一种微型涡轮发动机的关键结构及其制造技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以MEMS(Micro Electro Mechanical Systems)技术为基础的微飞行器是目前航空航天领域最具吸引力的产品之一,而动力装置的微型化问题则是性能更强更灵活的新型微飞行器的关键技术。近年来,在国外,尤其是美国,相继开展了微动力机电系统和微发动机的研究工作。目前硅刻蚀技术已经成功的应用于微型发动机的研制中。微型发动机的发展也从平面的二维结构到复杂的三维自由曲面,从MEMS传统的硅基材料到具有更高性能的合金材料,这都迫切地需要更加多样化的微细加工方法。微细加工技术的发展促进了微型发动机技术的进步,同时微型发动机的进一步发展也同样对加工技术提出了更高的要求。
     本文分析了微型涡轮发动机的工作原理,论述了其工作过程和热循环模式。通过比较微型发动机与传统发动机的工作过程,针对微型发动机的特点和技术难点,提出了一种新型的分布式微型发动机结构,将燃烧腔与涡轮转动本体分离,可由一个燃烧腔提供动力,供给多个涡轮转子转动,大大简化了微型发动机的设计,燃烧室内空气与燃料混合燃烧后传递给涡轮转动部件的热量大大减少,使得转子的工作环境改善,使用寿命增加。
     为了使得转子获得更好的转动性能和气动特性,本文设计了具有微三维结构的微型压气机和涡轮结构,并通过流体力学仿真软件对压气机和涡轮的内部流场进行了分析。在微型发动机中,由于尺寸很小,使得装配的难度大大增加,尤其是对于转动部件,在装配后,由于存在着装配误差,使得旋转的精度降低,转子转动的稳定性减小,转动过程中转子偏心的影响大大制约了微型发动机的性能,所以提高转动轴与涡轮和压气机叶轮的同轴度是微型发动机研究中的一个难题。本文对发动机的转动部件采用涡轮压气机一体式转子结构设计,中间的旋转轴与涡轮和压气机叶轮是一体的,这样既能减少发动机部件的数量,又可保证轴与转动部件的同轴度,可大大提高动叶轮在高速转动过程中的稳定性。同时,涡轮和压气机与旋转轴的连接强度增大,可靠性大大增加。
     由于微型发动机的旋转轴半径尺寸很小,并且转动叶轮高速旋转运动,普通的滚动轴承已经无法满足需要,本文设计了一种新型的微型径向动压气浮轴承结构,将气浮轴承与微型发动机外壳集成在一起,即简化了总体结构,又降低了装配时的难度。通过使用FLUENT软件,建立了微型径向动压气浮轴承的轴间气体流动的仿真模型,对气体在气浮轴承内部的流动情况进行了仿真与分析,验证了所设计微型径向动压气浮轴承结构的合理性,并进一步根据仿真计算的结果对所设计的微型径向动压气浮轴承结构进行了优化设计。
     由于传统MEMS加工技术的限制,目前在微型发动机的研究中,其关键部件涡轮和压气机转子的叶片造型通常为二维结构,并且通常只能使用硅基材料,这大大限制了微型发动机的发展和潜力。由于微型发动机的尺寸只有几厘米甚至几毫米大小,传统的MEMS技术目前还很难加工出具有自由曲面的微细结构。而微细电火花加工技术其具有无宏观切削作用力、设备简单和真三维加工能力等特点,同时其所能处理的材料非常广泛,不仅可以加工各种性能优良的金属、合金,还可以加工硅等半导体材料、陶瓷等,使得微细电火花加工技术成为最适合加工本文所提出的微三维结构的微型发动机的方法。
     目前微细电火花铣削加工中不可避免的问题是电极的损耗,这也是限制微细电火花铣削能力的主要因素之一,为此,本文将深入分析微细电火花铣削加工过程中电极损耗的特点,提出了在线实时测量补偿策略,并以此为基础开发出微细电火花铣削专用的CAM(Computer Aided Manufacturing)系统,解决使用微细电火花铣削技术加工制造微型发动机转子所遇到的问题。
     在充分挖掘微细电火花加工技术特点的基础上,根据微型涡轮发动机的结构特点,采用微细电火花加工技术为主要的加工手段对微型发动机的关键部件进行加工制造。使用微细电火花磨削技术加工涡轮压气机一体式转子结构的旋转轴;使用微细电火花铣削技术在高温镍合金材料上加工出了具有微三维结构的压气机和涡轮叶片;使用微细电火花线切割技术加工出了微型气浮轴承。
     通过外部气源模拟微型燃烧室提供动力,本文所设计并加工制造的微型涡轮发动机可以最高达到4×104RPM的转速,达到了预期的设计要求。研究了进气压强和进气口距叶片距离对转速的影响,并测试了其在工作时的噪音。
     本文对微型涡轮发动机的整体结构进行了设计仿真,以微细电火花加工技术为主要手段,完成微型发动机关键部件的加工制造,实现了具有高转速的微型涡轮发动机原型,为微型涡轮发动机的实用化奠定了基础。
The micro aerocraft with MEMS (Micro Electro Mechanical Systems) technology is one of the most attractively fields of aerospace field. The micromation of power plant is the key technology of micro aerocraft. In recent years, the power MEMS and micro engine have been researched by the foreign countries, especially int the United States. The Silicon etching technology has been successfully applied to the development of micro-engines. The development of micro engine is from two-dimensional structure to complex three-dimensional free-form, from traditional silicon-based MEMS materials to a more high-performance alloy materials. The more micro fabrication technologies are needed for the development micro engine.
     The principle of micro-turbine engine is analysed. The working peocess and thermal cycling are discussed. To compare the working process with micro-turbine engine and tradition turbine engine, a new distributed structure of micro-turbine engine was developed ccording to the characteristics of micro engine. The combustion chamber and rotor was separated, more than one micro-turbine engine was supplied by one combustion chamber. The design of micro-turbine was simpleness. The heat of mciro combustion chamber is less transferring to the turbine
