带有手性辅助剂的2-萘甲酸烷基酯的光化学二聚反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制光化学反应的立体选择性是一项具有挑战性的课题。2-萘甲酸烷基酯光化学二聚生成四种类立方烷结构的二聚体,其中的三种二聚体具有手性,并具有刚性骨架,有可能用于超分子组装和不对称催化。本论文利用手性辅助剂战略和手性微反应器战略,成功的提高了类立方烷二聚体的立体选择性。
     1、手性辅助剂控制的2-萘甲酸烷基酯光二聚反应的立体选择性:合成了9个带有手性辅助剂的2-萘甲酸烷基酯,研究了它们在有机溶剂中的光二聚反应。发现它们生成四种类立方烷二聚体:anti~(HH),syn~(HH),anti~(HT)和syn~(HT)。手性辅助剂对anti~(HH), anti~(HT)和syn~(HT)的生成具有显著的不对称诱导作用,anti~(HH)的非对映异构体过量(d.e.)值高达近60%。
     2、手性辅助剂和手性微反应器(γ-环糊精)共同控制的2-萘甲酸烷基酯光二聚反应的立体选择性:成功地利用手性辅助剂和手性微反应器(γ-环糊精)相结合的方法控制了2-萘甲酸烷基酯光二聚反应的区域选择性和立体选择性。底物和γ-环糊精的包结物在固相中可以发生光二聚反应,生成的anti~(HH)二聚体的d.e.值高达94%,syn~(HT)的d.e.值高达88%,是迄今为止报道的环糊精诱导光化学反应立体选择性的最好结果。与溶液中进行的光二聚反应相比,在γ-环糊精固体包结物中生成的主要二聚体antiHH的立体选择性发生反转,该类现象未见文献报道。
Enantioselectivity in organic phototransformations continues to be one of the main topics of current interest. Of the various approaches chiral auxiliary strategy and chiral microreactor strategy have shown considerable promise. In the former strategy a removable chiral auxiliary is connected to the prochiral starting substrate by a covalent bond. The chiral auxiliary in this case can bring about asymmetric induction during the photochemical transformation, resulting in diastereomers. The yielding diastereomers can be easily separated even in the case of low asymmetric induction. After the removal of the chiral auxiliary, the enantiomerically pure products can be obtained. In the chiral microreactor strategy inherently chiral hosts or chirally modified confined media are used as microreactors that provide cavities and/or surfaces to accommodate the prochiral substrate molecules and direct the photochemical reaction to proceed in an enantioselective manner. Among the various chiral microreactors thus far explored cyclodextrins (CDs) are most extensively investigated.
     Previously our group investigated the photodimerization of alkyl 2-naphthoates. Irradiation of these substrates results in four cubane-like phtodimers: head-to-head (HH) or head-to-tail (HT) isomers with syn and anti isomerism, denoted as anti~(HH), anti~(HT), syn~(HT) and syn~(HH). The former three photodimers each consist of a pair of enantiomers. Our interest in the chirality of these photodimers originate from the fact that the cubane-like skeleton of these photodimers is strained and rigid. Thus, the derivatives of these photodimers might act as chiral ligands, and show applications in asymmetric catalysis and in molecular assemblies. In this thesis we made use of chiral auxiliary strategy and chiral microreactor strategy to achieve asymmetric induction in the photodimerizaiton of 9 alkyl 2-naphthoates with chiral auxiliaries. We are pleased to note that excellent chiral induction in the formation of anti~(HH) and syn~(HT) photodimers was obtained.
     1. Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries: We synthesized 9 alkyl 2-naphthoates with different chiral auxiliaries. Irradiation of these 2-naphthoates in organic solution produced four photodimers: anti~(HH), anti~(HT), syn~(HT) and syn~(HH). Diastereomeric excesses close to 60% were achieved in the formation of anti~(HH) photodimer.
     2. Switch and enhancement of diastereoselectivity in the photodimerization of alkyl 2-naphthoates via complexation withγ-cyclodextrin: Irradiation of alkyl 2-naphthoates with chiral auxiliaries included inγ-cyclodextrin in solid state resulted in anti~(HH), anti~(HT) and syn~(HT) photodimers. Diastereomeric excesses of 94% and 88% in the formation of anti~(HH) and syn~(HT) photodimers were obtained respectively. The chirality of anti~(HH) photodimer is switched in comparison with that of solution photodimerization. As far as we are aware, this is the first example of the switching of product chirality and the best result of chiral induction for photochemical reactions with cyclodextrins as chiral host.
引文
1 M. Avalos, R. Babino, P. Cintas, J. L. Jimenez, J. C. Palacios, L. D. Barron,“Absolute asymmetric synthesis under physical fields: facts and fictions”, Chem. Rev., 1998, 98(7), 2391-2404.
    2 S. R. L. Everitt, Y. Inoue. Molecular and Supramolecula Photochemistry, New York: Marcell Dekker, 1999, Vol. 3, Chapter 2.
    3 Y. Inoue,“Asymmetric photochemical reactions in solution”, Chem. Rev., 1992, 92(5), 741-770.
    4 A. Joy, S. Uppili, M. R. Netherton, J. R. Scheffer, V. Ramamurthy,“Photochemistry of a tropolone ether and 2,2-dimethyl-1-(2H)-naphthalenones within a zeolite: enhanced diastereoselectivity via confinement”, J. Am. Chem. Soc, 2000, 122(4), 728-729.
