析国内外相关文献资料的基础上,对电火花单脉冲、有限次脉冲和连续脉冲放电过程的温度场分布和微小孔、阵列孔微细电火花加工过程的流场分布进行理论分析与实验研究,分析了放电过程中材料的蚀除过程和电蚀产物的排出过程的影响因素,为深入研究微细电火花加工技术提供了理论依据。
     单脉冲放电过程是认识和研究电火花放电过程的基础。本文基于热传导理论,对电火花单脉冲放电过程进行温度场研究。通过数值模拟单脉冲放电过程温度场分布,分析了峰值电流和脉宽对温度场分布和放电凹坑尺寸形貌的影响规律,并做相应的实验验证。通过数值模拟相同放电能量条件下单脉冲放电过程温度场分布,分析了不同的峰值电流和脉宽组合对放电凹坑尺寸的影响规律,为提高能量利用效率提供了理论依据。
     电火花连续脉冲放电过程可以看作是由无数次单脉冲放电过程重复叠加的结果。然而由于电火花放电过程的复杂性和随机性,很难将单脉冲放电过程的研究结果直接推广至连续脉冲放电过程。为此,在单脉冲放电过程温度场研究的基础上,通过数值模拟有限次脉冲放电过程温度场分布,分析了不同放电位置对后续脉冲放电过程温度场分布和蚀除凹坑的影响规律。根据有限次脉冲放电凹坑的分布情况和极间电场分布情况,确定了连续放电位置的随机分布原则,并依此建立了连续脉冲放电过程的温度场模型。通过数值模拟连续脉冲放电过程温度场分布,仿真了工件表面的动态蚀除过程;分析了单个脉冲放电过程的残留温度场和蚀除凹坑对后续脉冲放电过程温度场分布和蚀除凹坑的影响规律,并做了相应的实验验证。
     在微小孔微细电火花加工过程中,通常采用电极削边和定时抬刀等工艺来提高电蚀产物的排出效率以改善加工状态,这些改进措施都与间隙流场密切相关。因此,对微细电火花圆柱电极、削边电极旋转和抬刀加工过程中间隙流场进行了仿真,通过数值模拟间隙流场中速度场分布和电蚀产物的运动规律,分析了在电极旋转加工过程中电极形状差异对加工效率的影响规律、以及在抬刀加工过程中抬刀速度和高度对加工效率的影响规律,并做相应实验验证。
     在阵列孔微细电火花加工过程中,工具电极损耗严重、加工效率低、阵列孔一致性差和放电状态不稳定等问题一直限制着阵列孔微细电火花加工技术的快速发展,通常采取微细电火花超声复合加工方法来提高加工效率和放电状态的稳定性,但并没有从理论上合理的解释其作用机制。为此,结合微细电火花超声复合加工阵列孔实验,对阵列孔微细电火花超声复合加工过程间隙流场进行研究,通过数值模拟一个振动周期内间隙流场中电蚀产物的运动规律,分析了超声振动对微细电火花超声复合加工过程中电蚀产物排出过程的作用机制、以及超声的振幅和频率对加工效率的影响规律。
     综上所述,本文研究了电火花单脉冲、有限次和连续脉冲放电过程的温度场分布情况,并据此分析和探寻了电火花放电过程中材料的蚀除机理;研究了电火花加工微小孔和阵列孔过程的间隙流场分布情况,并据此分析和优化了电蚀产物的排出过程。上述研究为进一步挖掘微细电火花加工的技术潜能提供了一定的理论依据。
The machining of micro-hole and array holes is always the difficult problem inthe field of mechanical processing. Micro-EDM technology has a feature of Non-contacting machining method, no obvious macroscopic applied force and goodcontrollability, and thus is an important means of machining micro-hole and arrayholes at present. So micro-EDM of micro-hole and array holes is one of theeffective approaches to solve the above processing problem.