     A micro turbine and compressor with micro three-dimensional structures was designed for the better capability. The internal flow of turbine and compressor was analysied by the Computational Fluid Dynamics software. The assembly of micro-turbine is difficult because of the small size. The rotation accuracy and stability of rotor will be reduced. Improving the coaxial accuracy is a key technology. In this paper, an integrated of turbine-shaft-compressor structure was designed. It can reduce component number and improve the stability of rotor. And the joint strength and reliability will increase.
     The dimension of micro turbine engine is usually only few millimeters, the rolling bearing is not suitable. A new mciro radial dynamic compression gas bearing was designed and and verified the reasonable of this new structure with FLUENT sofaware. According the simulation results, the parameters of gas bearing was optimized.
     The blade of the turbine and compressor of mciro engine is two- dimensional structure and used with Si-based materials because of the limitation of tradition MEMS technology. Due to the size of micro-turbine engine, it’s still difficult to machine free-form structures by traditional MEMS technology. The mciro EDM machining technology has the characteristic of no macroscopic cutting force, simple device and ture three-dimensional process capacity with multifarious materals cantans metal and semiconductor materials. So the micro EDM machining technology is well suitable for the fabrication micro turbine engine with three-dimensional structures.
     Electrode wear is a major problem of micro-EDM milling. Based on the characteristic of micro-EDM milling, a new compensation with fixed length real time was put forward. A mciro EDM milling CAM system was developed based on the Unigraphics software plant. A mciro chess and face with complex thres- dimensional structure was machined by this CAM system.
     The key components of mciro turbine engine were fabricated by micro EDM machining technology. A rotation axis was machined by mciro electric discharge grinding; the blade of turbine and compressor with micro three- dimensional structure were machined by mciro EDM milling; the gas bearing was machined by mciro wire electrical discharge machining.
     The power source was supplied by the external air source. The speed of rotor was reached 4×104RPM. The influence of inlet pressure and distance of inlet nozzle were researched.
     In this paper, a new micro turbine engine was designed and simulation. The key components of mciro turbine engine were fabricated by micro EDM machining technology. A micro turbine engine protype was realized with high rotation speed, which lays the foundation to realize pratical mciro power engine.