    5 R. G. Weiss, Photochemistry in Organized and Constrained Media, Ramamurthy V., Eds.; New York: VCH, 1991, Chapter 14.
    6 S. Tazuke, Y. Miyamoto.“Enantioselective photoisomerization of 1,3-bis(9- anthryl) propan-1-ol in poly(methyl-l-glutamate) matrix”, Chem. Lett., 1986, 15(6), 953-956.
    7 J. R. Scheffer, P. R. Pokkuluri. Photochemistry in Organized and Constrained Media, Ramamurthy V., Eds.; New York: VCH, 1991, Chapter 5.
    8 Y. Rabinsohn, M. Rejta.“Photochemical asymmetric synthesis irradiation of mannitol hexacinnamate”, J. Chem. Soc, Chem. Commun., 1975, 313-314.
    9 (a) R. H. Martin,“Helicenes-some chemical and chiroptical properties”, Chimia 1975, 29, 137-138; (b) Y. Cochez, J. Jespers, V. Libert, K. Mislow, R. H. Martin. Bull Soc Chim Belg 1975, 84, 1033.
    10 B. S. Green, Y. Rabinsohn, M. Rejt?,“Photochemical asymmetric synthesis irradiation of mannitol hexacinnamate”, J. Chem. Soc., Chem. Commun., 1975, 313-314.
    11 H. Buschmann, H.-D. Scharf, N. Hoffmann, P. Esser,“The isoinversion principle ageneral model of chemical selectivity”, Angew. Chem. Int. Ed, 1991, 30, 477-515.
    12 R. Vassen, J. Runsink, H. D. Scharf,“Chirale induktion bei photochemischen reaktionen, VI. asymmetrische steuerung der addition von semipinakol-radikalen an chirale malein- und fumars?ureester”, Chem. Ber., 1986, 119(11), 3492-3497.
    13 K. Okada, F. Samizo, M. Oda,“Photochemical reactions of (9-anthryl)methyl methyl fumarate and maleate: application to asymmetric [4+2]-photocycloaddition reaction”, Tetrahedron. Lett., 1987, 28(33), 3819-3822.
    14 (a) K. Okada, H. Sakai, M. Oda, A. Yoshimura, T. Ohno,“Stereocontrol by energy transfer: photoisomerization of alpha-arylalkyl spiro[cyclopropane-1,9'- fluorene]-2-carboxylate”, J. Am. Chem. Soc., 1987, 109(18), 5534-5535. (b) K. Okada, H. Sakai, M. Oda, A. Yoshmura, T. Ohuo,“Asymmetric induction via intramolecular T2-sensitization: photoisomerization ofα-(9’’-anthryl)ethyl spiro[cyclopropane-1,9’-fluorene]-2-carboxylates”, Tetrahedron. Lett., 1989, 30(9), 1091-1094.
    15 R. Mortezaei, D. Awandi, F. Henin, J. P. Muzart,“Diastereoselective photodeconjugation of alpha, beta.-unsaturated esters”, J. Am. Chem. Soc., 1988, 110(14), 4824-4826.
    16 H. Gotthardt, W. Lenz,“Dependence of the optical induction on the mechanism of the photochemical thietane formation”, Tetrahedron. Lett., 1979, 2879-2880.
    17 A. Nehrings, H.-D. Scharf, J. Runsink,“Photochemical synthesis of an L-erythrose building block and its use in the preparation of methyl 2, 3, O-isopropylidene-β-L-apio-L-furanoside”, Angew. Chem .int. Ed. Engl., 1985, 24, 877-879.
    18 R. Pelzer, H. D. Scharf, H. Buschmann, J. Runsink,“Chirale induktion bei photochemischen reaktionen, XI. derivate der (+)-menthyl-glyoxylate in der Paternò-Büchi-reaktion. einflu? von substituenten im glyoxyls?urerest auf die diastereoselektivit?t”, Chem. Ber., 1989, 122, 1187-1192.
    19 H. Buschmann, H.-D. Scharf, N. Hoffmann, MW. Plath, J. Runsink,“Chiralinduction in photochemical reactions. 10. The principle of isoinversion: a model of stereoselection developed from the diastereoselectivity of the Paterno-Buechi reaction”, J. Am. Chem. Soc., 1989, 111, 5367-5373.
    20 L. M. Tolbert, M. B. Ali.“High optical yields in a photochemical cycloaddition. Lack of cooperativity as a clue to mechanism”, J. Am. Chem. Soc., 1982, 104(6), 1742-1744. 21 (a) G. L. Lange, C. Decicco, M. Lee,“Asymmetric induction in mixed [2+2] photoadditions. Effect of solvent, alkene concentration and temperature”, Tetrahedron. Lett., 1987, 28(25), 2833; (b) G. L. Lange, C. P. Decicco, “Asymmetric induction in mixed photoadditions : employingα,β-unsaturated homochiral ketals”, Tetrahedron Lett, 1988, 29(22), 2613-2614.
    22 K. Bruneel, D. D. Keukeleire, M. Vandewalle,“Study of a model system for asymmetric induction in [2C+2C] photoannelation reactions”, J. Chem. Soc., Perkin. Trans. 1., 1984, 1697-1700.