     But micro-EDM of micro-hole and array holes has obvious limitations, forinstance, the heavy tool wear, the unstable discharge condition and low machiningefficiency, which hinder the machining process smoothly. In order to decrease toolwear and improve working efficiency and the discharge condition stability,processing strategies have been usually applied to improve discharge status, such astool electrode rotary, coated electrode, shaving electrode, shaking electrode, liftingelectrode, ultrasonic combined machining. However, there are still many problemsof the fundamental theory research in EDM process due to its complexity andrandomicity, especially material removal process and debris discharge processwhich have become bottleneck for EDM technology development and application.Therefore, according to numerous related literatures at home and abroad, theresearch on the temperature field distribution of single pulse discharge, finite pulsesdischarges and continuous pulse discharges and distribution of flow field of EDMof micro-hole and array holes was discussed by theoretical simulations andexperiments. Simultaneously the influencing factor on material removal process anddischarge process of debris has been analyzed to supplement and enrich the theoryof EDM technology.
     Single pulse discharge is the basis of knowledge and research of continuouspulse discharge processing. In this paper, the temperature field distribution of thesingle pulse discharge process was firstly discussed. Based on heat transfer theory,the time-varying radius, time-varying heat flow density of the temperature fieldmodel of electric spark single pulse discharge process has been established. Basedon temperature field simulation of the model, the influence law of the peak current and pulse width on the temperature field distribution and discharge crater size, andthe corresponding experiment has been carried out.
     Continuous pulse discharges process can be regarded as the superpositionprocess of countless times single pulse discharge process. But it is difficult to makesingle pulse discharge process results directly applied to continuous pulse dischargeprocess because of the complexity of continuous pulse discharge process. Therefore,the model of finite pulses discharge has been established based on the temperaturefield of single pulse discharge process. Through the temperature field simulation offinite pulses discharge model, the influence law of discharge position far and nearon the temperature field distribution of subsequent pulse discharge has been carriedout. According to the finite pulses discharge crater position distribution and thesimulation distribution of electric field, the random distribution principle of thecontinuous discharge position has been established. The temperature field model ofcontinuous pulse discharge process has been established, the temperature fieldmodel of continuous pulse discharge and the dynamic process of surface corrosionprocess and the formation process of surface topography has been simulated. Theinfluence laws of the each pulse discharge removal of crater and the highesttemperature and the pulse width and peak current on the material removal inprocess and processing surface morphology formation have been analyzed.
     In micro-EDM of micro-hole process, chamfered edge electrode and electrodelifting usually adopt to improve the discharge efficiency, which are closely relatedwith gap flow field. So gap flow field simulation model of micro-EDM has beenestablished. Through the numerical simulation of the particle movement rule in gapflow field, the influence of electrode shape differences and height of electrodelifting on machining efficiency have been analyzed, and the correspondingexperiment has been carried out.
     In micro-EDM of array holes process, the wear of tool electrode, the low ofworking efficiency, the difference consistency of array holes and the instability ofdischarge status has been limit micro-EDM of array holes technology. Micro EDMcompound ultrasonic processing method has been usually adopt to improve workingefficiency and the stability of the machining process. Therefore, combined withmicro-EDM compound ultrasonic processing experiment results, the flow fieldsimulation model of micro-EDM of array holes compound ultrasonic machiningprocess has been established. Through the numerical simulation of the particle movement of flow field, the influence law of ultrasonic amplitude and frequency onmachining efficiency has been analyzed, and the corresponding experiment hasbeen carried out.
     Sum up, the temperature field distribution of single pulse discharge, finitepulses discharge and continuous pulse discharge process has been carried out toexplore the mechanism material removal of EDM process. The flow fielddistribution of micro-EDM of micro-hole and array holes has been carried out tooptimize EDM process. The above research for further micro-EDM technologypotential laid a certain theoretical basis.
引文
[1] Yan B.H., Tsai H.C., Huang F.Y. The Effect in EDM of A Dielectric of A UreaSolution in Water on Modifying the Surface of Titanium[J]. Machine ToolsManufacturing,2005,45:194-200.
    [2]赵万生,韦红雨.微细电火花加工的新进展[J].仪器仪表学报,1996,17(1):65-69.
    [3]张勤河,张建华,杜如虚,等.电火花成形加工技术的研究现状和发展趋势[J].中国机械工程,2005,16(17):1586-1592.
    [4]李立青,郭艳玲,白基成,等.电火花加工技术研究的发展趋势预测[J].机床与液压,2008,36(2):174-178.
    [5]朱宁,叶军,韩福柱,等.电火花线切割加工技术及其发展动向[J].电加工与模具,2010:53-63.
    [6]于家珊.电火花加工理论基础[M].北京:国防工业出版社,2011:92-125.