引文
1王振龙.微细加工技术.国防工业出版社, 2005:1-16
    2苑伟政,马炳和.微机械与微细加工技术.西北工业大学出版社, 2000:1-11
    3林忠华,胡国清,刘文艳.微机电系统的发展及其应用.纳米技术与精密工程. 2004,2(2):117-123
    4段润保,赵砚江,毛言理.微机械(MEMS)与微细加工技术.河北理工大学学报.2004,26(2):34-40
    5潘洋宇,李迎,王栓虎.微型机械技术和应用前景.兵工自动化,2003,22(5):12-14
    6 Steven A shley. Palm-size spy plane [J] . Mechanical Engineering, 1998,11(3):74-78.
    7刘大响,金捷.21世纪世界航空动力技术发展趋势与展望.中国工程科学.2004,6(9):1-8
    8 Cross C J, Lew is T J. Smart materials and structures for future aircraft engines[R]. AIAA-2002-0080, 2002: 14-17
    9梁德旺,黄国平.厘米级微型涡轮喷气发动机主要研究进展.燃气涡轮试验与研究.2004,17(2):9-13
    10 Alan H. Epstein. Millimeter-scale, MEMS gas turbine engines. Proceedings of ASME Turbo Expo 2003 Power for Land, Sea and Air June 16-19, 2003, Atlanta, Georgia, USA.
    11 Amit Mehra, Xin Zhang, Arturo A. Ayón. A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9(4):517-527
    12 SPADACCINT C M, ZHANG X, CADOU C P, et al. Preliminary department of a hydrocarbon-fueled catalytic micro-combustor [J] . Sensors and actuator A, 2003:219-224
    13 Amit Mehra, Arturo A. Ay′on, Membe, IEEE, Ian A. Waitz, and Martin A. Schmidt. Microfabrication of High-Temperature Silicon Devices Using Wafer Bonding and Deep Reactive Ion Etching. IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEMS. 1999, 8(2):152-160
    14 A.H.Epstein, S. D. Senturia. Power MEMS and Microengines. 1997 International Conference on Solid-State Sensors and Actuators Chicago. 1997:753-756
    15 Chuang-Chia Lin, Reza Ghodssi, Arturo A. Fabrication and Characterization of a Micro Turbine Bearing Rig. Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on: 529-533
    16 C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang. High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines. Journal of Engineering for Gas Turbines and Power. 2003, (125):709-719
    17 Ravi Khanna. MEMS fabrication perspectives from the MIT Microengine Projec. Surface and Coatings Technology. 2003 :273–280
    18张力,徐宗俊,王英章.微型涡轮发动机设计与制造的若干关键技术.重庆大学学报.2003,26(11):23-26
    19蒋庄德,王久洪,卢德江.微型旋转冲压发动机设计与分析.机械工程学报.2008,44(11):20-25
    20钟晓晖,勾昱君,王子兵,吕庆.微型汪克尔发动机冷却系统设计及传热模拟.热科学与技术.2008,7(4):337-341
    21汤小川,张宇峰,张博,王喜莲,刘晓为.基于MEMS技术的微型直接甲醇燃料电池的设计与制作.纳米技术与精密工程.2009,7(1):76-80
    22胡国新,王明磊,李艳红.一种微细型腔内氢气与空气预混燃烧的实验研究.2004,24(1):201-204
    23林忠华,胡国清,刘文艳.微机电系统的发展及其应用.纳米技术与精密工程.2004,2(2):117-123
    24王琪民.微型机械导论.中国科学技术大学出版社, 2003:1-53
    25段润保,赵砚江,毛言理.微机械(MEMS)与微细加工技术.河北理工学院学报.2004,26(2):34-40
    26 http://www.mmc.or.jp/info/magazine/14e/act/14/fan1.htm. Web page of Micromachine Center
    27孙雅洲,梁迎春,董申.微小型化机床的研制.哈尔滨工业大学学报.2005,37(5):591-593
    28孙雅洲,张庆春,高强,梁迎春.微细铣削毛刺形成研究.现代制造工程.2006,(4):69-72
    29孙雅洲,王蕊,陈时锦,程凯,梁迎春.微型机床的结构动态特性分析.机械设计与制造.2005,(1):94-95
    30 Chris J Morgan, R Ryan Vallance, Eric R Marsh. Micro Machining Glass with Polycrystalline Diamond Tools Shaped by Micro Electro Discharge Machining. Journal of Micromechanics and Microengineering. 2004,(14):1687-1692
    31 Young-bong Bang, Kyung-min Lee. 5-axis micro milling machine for machining micro parts. International Journal of Advanced Manufacturing Technology, 2005, 25:888-894