    23 (a) H. Herzog, H. Koch, H. D. Scharf, J. Runsink.“Chiral induction in photochemical reactions : V. regio- and diastereoselectivity in the photochemical [2+2] cycloaddition of chiral cyclenone-3-carboxylates with 1,1'-diethoxyethene”, Tetrahedron, 1986, 42(21), 3547-3558; (b) H, Herzog, H, Koch, H, D, Scharf, J, Runsink.“Chirale induktion bei photochemischen reaktionen, VII1). doppelte stereodifferenzierung bei der [2+2]-Photocycloaddition”, Chem. Ber., 1987, 120(10), 1737-1740; (c) N. Hoffmann, H. D. Scharf, J. Runsink.“Chiral induction in photochemical reactions-XII. synthesis of chiral cyclobutane derivatives from (+)-5-menthyloxy-2-[5H]-furanone and ethylene”, Tetrahedron Lett, 1989, 30(20), 2637-2638.
    24 (a) V. Ramamurthy,“Organic photochemistry in organized media”, Tetrahedron, 1986, 42(21), 5753-5839. (b) J. R. Scheffer, M. Garcia-Garibay, O. Nalamasu, In: Padwa A, Ed. Organic Photochemistry. Vol. 8. New York and Basel: Marcel Dekker, 1987. 249 (c). V. Ramamurthy, K. Venkatesan,“Photochemical reactions of organiccrystals”, Chem. Rev., 1987, 87(2), 433-481. (d) M. Vaida, R. Popovitz-Bio, L. Leiserowitz, M. Lahav, In Ramamurthy V, Ed. Photochemistry in Organized and Constrained Media. New York: VCH, 1991. 249 (e) H. Koshima, T. Matsuura, “Chiral Crystallization of Achiral Organic Compounds --- Generation of Chirality Without Chiral Environment”, J. Synth. Org. Chem. Jpn., 1998, 56, 268 (f) B. L. Feringa, R. Van Delden,“Absolute asymmetric synthesis: The origin, control, and amplification of chirality”, Angew. Chem. Int. Ed., 1999, 38(23), 3418-3438. (g) 丁奎岭,王三举,吴养洁,松城辉男,山岛秀子。有机化学,1996,16, 1-10.
    25 (a) P. C. Chenchaiah, H. L. Holland, M. F. Richardson,“A new approach to the synthesis of chiral molecules from nonchiral reactants. asymmetric induction by reaction at one surface of a single (nonchiral) crystal”, J. Chem. Soc. Chem. Commun., 1982, 436-437. (b) P. C. Chenchaiah, H. L. Holland, B. Munoz, M. F. Richardson,“Synthesis of chiral molecules from non-chiral crystals by controlled reaction at a single surface”, J. Chem. Soc. Perkin. Trans 2., 1986, 1775-1778.
    26 K. Penzien, G. M. J. Schmidt,“Reaktionen in chiralen kristallen: eine absolute asymmetrische Synthese”, Angew. Chem., 1969, 81, 628.
    27 (a) L. Addadi, M. Lahav,“Photopolymerization of chiral crystals. 1. The planning and execution of a topochemical solid-state asymmetric synthesis with quantitative asymmetric induction”, J. Am. Chem. Soc., 1978, 100(9), 2838-2844. (b) L. Addadi, M. Lahav,“Photopolymerization in chiral crystals. 3. Toward an "absolute" asymmetric synthesis of optically active dimers and polymers with quantitative enantiomeric yield”, J. Am. Chem. Soc, 1979, 101(8), 2152-2156. (c) L. Addadi, M. Lahav,“Photopolymerization in chiral crystals. 4. Engineering of chiral crystals for asymmetric (2π+ 2π) photopolymerization. Execution of an "absolute" asymmetric synthesis with quantitative enantiomeric yield”, J. Am. Chem. Soc., 1982, 104(12), 3422-3429. (d) J. van Mil, L. Addadi, E. Gati, M. Lahav,“Useful impurities for optical resolution. 4. Attempted amplification of optical activity by crystallization of chiral crystals of photopolymerizing dienes in the presence of their topochemicalproducts”, J. Am. Chem. Soc, 1982, 104(12), 3429-3434.
    28 T. Suzuki, T. Fukushima, Y. Yamashita, T. Miyashi.“An absolute asymmetric synthesis of the [2+2] cycloadduct via single crystal-to-single crystal transformation by charge-transfer excitation of solid-state molecular complexes composed of arylolefins and bis[1,2,5]thiadiazolotetracyanoquinodimethane”, J. Am. Chem. Soc, 1994, 116(7), 2793-2803.
    29 (a) M. Sakamoto, M. Takahashi, S. Moriizumi, K. Yamaguchi, T. Fujita, S. Watanabe,“crystal-to-crystal solid-state photochemistry: absolute asymmetric β-thiolactam synthesis from an achiralα,β-unsaturated thioamide”, J. Am. Chem. Soc, 1996, 118(43), 10664-10665. (b) M. Sakamoto, M. Takahashi,W. Arai, T. Mino, K. Yamaguchi, S.Watanabe, T. Fujita,“solid-state photochemistry: absolute asymmetricβ-thiolactam synthesis from achiral N, N-dibenzyl-α,β-unsaturated thioamides”, Tetrahedron, 2000, 56(36), 6795-6804.