    [7] Bernd M. Schumacher. After60Years of EDM the Discharge Process RemainsDisputed[J]. Journal of Materials Processing Technology,2004,149:376-381.
    [8] Ajit Singh, Amitabha Ghosh. A Thermo-Electric Model of Material RemovalDuring Electric Discharge Machining[J]. International Journal of MachineTools&Manufacture,1999,39:669-682.
    [9]李健,刘志东,邱明波,等.单晶硅放电蚀除机理研究及有限元分析[J].中国机械工程,2010,21(7):847-851.
    [10]刘媛,曹凤国,桂小波,等.电火花加工放电爆炸力对材料蚀除机理的研究[J].电加工与模具,2008,5:19-25.
    [11] Daryl D Dibitonto, Philip T Eubank, Mukund R Patel, et al. TheoreticalModels of The Electrical Discharge Machining Process.I.A Simple CathodeErosion Model[J]. J. Appl. Phys,1989,66(9):4096-4103.
    [12] Mukund R Patel, Maria A Barrufet, Philip T Eubank, et al. Theoretical Modelsof the Electrical Discharge Machining Process.II.The Anode Erosion Model[J].J. Appl. Phys,1989,66(9):4104-4111.
    [13] Philip T Eubank, Mukund R PateL, Maria A Barrufet, et al. TheoreticalModels of the Electrical Discharge Maching Process.III. The Variable Mass,Cylindrical Plasma Model[J]. J. Appl. Phys,1993,73(11):7900-7909.
    [14]宋夕超,张建华,董春杰.基于ABAQUS的煤油介质中电火花表面强化工艺参数的研究[J].电加工与模具,2011,1:6-11.
    [15]冯海娣,汪炜,刘正埙,等.微能放电电蚀量的数值模拟与实验研究[J].电加工与模具,2011,6:37-40.
    [16]哲境,王彤.干式介质中单脉冲放电的温度场及流场仿真[C].第14届全国特种加工学术会议论文集,2011,10:232-237.
    [17] Y.S.Wong, M.Rahman, H.S. Lim, et al. Investigation of Micro-EDM MaterialRemoval Characteristics Using Single RC-Pulse Discharges[J]. Journal ofMaterials Processing Technology,2003,140:303-307.
    [18] S.N. Joshi, S.S. Pande. Thermo-Physical Modeling of Die-Sinking EDMProcess[J]. Journal of Manufacturing Processes,2010,12:45-56.
    [19] Eduardo Weingatner, Konrad Wegener, Friedrich Kuster. Wire ElectricalDischarge Machining Applied to High-Speed Rotating Workpieces[J]. Journalof Materials Processing Technology,2012,212:1298-1304.
    [20]刘志东,程国柱,李建军.电火花线切割温度场有限元分析及参数验证[J].中国机械工程,2010,21(1):38-42.
    [21] Xiaodong Yang, Guanglei Feng, Qing Teng. Temperature Field Simulation ofWire Electrode in High-Speed And Medium-Speed WEDM Under MovingHeat Source[C].5th CIRP Conference on High Performance Cutting,2012:633-638.
    [22] E.Weing rtner, F.Kuster, K.Wegener. Modeling and Simulation of ElectricalDischarge Machining[C].1stCIRP Global Web Conference: InterdisciplinaryResearch in Production Engineering, Procedia CIRP,2012(2):74-78.
    [23] S.H.Yeo, W.Kurnia, P.C.Tan. Critical Assessment and Numerical Comparisonof Electro-Thermal Models in EDM[J]. Journal of materials processingtechnology,2008,203:241-251.
    [24] S.H Yeo, W.Kurnia, P.C Tan. Electro-Thermal Modelling of Anode andCathode in Micro-EDM[J]. Journal of physics d: applied physics,2007,40:2513-2521.
    [25] Hirotaka KOKUBO, Hideki TAKEZAWA, Ken’ichiro HORIO, et al. A Studyon the Material Removal Mechanism in EDM-Single Discharge ExperimentsWith Low Melting Temperature Alloy[J]. Annals of the CIRP,2004,(3):65-69.
    [26] F. Klooke, D. Lung, D.Thomaidis, et al. Using Ultra-Thin Elecrtrodes toProduce Micro-Parts with Wire-EDM[J]. Journal of materials ProcessingTechnology,2004,149:579-584.