    32 Eckart Uhlmann, Sascha Piltz, Kai Schauer. Micro Milling of Sintered Tungsten–copper Composite Materials. Journal of Materials Processing Technology. 2005,(167):402-407
    33 W. Wang, S.H. Kweon, S.H. Yang. A Study on Roughness of the Micro-end-milled Surface Produced by a Miniatured Machine Tool. Journal of Material Processing Technology. 2005,(162-163):702-708
    34 M.T. Zaman, A. Senthil Kumar, M. Rahman, S. Sreeram. A Three-Dimensional Analytical Cutting Force Model for Micro End Milling Operation. International Journal of Machine Tool & Manufacture. 2006, (460):353-366
    35 Chee Keong Ng, Shreyes N. Melkote, M. Rahmanb, A. Senthil Kumar. Experimental Study of Micro- and Mano- Scale Cutting of Aluminum 7075-T6. International Journal of Machine Tool & Manufacture. 2006, (46):929-936
    36明平美,朱荻,胡洋洋,曾永彬.基于UV-LIGA技术制造微结构器件试验研究.中国机械工程.2006,17(21):2216-2220
    37 M. Tanaka. Development of Desktop Machining Microfactory. RIKEN Review, 2001,(34):46-49
    38 Z. Lu, Takeshi Yoneyama. Micro Cutting in the Micro Lathe Turning System. International Journal of Machine Tools & Manufacutre. 1999,(39):1171-1183
    39张明君,殷国富,袁光辉.大长径比微细轴的车削工艺研究.机械工程学报.2005,41(2):137-141
    40 F. Munnik, F. Benninger, S. Mikhailov, et al. High Aspect Ratio, 3D Structuring of Photoresist Materials by Ion Beam LIGA. Microelectronic Engineering. 2003,(67-68):96-103
    41李以贵,杉山进.基于移动LIGA工艺的微针阵列的设计与制作.纳米技术与精密工程.2009,7(1):81-84
    42胡洋洋,朱荻,曾永彬,明平美.UV-LIGA制作微细群电极工艺研究.电加工与模具.2008,1:29-32
    43程吉凤,丁桂甫,姚锦元,汪红,刘瑞.基于UV-LIGA技术的微孔异形喷丝头制备.传感器与微系统.2009,28(3):58-60
    44 W. Ehrfeld, M. Begemann, U. Berg, A. Lohf, F. Michel, M. Nienhaus. Highly parallel mass fabrication and assembly of microdevices. Microsystem Technologies. 2001,7:145~150
    45 Wolfgang Ehrfeld. Electrochemistry and Microsystems. Electrochimica Acta 48 (2003): 2857-2868
    46刘刚,田杨超等. LIGA技术制造微流量计的研究.微细加工技术.2000,4:73-76
    47 Heeren Paul-Henri's, Reynaerts Dominiek, Van Brussel Hendrik. Micro-structuring of silicon by electro-discharge machining (EDM) - part I: theory. Sensors and Actuators, A: Physical. 1997, 60(5): 212-218
    48 T. Masuzawa, M. Fujino, K. Kobayashi. Wire Electro-Discharge Grinding for Micro-Machining. Annals of the CIRP. 1985, 34(1):431-434
    49 Heeren Paul-Henri's, Reynaerts Dominiek, Van Brussel Hendrik, etc. Microstructuring of silicon by electro-discharge machining (EDM) - Part II: Applications. Sensors and Actuators, A: Physical. 1997, 61(6): 379-386
    50 Ehrfeld Wolfgang, Lehr Heinz, etc. Microelectro discharge machining as a technology in micromachining. Proceedings of SPIE - The International Society for Optical Engineering. 1996, 2879(10): 332-337
    51 Song Xiaozhong, Reynaerts Dominiek, Meeusen Wim, Brussel Hendrik. Investigation of micro-EDM for silicon microstructure fabrication. Society of Photo-Optical Instrumentation Engineers. 1999, 3(3680):792-799
    52汤泽隆,真柄卓司,今井祥人,左藤达志.小徑電极を用いた微細创成放電加工(第2报).型技術.1997, 12(8): 104-105