    30 T. Hosoya, T. Ohhara, H. Uekusa, Y. Ohashi, Bull.“crystalline-state photoisomerization ofα,β-unsaturated thioamide analyzed by X-rays”, Chem. Soc. Jpn, 2002, 75(10),2147-2151.
    31 (a) S. V. Evans, M. Garcia-Garibay, N. Omkaram, JR. Scheffer, J. Trotter, F. Wireko.“Use of chiral single crystals to convert achiral reactants to chiral products in high optical yield: application to the di-.pi.-methane and Norrish type II photorearrangements”, J. Am. Chem. Soc., 1986, 108(18), 5648-5650. (b) J. Chen, M. Garcia-Garibay, JR. Scheffer.“Chiral handle-induced diastereo -selectivity in an organic photorearrangement: Solution versus solid state results”, Tetrahedron Lett., 1989, 30(45), 6125-6128. (c) J. Chen, PR. Pokkuluri, JR. Scheffer, J. Trotter. “Absolute asymmetric induction differences in dual pathway photoreactions”, Tetrahedron Lett., 1990, 31(47), 6803-6806. (d) A. D. Gudmundsdottir, JR. Scheffer. “Asymmetric induction in the solid state photochemistry of salts of carboxylic acids with optically active amines”, Tetrahedron Lett., 1990, 31(47), 6807-6810. (e) T. Y. Fu, Z. Liu, JR. Scheffer, J. Trotter.“Supramolecular photochemistry of crystallinehost-guest assemblies: absolute asymmetric photorearrangement of the host component”, J. Am. Chem. Soc., 1993, 115(25), 12202-12203. (f) M. Leibovitch, G. Olovsson, JR. Scheffer, J. Trotter.“Determination of the absolute steric course of an enantioselective single crystal-to-single crystal photorearrangement”, J. Am. Chem. Soc., 1997, 119(6), 1462-1463.
    32 M. Sakamoto, M. Takahashi, T. Fujita, T. Nishio, I. Iida, S. Watanabe,“solid-state photochemical reaction of S-phenyl-N-(benzoylformyl) thiocarbamates: "absolute" asymmetric synthesis using the chiral crystal environment”, J. Org. Chem, 1995, 60 (15), 4682-4683.
    33 A. Natarajan, J. T. Mague, V. Ramamurthy.“Asymmetric induction during Yang cyclization ofα-oxoamides: The Power of a covalently linked chiral auxiliary is enhanced in the crystalline state”, J. Am. Chem. Soc, 2005, 127(10), 3568-3576.
    34 F. Y. Zhang, E. J. Corey.“Highly enantioselective michael reactions catalyzed by a chiral quaternary ammonium salt. illustration by asymmetric syntheses of (S)-ornithine and chiral 2-cyclohexenones”, Org. Lett., 2000, 2(8), 1097-1100.
    35 H. E. Zimmerman, T. W. Flechtner.“Excited-state three-ring bond opening in cyclopropyl ketones. Mechanistic organic photochemistry. LX”, J. Am. Chem. Soc. 1970, 92(23), 6931-6935.
    36 K. C. W. Chong, J. Sivaguru, T. Shichi, Y. Yoshimi, V. Ramamurthy, J. R. Scheffer, “Use of chirally modified zeolites and crystals in photochemical asymmetric synthesis”, J. Am. Chem. Soc, 2002, 124, 2858.
    37 I. Azumaya, K. Yamaguchi, I. Okamoto, H. Kagechika, K. Shudo,“Total asymmetric transformation of an N-methylbenzamide.”, J. Am. Chem. Soc., 1995, 117(35), 9083-9084.
    38 M. Sakamoto, T. Iwamoto, N. Nono, M. Ando, W. Arai, T. Mino, T. Fujita, “Memory of chirality generated by spontaneous crystallization and asymmetric synthesis using the frozen chirality”, J. Org. Chem., 2003, 68(3), 942-946.
    39 Y. Inoue; V. Ramamurthy. Chiral photochemistry. New York: Marcel Dekker, 2004.Chap.12.
    40 Y. Inoue; V. Ramamurthy. Chiral photochemistry. New York: Marcel Dekker, 2004. Chap.13.
    41 J. Sivaguru, A. Natarajan, L. S. Kaanumalle, V. Ramamurthy,“Asymmetric photoreactions within zeolites: Role of confinement and alkali metal ions”, Acc. Chem. Res. 2003, 36, 509-521.
    42 M. Leibovitch, G. Olovsson, G. Sundarababu, V. Ramamurthy, J. R. Scheffer, J. Trotter,.“symmetric induction in photochemical reactions conducted in zeolites and in the crystalline state”, J. Am. Chem. Soc. 1996, 118, 1219-1220.
    43 G. Sundarababu, M. Leibovitch, D. R. Corbin, J. R. Scheffer, V. Ramamurthy,“Zeolite as a host for chiral induction”, Chem. Commun. 1996, 2159-2160.
    44 W. Cu, M. Warrier, V. Ramamurthy, G. R. Weiss,“Photo-fries reactions of 1-naphthyl esters in cation-exchanged zeolite Y and polyethylene media”, J. Am. Chem. Soc. 1999, 121, 9467-9468.