    [27] Kunieda M, Kowaguchi W, Takita T. Reverse Simulation of Die-SinkingEDM[C]. Annals of the CIRP,1999,48(1):115-118.
    [28] Masanori Kunieda, Yuki Kaneko, Wataru Natsu. Reverse Simulation ofSinking EDM Applicable to Large Curvatures[J]. Precision Engineering,2012,36:238-243.
    [29] W Kurnia, P C Tan, S H Yeo, et al. Surface Roughness Model for MicroElectrical Discharge Machining[J]. Proceedings of the Institution ofMechanical Engineers, Part B: Journal of Engineering Manufacture,2009:223-279.
    [30] Borja Izquierdo, José Antonio Sánchez, Naiara Ortega, et al. Insight intoFundamental Aspects of The EDM Process Using Multi-Discharge NumericalSimulation[J]. Int J Adv Manuf Technol,2010,52(1-4):195-206.
    [31] B. Izquierdo, J.A.Sa′nchez, S.Plaza, et al. A Numerical Model of the EDMProcess Considering the Effect of Multiple Discharges[J]. InternationalJournal of Machine Tools&Manufacture,2009,49:220-229.
    [32] K. Salonitis, A. Stournaras, P. Stavropoulos, et al. Thermal Modeling of theMaterial Removal Rate and Surface Roughness for Die-sinking EDM[J]. Int JAdv Manuf Technol,2009,40:316-323.
    [33]吕奇超,赵福令,王津,等.微细电火花微小孔加工过程仿真[J].电加工与模具,2009,5:14-29.
    [34]张余升,荆怀靖,李敏明,等.大深径比微细孔超声辅助电火花加工技术研究[J].电加工与模具,2011,6:63-66.
    [35] Eberhard Bamberg, Sumet Heamawatanachai. Orbital Electrode Actuation toImprove Efficiency of Drilling Micro-Holes by Micro-EDM[J]. Journal ofmaterials processing technology,2009,209:1826-1834.
    [36]王津,韩福柱,卢建鸣,等.抬刀过程中加工屑运动规律的观察[C].第14届全国特种加工学术会议论文集,2012:68-73.
    [37]王津,韩福柱,卢建鸣,等.连续脉冲放电过程中气泡和加工屑运动规律的观察[C].第14届全国特种加工学术会议论文集,2012:63-67.
    [38] Jin Wang, FuzhuHan, GangCheng, et al. Debris and Bubble MovementsDuring Electrical Discharge Machining[J]. International Journal of MachineTools&Manufacture,2012,58:11-18.
    [39]贾振元,郑欣毅,王福吉,等.微细电火花加工机间工作液流动状态研究[J].大连理工大学学报,2010,50(2):188-193.
    [40]张淑奎,王燕青,黄河,等.旋转电极内冲液电火花铣削加工流场仿真及实验研究[J].电加工与模具,2011,1:1-5.
    [41]张杰,韩福柱,Isago Soichiro.电火花放电间隙流场的三维仿真研究[J].电加工与模具,2008,2:12-15.
    [42]徐明刚,张建华,张勤河,等,基于Fluent的超声振动-气体介质电火花加工气体流场模拟[J].制造技术与机床,2007,5:66-69.
    [43]贾男.微小孔电火花加工排屑方法及振动器研究[D].大连:大连理工大学学位论文,2010:35-58.
    [44]李建功,许加利,裴景玉.基于FLUENT电火花微小孔放电间隙流场的研究[J].电加工与模具,2009,4:17-20.
    [45]李建功.基于流场分析的微细电火花微小孔加工的研究[D].上海:上海交通大学学位论文,2008:56-75.
    [46] Lei Li, Wansheng Zhao, Lin Gu. Study of Gap States in Bunched-ElectrodeEDM[J]. Proceedings of the16thInternational Symposium onElectromachining,2010,4:149-154.
    [47]朱涛,张建华,王涛等.基于FLUENT的电火花铣削放电间隙流场仿真分析[J].电加工与模具,2011,4:10-13.
    [48] Cetin S, Okada A, Uno Y. Electrode Jump Motion in Linear Motor EquippedDie-sinking EDM[J]. Journal of Manufacturing Science and Engineering,2003,125(4):809-815.