    53 Guenat O. T, Hirata T, Akashi T, Gretillat M-A, de Rooij N. F. Pneumatic air table realized by micro-EDM. Journal of Microelectromechanical Systems, IEEE. 1998,7(12):380-386
    54赵万生,韦红雨.微细电火花加工的新进展.仪器仪表学报.1996,17(1)
    55 H. M. Chow, B. H. Yan, F. Y .Huang. Micro slit machining using electro-discharge machining with a modified disk electrode(RDM) . Journal of Materials Processing Technology. 1999,91: 161-166
    56 Yu ZY, Masuzawa T, Fujino M. Micro-EDM for three-dimensional cavities Development of uniform wear method. Annals of the CIRP 1998;47(1):169–172
    57谷村尚,山口哲司,三井公之.微細形狀放電加工によるマイクロ部品形狀測定泳探針の制作.精密工学会誌.1999, 65 (9):1296-1300
    58王振龙,赵万生,狄士春,迟关心.微细电火花加工技术的研究进展.中国机械工程.2002,13(10) :894-898
    59 T. Masuzawa. Three-Dimensional Micro-machining by Machine Tools. Annals of the CIRP. 1997,46(2):621-628
    60 Z. Y. Yu, T. Masuzawa, M. Fujino. 3D Micro-EDM with Simply Shaped Electrode. Annals of the CIRP. 1997,46(1): 1-8
    61 Z. Y. Yu, T. Masuzawa, M. Fujino. 3D Micro-EDM with Simply Shaped Electrode. Part I: Machining of Cavities with Sharp Corners and Electrode Wear Compensation. International Journal of Electrical Machining. 1998,3:7-12
    62 Z. Y. Yu, T. Masuzawa, M. Fujino. 3D Micro-EDM with Simply Shaped Electrode. Part 2: Machining and Error Analysis of Conical and Spherical Cavities. International Journal of Electrical Machining. 1998,3:71-78
    63刘光壮.基于分层去除制造的电火花铣削加工技术的研究.哈尔滨工业大学博士学位论文.1999,11
    64王振龙.微细电火花加工关键技术研究.哈尔滨工业大学博士学位论文.2000,8
    65王振龙,赵万生,迟关心,刘光壮.微三维结构型腔的微细电火花加工.微细加工技术.2000,(1):71-74
    66 H. Paul-Henri’s, R. Dominiek, V. B. Hendrik. Microstructuring of Silicon by Electro-Discharge Machining-partⅡ: Theory. Sensors and Actuators, A: Physical. 1997, 61(6): 379-386
    67王振龙,赵万生,刘光壮.基于分层制造原理的微细电火花加工技术研究.机械工程学报.2002,38(2):22-26
    68赵万生.先进电火花加工技术.北京国防工业出版社.2003,10
    69 Yu Zuyuan. Three Dimensional Micro-EDM Using Simple Electrodes. Disseration of the University of Tokyo. 1997,(352):149-155
    70赵万生,王振龙,郭东明.国外特种加工技术的最新进展.电加工与模具.1999, (5):12-19
    71 Zuyuan Yu,Takahisa Masuzawa,Masatoshi Fujino. 3D Micro-EDM with Simply Shaped Electrode. Annals of the CIRP. 1997,46(1):1-8
    72 G. Thornell and S. Johansson. Microprocessing at the Fingertips. Journal of Micromechanics and microengineering. 1998,(8):251-262
    73 K. Takahata, S. Aoki. Fine Surface Finishing Method for 3-Dimensional MicroStructures. MEMS’96. 1996:73-78
    74 R. Dominiek, M. Wim, V. B. Hendrik. Production of Seismic Mass Suspensions in Silicon by Electro-Discharge Machining. Journal of Micromechanics and Microengineering. 1999,(9): 206-210
    75 R. Dominiek, V. B. Hendrik, M. Wim. A Review on Micro Electro-Discharge Machining of Metal and Silicon. Proceedings of 1st EUPEN Conference, Bremen.1999:24-31
    76 X. Song, R. Dominiek, M. Wim, B. Hendrik. Investigation of Micro-EDM for Silicon Microstructure Fabrication. Society of Photo-Optical Instrumentation Engineers. 1999,3680(3):792-799
    77赵万生,杨洋.基于IGES文件的电火花铣削的分层策略研究.电加工与模具.2002,5:21-24