    45 K. Pitchuman, M. Wattier, R. G. Weiss, V. Ramamurthy,“Photo-fries reaction of naphthyl esters within zeolites”, Tetrohedron Lett. 1996, 37, 6251-6254.
    46 M. Warrier, L. S. Kaanumalle, V. Ramamurthy,“Alkali metal ion controlled product selectivity during photorearrangements of 1-naphthyl phenyl acylates and dibenzyl ketones within zeolites”. Can. J. Chem., 2003, 81, 620-631.
    47 A. Joy, J. R. Scheffer, V. Ramamurthy,“Chirally modified zeolites as reaction media: Photochemistry of an achiral tropolone ether”, Org. Lett., 2000, 2, 119-121.
    48 L. S. Kaanumalle, J. Sivaguru, R. B. Sunoj, P. H. Lakshminarasimhan, J. Chandrasekhar, V. Ramamurthy.“Light-induced geometric isomerization of 1,2-diphenylcyclopropanes included within Y zeolites: role of cation?guest binding”, J. Org. Chem., 2002, 67 (25), 8711-8720.
    49 N. Arunkumar, K. Wang, V. Ramamurthy, J. R. Scheffer,“Control of enantioselectivity in the photochemical conversion of R-oxoamides into a-lactam derivatives”, Org. Lett., 2002, 4, 1443-1446.
    50 N. Arunkumar, A. Joy, L. S. Kaanumalle, J. R. Scheffer, V. Ramamurthy,“Enhanced enantio- and diastereoselectivity via confinement and cation binding: Yang photocyclization of 2-benzoyladamantane derivatives within zeolites”, J. Org. Chem., 2002, 67, 8339-8350.
    51 (a) D. H. R. Barton, G. Quinkert,“Photochemical transformations. Part VI. Photochemical cleavage of cyclohexadienones”, J. Chem. Soc., 1960, 1-9. (b) G. Quinkert,“Light-induced formation of acids from cyclic ketones”, Angew. Chem., Int. Ed. Engl., 1965, 4, 211-222. (c) G. Quinkert,“Thermally reversible photoisomerizations”, Angew. Chem., Int. Ed. Engl., 1972, 11, 1072-1087. (d) G. Quinkert,“Photochemistry of linearly conjugated cyclohexadienones in solution”, Pure Appl. Chem., 1973, 33, 285-316. (e) G. Quinkert, B. Bronstert, K. R. Schmieder,“Three isomerization routes originating from different electronic states of a linearly-conjugated cyclohexadienone”, Angew. Chem., Int. Ed. Engl., 1972, 11, 637-640.
    52 (a) H. Hart, A. J. Warring,“A new photochemical rearrangement of 2,4-cyclohexadienones”, Tetrahedron Lett., 1965, 325-328. (b) P. M. Collins, H. Hart,“The effect of methyl groups on the photolysis of dienones: pentamethylcyclohexa-2,4-dienones”, J. Chem. Soc. C, 1967, 895-903. (c) J. Griffiths, H. Hart,“Mechanism of 2,4-cyclohexadienone photoisomerization”, J. Am. Chem. Soc., 1968, 90, 3297-3298. (d) J. Griffiths, H. Hart,“A new general photochemical reaction of 2,4-cyclohexadienones”, J. Am. Chem. Soc., 1968, 90, 5296-5298. (e) M. R. Morris, A. J. Warring,“Stereospecific photoisomerisations of 6-acetoxy-2,3,4,5,6- pentamethylcyclohexa-2,4-dienone”, J. Chem. Soc. C, 1971, 3269-3274.
    53 S. Uppili, V. Ramamurthy,“Enhanced enantio- and diastereoselectivities via confinement: Photorearrangement of 2,4-cyclohexadienones included in zeolites”. Org. Lett. 2002, 4, 87-90.
    54 F.-F. Lv, B. Chen, L.-Z. Wu, L.-P. Zhang, C.-H. Tung,“Enhanced stereoselectivityin photoelectrocyclization of tropolone ethers via confinement in chiral inductor-modified lyotropic liquid crystals”, Org. Lett., 2008, 10(16), 3473-3476.
    55童林荟,环糊精化学—基础与应用,科学出版社,2001.
    56 S. Koodanjeri, A. Joy, V. Ramamurthy,“Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers”, Tedrahedron, 2000, 56(36), 7003-7009.
    57 J. Shailaja, S. Karthikeyan, V. Ramamurthy,“Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridones”, Tedrahedron. Lett., 2002, 43(51), 9335-9339.
    58 S. Koodanjeri, V. Ramamurthy.“Cyclodextrin mediated enantio and diastereoselective geometric photoisomerization of diphenylcyclopropane and its derivatives”, Tedrahedron. Lett., 2002, 43(50), 9229-9232.
    59 A. Nakamura, Y. Inoue,“Supramolecular catalysis of the enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate byγ-cyclodextrin”, J. Am. Chem. Soc, 2003, 125(4), 966-972.
    60 H. Ikeda, T. Nihei, A. Ueno.“Template-assisted stereoselective photocyclodimerization of 2-anthracenecarboxylic acid by bispyridinio-appendedγ-cyclodextrin”, J. Org. Chem., 2005, 70(4), 1237-1242.