    [49] Serkan CETIN, Akira OKADA, Yoshiyuki UNO. Effect of Debris Distributionon Wall Concavity in Deep-hole EDM[J]. JSME International Journal,2004,47:553-555.
    [50] Masahiro Fujiki, JunNi, AlbertJ. Shih. Investigation of the Effects of ElectrodeOrientation and Fluid Flow Rate in Near-dry EDM Milling[J]. InternationalJournal of Machine Tools&Manufacture,2009,49:749-758.
    [51]张勤河,张建华,杜如虚,等.电火花成形加工技术的研究现状和发展趋势[J].中国机械工程,2005,16(17):1585-1592.
    [52]宋小中,刘正埙,高长水.电火花微细加工技术及其发展[J].航空精密制造技术,1996,32(2):16-20.
    [53]杨大勇,伏金娟.电火花成形加工技术及其发展动向[J].航空制造技术,2010:543-546.
    [54] Dong-Yea SHEU, T Masuzawa. Development of Large-Scale Production ofMicroholes by EDM[C]. Proceedings of the13th International Symposium ofElectromachining,2001,5:747-758.
    [55] S. Joshi, P. Govindan, A. Malshe, et al. Experimental Characterization of DryEDM Performed in a Pulsating Magnetic Field[J]. CIRP Annals-Manufacturing Technology,2011,60:239-242.
    [56] H.S. Tak, C.S. Ha, H.J. Lee, et al. Characteristic Evaluation of Al2O3/CNTsHybrid Materials for Micro-Electrical Discharge Machining[J]. Transactionsof Nonferrous Metals Society of China,2011,21:28-32.
    [57] T. Koyano, M. Kunieda. Achieving High Accuracy and High Removal Rate inMicro-EDM by Electrostatic Induction Feeding Method[J]. CIRP Annals-Manufacturing Technology,2010,59:219-222.
    [58] R. Tanabe, Y. Ito, N. Mohri, et al.Development of Peeling Tool for Micro-EDM[J]. CIRP Annals-Manufacturing Technology,2011,60:227-230.
    [59] F. Klocke, M. Sshwade, A. Klink, et al. EDM Machining Capabilities ofMagnesium(Mg) Alloy WE43for Medical Applications[J]. ProcediaEngineering,2011,19:190-195.
    [60] R. Garn, A. Schubert, H. Zeidler. Analysis of the Effect of Vibrations on theMicro-EDM Process at the Workpiece Surface[J]. Precision Engineering,2011,35:364-368.
    [61]李剑忠,沈飞虎,殷国强,等.材料晶界和晶粒对电火花微细加工的影响研究[J].中国机械工程,2011,13:1601-1604.
    [62] X.Z. Fu, Q.H. Zhang, G.H. Bao, et al.MRR Analysis on Technology ofPiezoelectric Self-Adaptive Micro-EDM[J]. Procedia Engineering,2011,16:477-485.
    [63] Y.Z. Zhang, Y.H. Liu, R.J. Ji, et al.Study of the Recast Layer of a SurfaceMachined by Sinking Electrical Discharge Machining Using Water-in-oilEmulsion as Dielectric[J]. Applied Surface Science,2011,257:5989-5997.
    [64] Nebashi N, Wakabayashi K, Yamada M, et al. In-Process Truing/dressing ofGrinding Wheels by WEDG and EFID[J]. International Journal of ElectricalMachining,1998(3):59-64.
    [65] Ju-Kyoung Lee. A study on the Characteristics of Electrode Fabrication forMicro-Hole[C]. Proceedings of the15thInternational Symposium onElectromachining,2007:231-234.
    [66] Minoru Yamazaki, Takemi Suzuki, Noritoshi Mori, et al. EDM of Micro-rodsby Self-drilled Holes[J]. Journal of Materials Processing Technology,2004,149:134-138.
    [67] Hideki Takezawa, Hiroaki Hamamatsu, NaotakeMohri, et al. Decelopment ofMicro-EDM Center with Rapidly Sharpened Electrocle[J]. Journal ofMaterials Processing Technology,2004,149:112-116.
    [68] Naotake Mohri, Hideki Takezawa, Katsushi Furutani, et al. A New Process ofAddictive and Removal Machining by EDM with a Thin Electrode[J]. Annalsof the CIRP,2000,49(1):123-126.
