木质素基吸水吸附材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是大量存在的、一种可再生的生物质资源。其开发和利用有着重要价值。目前工业木质素的主要来源是制浆造纸T业。制浆造纸工业的木质素通常作为燃料使用,有的甚至未经处理直接排放,造成严重的资源浪费和环境污染。如何合理利用木质素这一宗自然恩赐给我们的可再生资源,减少环境污染,变废为宝,具有重要而现实的意义。越来越多的研究表明各种工业木质素及其改性产物表现出对重金属离子良好的吸附性能。吸水树脂作为‘种新型的高分子功能材料,不仅可用作吸水和保水材料,而且还可用于各种金属离子的吸附分离富集。结合木质素基吸附材料、高吸水性树脂及废水污染处理的发展方向,整合木质素的吸附功能和高吸水性树脂的吸水吸附特性,本工作以工业副产物木质素(磺酸盐)等为原料,合成了三种木质素基吸水吸附材料,研究了木质素基吸水吸附材料的吸水保水性能及对于重金属离子Pb2+、Zn2+、Cd2+的吸附性能。
     采用溶液聚合法,成功将可再生生物质资源木质素磺酸盐与丙烯酰胺及部分中和的丙烯酸接枝共聚,合成了木质素基吸水吸附材料LS-g-P(AA-co-AM);同时,通过田口实验设计优化和miniTab软件分析,获得了LS-g-P(AA-co-AM)的最佳合成条件为:交联剂N,N’-亚甲基双丙烯酰胺浓度CNMBA为7.5×10-4mol/L,引发剂过硫酸钾浓度CKPS为4.0×10-3mol/L,木质素磺酸镁用量cLS为2.5g/L,丙烯酸中和度N为60及丙烯酰胺与丙烯酸的摩尔用量比rAM/AA为1:1,程序升温:55℃反应2.5 h,65℃反应2.5 h,75℃反应3 h。在最优条件下合成的LS-g-P(AA-co-AM)具有良好的吸水性能,重复吸水性能,在自然状态及高温下的保水性能。LS-g-P(AA-co-AM)的平衡吸蒸馏水倍率为1156g/g,平衡吸0.09%盐水倍率为451g/g,吸0.9%盐水倍率为122g/g。
     在LS-g-P(AA-co-AM)的基础上,成功地将木质素基吸水吸附材料LS-g-P(AA-co-AM)与价廉的无机矿物膨润上(BT)复合,合成了LS-g-P(AA-co-AM)/BT复合吸水吸附材料。膨润土的最佳用量为15g/L。LS-g-P(AA-co-AM)/BT的平衡吸蒸馏水倍率为1020g/g,平衡吸0.09%盐水倍率为397g/g,吸0.9%盐水倍率为109g/g。LS-g-P(AA-co-AM)与膨润土的复合,改善了吸水吸附材料的吸水凝胶强度,提高了材料的重复吸水性能、保水性能和热稳定性,降低了材料的生产成本。
     在LS-g-P(AA-co-AM)的基础上,进一步将另一种价廉的可再生生物质资源淀粉引入到了吸水吸附材料中,合成了(木质素/淀粉)接枝部分中和丙烯酸、丙烯酰胺吸水吸附材料(LS/St)-g-P(AA-co-AM)。淀粉的最佳用量为5g/L。(LS/St)-g-P(AA-co-AM)的平衡吸蒸馏水倍率为1299.6g/g,平衡吸0.09%盐水倍率为292.6g/g,吸0.9%盐水倍率为85 g/g。淀粉的引入,提高了材料的吸蒸馏水倍率,改善了材料的重复吸水性能、保水性能并降低了成本。
     形貌分析表明LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料均形成了多孔性网络结构:LS-g-P(AA-co-AM)呈多孔性海绵状网络结构,LS-g-P(AA-co-AM)/BT的膨润土成剥离状态分散在LS-g-P(AA-co-AM)多孔海绵状网络结构中,(LS/St)-g-P(AA-co-AM)则形成了蜂窝状三维网络结构。
     热稳定性研究表明,LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料最大失重阶段的起始失重温度均高于330℃,其最大失重温度均高于360℃,说明三种木质素基吸水吸附材料均具有较好的耐热性能。
     吸水性材料中木质素磺酸盐的引入,提高了材料网络内的离子强度。多孔性网络结构的形成和离子强度的提高正是LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种材料显示优良性能的根本原因。
     LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料吸蒸馏水及吸盐水的动力学行为都可以较好地用方程:dQ/dt=k(Q-Qt)2进行拟合。
     LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料作为吸附剂对Zn2+、Pb2+、Cd2+离子均显示了良好的吸附性能,具有极快的吸附速率和较高的吸附容量。在吸附剂用量为1.000g/L,起始离子浓度为2.000 mmol/L时,LS-g-P(AA-co-AM)对Zn2+、Pb2+、Cd2+的平衡吸附密度分别为1.3552 mmol/g、1.6021 mmol/g、1.1902 mmol/g, LS-g-P(AA-co-AM)/BT对zn2+、Pb2+、Cd2+的平衡吸附密度分别为1.1239 mmol/g、1.5612 mmol/g、1.4413 mmol/g, (LS/St)-g-P(AA-co-AM)对Zn2+、Pb2+、Cd2+的平衡吸附密度分别为1.2339 mmol/g、1.4456 mmol/g、1.4690 mmol/g。三种材料吸附金属离子的吸附机理包含化学吸附、离子交换吸附、物理吸附等多种机理。
     Lagergren准二级动力学方程可以较好地拟合LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料作为吸附剂对Zn2+、Pb2+、Cd2+的动力学吸附数据;吸附质浓度和吸附剂浓度均影响LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)吸附Zn2+、Pb2+、Cd2+体系的吸附行为,平衡吸附密度随起始离子浓度增大而增大,随吸附剂浓度增大而降低;除Freundlich吸附等温方程基本可以用来拟合LS-g-P(AA-co-AM)吸附zn2+体系的吸附行为外,Langmuir吸附等温方程和Freundlich吸附等温方程均不能用来描述LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)吸附Zn2+、Pb2+、Cd2+体系的吸附行为。
     LS-g-P(AA-co-AM)、LS-g-P(AA-co-AM)/BT、(LS/St)-g-P(AA-co-AM)三种木质素基吸水吸附材料具有良好的综合性能:优良的吸水性能、保水性能和耐盐性、良好的对Zn2+、Pb2+、Cd2+等重金属离子的吸附性能。因此,三种木质素基吸水吸附材料有望应用于吸水保水、盐碱地的治理改良、吸肥保肥、废水处理等领域。