    61 A. Nakamura, Y. Inoue,“electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate withinγ-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity”, J. Am. Chem. Soc., 2005, 127(15), 5338-5339.
    62 C. Yang, G. Fukuhara, A. Nakamura, Y. Origane, K. Fujita, D. Q. Yuan, T. Mori, T. Wada, Y. Inoue,“Enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A, 6X-diamino-6A, 6X-dideoxy-γ- cyclodextrins: Manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochirogenesis”, J. Photochem. Photobiol. A: Chem., 2005, 173(3), 375-383.
    63 C. Yang, A. Nakamura, G. Fukuhara, Y. Origane, T. Mori, T. Wada, Y. Inoue.“Pressure and temperature-controlled enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate mediated by secondary face- and skeleton-modifiedγ-cyclodextrins”, J. Org. Chem., 2006, 71(8), 3126-3136.
    64 C. Yang, A. Nakamura, T. Wada, Y. Inoue.“Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated byγ-cyclodextrins with a flexible or rigid cap”, Org. Lett., 2006, 8(14), 3005-3008.
    65 C. Yang, M. Nishijima, A. Nakamura, T. Mori, T. Wada, Y. Inoue,“A remarkable stereoselectivity switching upon solid-state versus solution-phase differentiating enantiophotocyclodimerization of 2-anthracenecarboxylic acid mediated by native and 3,6-anhydro-γ-cyclodextrins”, Tedrahedron Lett., 2007, 48(25), 4357-4360.
    66 M. Zandomeneghi,“Photochemical activation of racemic mixtures in biological matrices”, J. Am. Chem. Soc., 1991, 113, 7774-7775.
    67 T. Wada, T. Fujisawa, N. Sugahara, M. Nishijima, T. Mori, A. Nakamura, Y. Inoue,“Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate”, J. Am. Chem. Soc., 2003, 125, 7492-7493.
    68 U. Kragh-Hansen,“Molecular aspects of ligand binding to serum albumin”, Pharmacol. Rev., 1981, 33, 17-53.
    69 Z. Mi, T. G. Burke,“Marked interspecies variations concerning the interactions of camptothecin with serum albumins: a frequency-domain fluorescence spectroscopic study”, Biochemistry., 1994, 33, 12540-12545.
    70 N. Levi-Minzi, M. Zandomeneghi,“Photochemistry in biological matrices: activation of racemic mixtures and interconversion of enantiomers”, J. Am. Chem. Soc., 1992, 114, 9300-9304.
    71 M. Nishijima, T. Wada, T. Mori, T. C. S. Pace, C. Bohne, Y. Inoue.“Highly enantiomeric supramolecular [4+4] photocyclodimerization of 2-anthracene- carboxylate mediated by human serum albumin”, J. Am. Chem. Soc., 2007, 129, 3478-3479.
    72 D. Frederick, S. Greene, L. Misrock, R. James and Jr. Wolfe,“The structure ofanthracene photodimers”, J. Am. Chem. Soc., 1955, 77, 3852-3855.
    73 H. Bouas-Laurent, A. Castellan and J. P. Desvergne, Pure Appl. Chem., 1980, 52, 2633-2648, and references cited therein.
    74 J. S. Bradshaw and G. S. Hammond,“Mechanisms of photochemical reactions in solution. XIX. photodimerization of methyl -naphthyl ether”, J. Am. Chem. Soc., 1963, 85, 3953-3955.
    75 B. K. Selinger and M. J. Sterns,“The crystal structure of 2-methoxynaphthalene photodimer”, J. Org. Chem. 1969, 34, 978-979.
    76 T. Teitei, D. Wells and W. H. F. Sassse,“A cis-photodimer of 2-methoxy- naphthalene”, Tetrahedron Lett., 1974, 4, 367-370.
    77 P. J. Collin, G. Sugowdz, T. Teitei, D. Wells, W. H. F. Sassse,“Derivatives of cis-photodimers of 2-alkoxynaphthalenes”, Aust. J. Chem., 1974, 27, 227-230.
    78 T. Teitei, D. Wells, T. H. Spurling, W. H. F. Sassse,“Photochemical syntheses. Photodimers related to 2-methoxynaphthalene”, Aust. J. Chem., 1978, 31, 85-96.
    79 P. J. Collin, D. B. Roberts, G. Sugowdz, D. Well, W. H. F. Sasse,“The formation of photodimers from dimethyl naphthalene-1, 8-dicarboxylate methyl naphthalene-2-carboxylate”, Tetrahedron Lett., 1972, 4, 321-324.
    80 C. Kowala, G. Sugowdz, W. H. F. Sasse, J. A. Wunderlich,“The X-ray analysis and molecular structure of the photodimer of methyl naphthalene-2-carboxylate”, Tetrahedron Lett., 1972, 46, 4721-4722.
    81 T. Teitei, D. Wells, W. H. F. Sassse,“Photochemical syntheses. Photodimers of derivatives of naphthalenecaboxylic acids”, Aust. J. Chem., 1976, 29, 1783-1790.
    82 T. W. Mattingly, J. E. Lancaster, A. Zweig,“Photodimerization of naphthalene-2- carbonitrile”, Chem. Commoun., 1971, 595-596.