    78 Wansheng Zhao, Yang Yang, Zhenlong Wang, Yong Zhang, A CAD/CAM system for micro-ED-milling of small 3D freeform cavity. Journal of Materials Processing Technology 149 (2004) 573–578
    79 Zhao Wansheng,Yang Yang,Wang Zhenlong. Research on ED-milling to Complex Cavity Based on Lamination Machining. Chinese Journal of Mechanical Engineering. 2003,2:205-208
    80杨洋,王振龙,赵万生.微细电火花铣削CAD/CAM方法研究.机械工程学报.2003,9:96-99
    81杨洋.微细分层电火花加工CAD/CAM研究.哈尔滨工业大学博士学位论文.2004:42-49
    82 F. Michel, W. Ehrfeld, O. Koch, H. P. Gruber: EDM for micro fabrication-technology and applications, Proc. Int. Seminar on Precision Engineering and Micro Technology, Aachen 2000, 127-139
    83 Koch, W. Ehrfeld, F. Michel, H. P. Gruber: Recent progress in micro-electro discharge machining- Part 1: Technology, The 13th Int. Symp. on Electro Machining. Spain, 2001, 154-163
    84 http://www.fanuc.co.jp/en/product/robocut/alpha0icp/index.html
    85于滨.微细电火花线切割加工控制系统及工艺规律研究.哈尔滨工业大学博士论文.2003:32-65
    86 Yunn-Shiuan Liao, Shun-Tong Chen, Chang-Sheng Lin. Development of a High Precision Tabletop Versatile CNC Wire-EDM for Making Intricate Micro Parts. Journal of Micromechanics and Microengineering. 2005,(15):245-253
    87 J. Wang, B. Ravami. Computer Aided Contouring Operation for Traveling Wire Electric Discharge Machining (EDM). Computer-Aided Design. 2003,(35):925-934
    88 F. Klocke, D. Lung, D. Thomaidis, et al. Using Ultra Thin Electrodes to Produce Micro-parts with Wire-EDM. Journal of Materials Processing Technology. 2004,(149):579-584
    89 Mu-Tian Yan, Pin-Hsum Huang. Accuracy Improvement of Wire-EDM by Real-time Wire Tension Control. International Journal of Machine Tools & Manufacture. 2004,(44):807-814
    90 Mu-Tian Yan, Chen-Wei Huang, Chi-Cheng Fang, et al. Development of a Prototype Micro-Wire-EDM Machine. Journal of Materials Processing Technology. 2004,(149):99-105
    91 AN Lu-ling, WANG Wei, ZHOU Lai-shui, et al. Four-axis Wire-EDM Simulation of Complicated Models. Transactions of Nanjing University of Aeronautics & Astronautics. 2005,22(4):322-328
    92 L. Tunna, W. O’Neill, A. Khan, et al. Analysis of Laer Micro Drilled Holes Through Aluminium for Micro-manufacturing Applications. Optics and Lasers in Engineering. 2005,(43):937-950
    93 V. Lendraitis, M. Brikas, V. Snitka, et al. Fabrication of Actuator for Nanopositioning Using Laser Micro-machining. Microelectronic Engineering. 2006,(83):1212-1215
    94 C. S. Lim, M. H. Hong, A. Senthil Kumar, et al. Fabrication of Concave Micro Lens Array Using Laser Patterning and Isotropic Etching. International Journal of Machine Tools & Manufacture. 2006,(46):552-558
    95 W. Perrie, A. Rushton, M. Gill, et al. Femtosecond Laser Micro-structuring of Alumina Ceramic. Applied Surface Science. 2005,(248):213-217
    96 Sandra Zoppel, Maria Farsari, Robert Merz, et al. Laser Micro Machining of 3C-SiC Single Crystals. Microelectronic Engineering. 2006,(83):1400-1402
    97 Peter Heryl, Thomas Olschewski, Roelof W. Wijnaendts. Manufacturing of 3D Structures for Micro-tools Using Laser Ablation. Microelectronic Engineering. 2001,(57-58):775-780