    [69] Yoshiro Ito, Rie Tanabe, Naotake Mohri. Self-sharpening of Thin TungstenElectrode in Single, High-current Discharge-its Dynamics and Mechanism[J].Annals of the CIRP,2007,56(1):229-232.
    [70]曹国辉,王振龙,迟关心,等.基于单脉冲放电的钨微细电极快速成形方法及应用研究[J].机械工程学报,2003,39(7):43-47.
    [71]李勇,李芳,郭旻.微细电火花加工设备技术研究[J].设计与研究,2002(5):12-14.
    [72] Kang M C, Je S K, Kim K H, et al. Cutting Performance of CrN-basedCoatings Tool Deposited by Hybrid Coating Method for Micro DrillingApplications[J]. Surface&Coatings,2008,202(23):5629-5632.
    [73] Wong B. T, Menguc M P, Vallance R. R. Nano-scale Machining Via ElectronBeam and Laser Processing[J]. Transactions of the ASME,2004,126(4):566-576.
    [74]杨洗陈,汪刚,赵友博,等.飞秒激光制备阵列孔金属微滤膜[J].中国激光,2007,34(8):1155-1158.
    [75]巴瑞璋,张晓兵.激光加工密集群孔技术[J].航空制造技术,2003,(7):68-71.
    [76] Holmes A S. Excimer Laser Micromachining with Half-tone Masks for theFabrication of3-D Microstructures[J]. IEEE Procccdings ScicnccMcasurcmcnt Technology,2004,151(2):85-92.
    [77]董德生,曾伟梁,杭观荣,等.群孔的微细电火花加工技术研究[J].电加工与模具,2006,2:47-49.
    [78] Fofonoff T, Martel S, Wiseman C, et al. A Highly Flexible ManufacturingTechnique for Microelectrode Array Fabrication[C]. Proc.2nd JointEMBSPBMES Conf. Houston: TX,2002:2107-2108.
    [79] WangW, Zhu D, Qu N S. Effects of Electrode Insulation Thickness onElectrochemical Drilling Stability and Accuacy[J]. Thmsactions of NanjitigUniversity of Aeronautics&Astronautics,2009,26(3):163-169.
    [80]李冬林.模板电解加工群孔基础研究及应用[D].南京:南京航空航天大学,2010:58-67.
    [81]刘建,朱荻,曲宁松,等.金属薄板微小群孔掩膜电解加工技术研究[J].电加工与模具,2008,3:37-39.
    [82] Timothy A. Fofonoff, Sylvain M. Martel. Microelectrode Array Fabrication byElectrical Discharge Machining and Chemical Etching[J]. IEEE TransactionsOn Biomedical Engineering,2004,5(6):890-895.
    [83] Takahata Ken’ichi, Gianchandani Yogesh B. Batch Mode Microelectro-Discharge Machining[J]. Journal of Microelectromechanical Systems,2002,11:102-111.
    [84]伊福廷,李勇,刘改红.利用LIGA技术研制微细电火花异形和阵列结构电极[J].电加工与模具,2011,5:14-18.
    [85]牧野正志,丹野益男.松下流モノづくりとそれを支える微細加工技術[J].精密工学会誌,2004,71(5):533-539.
    [86]安成明,殷国强,李剑中,等.微细孔、阵列孔及微细三维型腔的超声加工研究[J].电加工与模具,2011,1:23-27.
    [87]翁明浩,王振龙.微细阵列方形轴孔的电火花和电化学组合加工工艺研究[J].电加工与模具,2007,5:5-8.
    [88]胡洋洋,朱荻,李寒松,等. UV-LIGA与微细电火花加工组合制造微细电解阵列电极[J].东南大学学报(自然科学版),2010,40(1):106-110.
    [89]张余升,余祖元,才秀女,等.基于均匀损耗法的圆角去除加工[J].电加工与模具,2008,6:21-23.
    [90]赵万生,李志勇,王振龙,等.微三维结构电火花铣削关键技术研究[J].微细加工技术,2003,3:49-55.
    [91]裴景玉,邓容,胡德金.微细电火花加工的底面轮廓模型及定长补偿方法[J].上海交通大学学报,2009,43(1):42-46.
    [92]李剑忠,栾纪杰,虞慧岚,等.微细电火花三维加工中电极损耗补偿新方法[J].大连理工大学学报,2011,51(4):525-528.