    83 A. Albini, L. Giannantonio,“Photochemical dimerization and cross cycloaddition of 2-naphthalenecarbonitrile”, J. Org. Chem., 1984, 49, 3863-3865.
    84 G.-H. Liao, L. Luo, H.-X. Xu, X.-L. Wu, L. Lei, C.-H. Tung, L.-Z. Wu,“Formation of cubane-like photodimers from 2-naphthalenecarbonitrile”, J. Org. Chem., 2008,73(18), 7345-7348.
    85 E. A. Chandross, C. J. Dempster,“Reversible intramolecular photodimerization of 1, 3-bis(α-naphthyl)propane”, J. Am. Chem. Soc., 1970, 92, 703-704.
    86 R. Todesco, J. Gelan, H. Martens, J. Put,“Photochemistry of non-conjugated bichromophoric systems. Formation of cubane-like photocyclomers in di-(α-naphthyl) compounds”, Tetrahedron, 1983, 39, 1407-1413.
    87 C. H. Tung, L. Z. Wu, Z. Y. Yuan, N. Su,“Zeolites as templates for preparation of large-ring compounds: Intramolecular photocycloaddition of diaryl compounds”, J. Am. Chem. Soc., 1998, 120, 11594-11602.
    88 C.-H. Tung, L.-Z. Wu,“A novel type of molecular assembly: aggregates formed by molecules woth polar chains in nonpolar solvents”, Chem. Phys. Lett., 1995, 244, 157-163.
    89 C.-H. Tung, L.-Z. Wu,“Enhancement of intramolecular excimer formation, photodimerization and energy transfer of naphthalene end-labelled poly(ethylene glycol) oligomers via complexation of alkali-metal and lanthanide cations”, J. Chem. Soc. Faraday Trans. 1996, 92, 1381-1385.
    90 C.-H. Tung, Y. Li, Z.-Q. Yang,“Intramolecular photodimerization of 2- naphthoate: Successful application of hydrophobic forces in the preparation oflarge-ring compounds”, J. Chem. Soc. Faraday Trans., 1994, 90, 947-951.
    91 M. Xu, X.-G. Fu, L.-Z. Wu, L.-P. Zhang and C.-H. Tung.“Photocontrollable ion transport across a liquid membrane by anthracene end-labeled oligo-oxyethlenes”, Phys. Chem. Chem. Phys., 2002, 4, 4030-4035.
    92 X. L. Wu, L. Luo, L. Lei, G. H. Liao, L. Z. Wu and C. H. Tung,“Highly efficient Cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene- labeled poly(ethylene glycol) in aqueous solution”, J. Org. Chem., 2008, 73, 491-494.
    93 L. Lei, L.-Z. Wu, X.-L. Wu, G.-H. Liao, L. Luo, L.-P. Zhang, C.-H. Tung, K.-L. Ding,“Stereochemistry of a cubane-like photodimer of methyl 2-naphthoate”,Tetrahedron. Lett., 2006, 47, 4725-4727.
    
    1.丁奎岭,“不对称催化”,《21世纪有机化学发展战略》,杜灿屏,刘鲁生,张恒主编,化学工业出版社,北京,2001,P135.
    2.邓金根,蒋耀忠,“手性技术”,《21世纪有机化学发展战略》,杜灿屏,刘鲁生,张恒主编,化学工业出版社,北京,2001,P156.
    3. S. R. L. Everitt, Y. Inoue,“Asymmetric Photochemical Reactions in Solution”. In Molecular and Supramolecular Photochemistry; V. Ramamurthy, K. Schanze, Eds.; Marcell Dekker: New York, 1999, Vol. 3, pp 71-130.
    4. J. C. Scaiano, H. Gracia,“Intrazeolite photochemistry: toward supramolecular control of molecules photochemistry”, Acc. Chem. Res. 1999, 32, 783.
    5. Chiral Photochemistry, In Molecular and supramolecular photochemistry; Y. Inoue and V. Ramamurthy, Eds.; Marcell Dekker: New York, 2004, Vol. 11.
    6. H. Buschmann, H.-D. Scharf, N. Hoffmann, P. Esser,“The isoinversion principle-a general model of chemical selectivity”, Angew. Chem. Int. Ed. Engl. 1991, 30, 477-515.
    7. G.-H. Liao, L. Luo, H.-X. Xu, X.-L. Wu, L. Lei, C.-H. Tung, L.-Z. Wu,“Formation of cubane-like photodimers from 2-naphthalenecarbonitrile”, J. Org. Chem. 2008, 73, 7345–7348.
    8. C.-H. Tung, Y. Li, Z.-Q. Yang,“Intramolecular photodimerization of 2-naphthoates: successful application of hydrophobic forces in the preparation of large-ring compounds”, J. Chem. Soc. Faraday Trans, 1994, 90, 947-951.
    9. L. Luo, G.-H. Liao, X.-L. Wu, L. Lei, C.-H. Tung, L.-Z. Wu,“γ-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate”, J. Org. Chem., 2009, 74 (9), 3506–3515.
    1 A. Joy, S. Uppili, M. R. Netherton, J. R. Scheffer, V. Ramamurthy,“Photochemistry of a tropolone ether and 2,2-dimethyl-1-(2H)-naphthalenones within a zeolite: enhanced diastereoselectivity via confinement”, J. Am. Chem. Soc., 2000, 122, 728-729.