    98 Mark Heaton. Laser Machining for Smooth Continuous 3-D Contouring for Micro Airflow Blades. Proc. of SPIE, 2003,(5824):216-223
    99刘路,解晶莹.微能源.电源技术.2002,26(6):470-474
    100 Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses versatile method with lithographical precision. Electrochimica Acta. 2003,48:3213-3219
    101 D Zhu, K Wang, J M Yang. Design of Electrode Profile in Electrochemical Manufacturing Process. CIRP Annals 2003, 52(1): 169-172
    102 Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi, Chong Nam Chu. Electro-chemical Micro Drilling Using Ultra Short Pulses. Precision Engineering. 2004,(28):129-134
    103 Y. J Xue, D. Zhu, F. Zhao. Electrodeposition and mechanical properties of Ni-La2O3 nanocomposites. Journal of Materials Science, 2004, 39: 4063-4066
    104李小海,赵万生,王振龙.微细电解加工脉冲电源的研制.电加工与模具.2004,(5):56-59
    105 Itiro O R,早川伸哉,系魚川文広等.微細放電加工にぉけゐ付着加工を利用した造型法.電気加工学会全国大会講演論文集.1999, 11:89-92
    106早川伸哉,糸魚川文広,中村隆等.微細放電付着加工次にょる3元形状創成法.精密工学会誌.2000, 66(12):1943-1947
    107 K. P. Rajurkar, Z. Y. Wang, A. Kuppattan. Micro Removal of Ceramic Material (Al2O3) in the Precision Ultrasonic Machining. Precision Engineering. 1999,(23):73-78
    108 Deng Jianxin, Lee Taichiu. Ultrasonic Machining of Alumina-based Ceramic Composites. Journal of the European Ceramic Society. 2002,(22):1235-1241
    109 K. Egashira, K. Mizutani and T. Nagao. Ultrasonic Vibration Drilling of Microholes in Glass. Annals of the CIRP. 2002,51(1):339-342
    110 X. Q. Sun, T. masuzawa, M. Fujino. Micro. Ultrasonic and Self-Aligned Multilayer Machining/Assembly Technologies for 3Dmicromachines. IEEE. 1996,(124):312-317
    111 Z.Y. Yu, K.P. Rajurkar, A. Tandon. Study of 3D Micro-ultrasonic Machining. Journal of Manufacturing Science and Engineering. 2004, (126):727-732
    112李德桃,邓军,潘剑锋,杨文明,薛宏.微动力机电系统和微发动机的研究进展.世界科技研究与发展.2002,1:24-27
    113 Epstein A H, Senturia.S D, Anathasuresh G,et al. Power MEMS and Microengines. Proceedings of the 1997 International Conference on Solid-State Swnsors and Actuators. Chicago, 1997. 754-756
    114 Waitz I A, Gauba G, Tzeng Y S. Combusustors for Micro-gas Turbine Engines.Journal of Fluids Engineering, 1998, 120(1): 109-117
    115 Spearing S M, Chen K S. Micro-gas Turbine Engine Materials and Structures. Ceramic Engineering and Science Procedings, 1997, 18(4);11-18
    116 Epstein A H. Micro Turbo machinery(Gas tuibine engine). US PATENT: 5, 932, 940
    117 Epstein A H, Breuer K S, Lang J H, et al. Micro Gas Turbine Generators. Massachusetts Inst of Tech, Cambridge. Gas Turbinelab, Final Report. 1 May 1996-31 Jul 2000, 2000
    118方昌德.基于微机电技术的微型燃气涡轮发动机.International Aviation. 2000,3:49-50
    119唐云冰,罗贵火.厘米级微型发动机转子系统分析.航空发动机.2005,31(2):20-23
    120彭泽琰,刘刚.航空燃气轮机原理.国防工业出版社.2000
    121航空发动机设计手册总编委会.航空发动机设计手册(8) .2000:201-246
    122徐忠.离心压缩机原理.机械工业出版社.1988
    123薛庆栾.离心压气机三维流场数值计算与修改设计.南京航空航天大学硕士学位论文.2003
    124裴景玉,邓容,胡德金.微细电火花加工的底面轮廓模型及定长补偿方法.电加工与模具.2007(6):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700