    [93] M. Rahman, A.B.M.A. Asad, T. Masaki, et al. A Multiprocess Machine ToolFor Compound Micro-Machining[J]. International Journal of MachineTools&Manufacture,2010,50:344-356.
    [94] YU Y Z, Masuzawa T, Fujino M. Micro-EDM for Three-DimensionalCavities[J]. Annals o f the CIRP,1998,47(1):169-172.
    [95] Yu Zuyuan. Three Dimensional Micro-EDM Using Simple Electrodes[D].Disseration of the University of Tokyo,1997,352:149-155.
    [96]褚旭阳.微细电火花集成加工技术的研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:109-110.
    [97] Gang Li, Wansheng ZHAO. Key Technologies of Machine Tool for MicroElectro Discharge Machining[C]. Proceedings of the15th InternationalSymposium on Electromachining,2007:253-256.
    [98]董颖怀.一种微型涡轮发动机的关键结构及其制造技术的研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:46-58.
    [99] WANG Zhenlong, DONG Yinghuai. Micro-EDM Milling of MicroCompressor prototype[C]. International Conference on Integration andCommercialization of Micro and Nanosystems,2007:1243-1248.
    [100]董颖怀,王振龙,彭子龙,等.微型涡轮发动机中的压气机部件的设计仿真及加工实验[J].上海交通大学学报,2009,9(9):1517-152.
    [101]曾昭奇.一种微型燃气涡轮发动机及其组合微细电加工技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2012:72-79.
    [102] Hayakawa, Kojima, Kunieda, et al. Influence of Plasma Temperature in EDMProcess[J]. Journal of the Japan Society for Precision Engineering,1996,62(5):686-690.
    [103] Hayakawa, Kunieda. Numerical Analysis of Arc Plasma Temperature in EDMProcess Based on Magnetohydrodynamics[J]. Transactions of Japan Society ofMechani cal Engineers, Part B,1996,62(8):3171-3177.
    [104] Xia H, Kunieda M, Nishiwaki N. Removal Amount Difference Between AnodeAnd Cathode In EDM Process[J]. IJEM,1996,1:45-52.
    [105] H.H.雷卡林.焊接热过程计算[M].徐碧宇,庄鸿寿,译.北京:中国工业出版社,1962:56-65.
    [106]李明辉.电火花加工理论基础.北京:国防工业出版社,1989:35-41.
    [107] Ikai. T, Hashigushi. K. Heat Input for Crater Formation in EDM[J]. In:Proceedings of international symposium for electro-machining_ISEMXI,EPFL,1995:163-170.
    [108] H.K. Kansal, Sehijpal Singh, Pradeep Kumar. Numerical Simulation ofPowder Mixed Electric Discharge Machining (PMEDM) Using Finite ElementMethod[J]. Mathematical and Computer Modeling,2008,47:1217-1237.
    [109]崔景芝.微细电火花加工的基本规律及其仿真研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:55-62.
    [110]赵明,武传松,陈茂爱.焊接热过程数值分析中相变潜热的三种解决方案[J].焊接学报,2006,27(9):55-58.
    [111]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994:64-69.
    [112]李奇.模具构造与制造作者[M].北京:清华大学出版社,2004:226-227.
    [113]于丽丽,刘永红,李小朋,等.有限元法在电火花加工中的应用[J].电加工与模具,2006,4:20-22.
    [114] J. C. Rebelo, A. Morao Dias, D. Kremer, et al. Influence of EDM Pulse Energyon the Surface Integrity Martensitic Steels[J]. Journal of Materials processingTechnology,1998:90-96.
    [115] K. Salonitis, A. Stournaras, P. Stavropoulos, et al. Thermal Modeling of theMaterial Removal Rate and Surface Roughness for Die-Sinking EDM[J]. Int JAdv Manuf Technol,2009,40:316-323.
    [116]刘宇,赵福令,王元刚,等.集肤效应对微细电火花加工的影响[J].大连理工大学学报,2010,50(3):362-367.
    [117] Kunieda. M, Mori. M. Simulation of Machining Accuracy in Die-SinkingEDM [J]. Proc of ISEM XI,1995:315-324.
    [118]井上洁.放电加工原理[M].帅元伦,于学文,译.北京:国防工业出版社,1983:65-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700