    2 R. G. Weiss, Spectrum, 1994, 7(4), 1.
    3 O. E. Zimerman, C. X. Cui, X. C. Wang, T. D. Z. Atvars, R. G. Weiss,“Structural characterization of five polyethylene films and the diffusion of N,N-dimethylaniline within them. Attempted correlations between probe dynamics and pertinent macroscopic and microscopic polymer properties”Polymer, 1998, 39, 1177-1185.
    4 (a) P. J. Philips,“Mechanism of orientation of aromatic molecules by stretched polyethylene”, Chem. Rev., 1990, 90, 425-436. and references cited therein. (b) Y. T. Jang, P. J. Phillips, E. W. Thulstrup,“Some comments on the mechanism of orientation of organic solutes in stretched polyethylene”, Chem. Phys. Lett., 1982, 93, 66-73.
    5 T. Mori, Y. Inoue, and R. G. Weiss,“Enhanced photodecarboxylation of an aryl ester in polyethylene films”, Org. Lett., 2003, 5 (24), 4661-4664.
    6 M. Pattabiraman, A. Natarajan, L. S. Kaanumalle, V. Ramamurthy,“Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril andγ-cyclodextrin”, Org. Lett., 2005, 7, 529-532.
    7 S. Y. Jon, Y. H. Ko, S. H. Park, H. J. Kim, K. Kim,“A facile, stereoselective [2 +2] photoreaction mediated by cucurbit[8]uril”, Chem. Commun., 2001, 1938-1939.
    8 M. Pattabiraman, A. Natarajan, R. Kaliappan, J. T. Mague, V. Ramamurthy,“Template directed photodimerization of trans-1,2-bis(n-pyridyl)ethylenes andstilbazoles in water”, Chem. Commun., 2005, 4542-4544.
    9 M. V. S. N. Maddipatla, L. S. Kaanumalle, A. Natarajan, M. Pattabiraman, V. Ramamurthy,“Preorientation of olefins toward a single photodimer: cucurbituril-mediated photodimerization of protonated azastilbenes in water”, Langmuir 2007, 23, 7545-755
    10 N. Barooah, B. C. Pemberton, J. Sivaguru,“Manipulating photochemical reactivity of coumarins within cucurbituril nanocavities”, Org. Lett., 2008, 10 (15), 3339-3342.
    11 W. L. Mock, T. A. Irra, J. P. Wepsiec, T. L. Manimaran,“Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis”, J. Org. Chem., 1983, 48, 3619-3620.
    12 W. L. Mock, T. A. Irra, J. P. Wepsiec, M. Adhya,“Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation”, J. Org. Chem., 1989, 54, 5302-5308.
    13 X.-L. Wu, L. Luo, L.Lei, G.-H. Liao, L.-Z. Wu, C.-H. Tung,“Highly efficient cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene- labeled poly(ethylene glycol) in aqueous solution”, J. Org. Chem. 2008, 73, 491-494.
    1 S. R. L. Everitt, Y. Inoue,“Asymmetric Photochemical Reactions in Solution”. In Molecular and Supramolecular Photochemistry; V. Ramamurthy, K. Schanze, Eds.; Marcell Dekker: New York, 1999, Vol. 3, pp 71-130.
    2 J. C. Scaiano, H. Gracia,“Intrazeolite photochemistry: toward supramolecular control of molecules photochemistry”, Acc. Chem. Res. 1999, 32, 783.
    3 A. Nehrings, H.-D. Scharf, J. Runsink,“Photochemical synthesis of an L-erythrose building block and its use in the preparation of methyl 2, 3, O-isopropylidene-β-L-apio-L-furanoside”, Angew. Chem .int. Ed. Engl., 1985, 24, 877-879.
    4 B. S. Green, Y. Rabinsohn, M. Rejt?,“Photochemical asymmetric synthesis irradiation of mannitol hexacinnamate”, J. Chem. Soc., Chem. Commun., 1975, 313-314.
    5 Chiral Photochemistry, In Molecular and supramolecular photochemistry; Y. Inoue and V. Ramamurthy, Eds.; Marcell Dekker: New York, 2004, Vol. 11.
    6 A. Nakamura, Y. Inoue,“Supramolecular catalysis of the enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate byγ-cyclodextrin”, J. Am. Chem. Soc, 2003, 125(4), 966-972.
    7 T. Wada, T. Fujisawa, N. Sugahara, M. Nishijima, T. Mori, A. Nakamura, Y. Inoue,“Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate”, J. Am. Chem. Soc., 2003, 125, 7492-7493.
    8 K. Vizvardi, K. Desmet, I. Luyten, P. Sandra, G. Hoornaert and E. Van der Eycken,“Asymmetric induction in intramolecular meta photocycloaddition: cyclodextrin-mediated solid-Phase photochemistry of various phenoxyalkenes”, Org. Lett., 2001, 3, 1173-1175.
    9武小玲,类立方烷结构萘甲酸酯光二聚衍生物的合成,中国科学院理化技术研究所
    10廖桂红, 2-氰基萘的光二聚反应,中国科学院理化技术研究所

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700