Lignin is an abundant and renewable biomass resource and its development and utilization is of great value. The main source of industrial lignin is pulping process & paper making industry. Most of the lignin from pulping process & paper making industry is incinerated and discharged directly without any treatment, which makes great resource waste and severe pollution. Thus, rationally utilize the natural renewable resource lignin and decrease the environment pollution is of great significance. Increasing researches on lignin show that many kinds of industrial lignin and their modified products feature high adsorption for many heavy metal ions. Superabsorbent resin is a new functional material with high water absorbency and water retention capability and can also be used to adsorb heavy metal ions. To combine the features and functions of lignin-based adsorbents and superabsorbent resins and the development tendency of wastewater treatment, three lignin-based water absorbent and heavy metal ion adsorbent materials were synthesized and their water absorbency, water retention and adsorption for Pb2+, Zn2+, Cd2+ were studied.
     The lignin-based water absorbent and heavy metal ion adsorbent material (LS-g-P(AA-co-AM)) was synthesized by graft-copolymerization of renewable biomass resource lignin with acrylamide and partially neutralized acrylic acid through solution polymerization. The optimized synthesis conditions, acquired through Taguchi experimental design and miniTab software analysis were as follows. Crosslinker N,N'-methylene-bisacrylamide CNMBA 7.5×10-4 mol/L, initiator potassium persulfate CKPS 4.0×10-3 mol/L, magnesium lignosulfonate CMgLS 2.5 g/L, neutralization degree of acrylic acid NAA 60 and mole ratio of acrylamide to acrylic acid RAM/AA 1:1. Reaction duration and temperature were programmed as 55℃for 2.5 hrs, then 65℃for 2.5 hrs and followed by 75℃for 3 hrs to guarantee complete copolymerization and therefore, good products. The optimized final (LS-g-P(AA-co-AM)) features good water absorption, repeat water absorption and water retention under natural condition and/or high temperature. The confirmed maximum water absorbency,0.09% saline absorbency and 0.9% saline absorbency of the optimized final (LS-g-P(AA-co-AM)) is 1156 g/g,451 g/g and 122 g/g, respectively.
     On the basis of synthesis of (LS-g-P(AA-co-AM)), the cheap inorganic Bentonite (BT) was employed to in-situ react with (LS-g-P(AA-co-AM)) to prepare LS-g-P(AA-co-AM)/BT composite water absorbent and heavy metal adsorbent material. The optimal dosage of Bentonite is 15g/L. The maximum water absorbency,0.09% saline absorbency and 0.9% saline absorbency of the optimized final (LS-g-P(AA-co-AM)/BT) is 1020 g/g,397 g/g and 109 g/g, respectively. After composition, the material's strength after water absorbing, repeat water absorption, water retention and thermal stability are improved while its cost is lowered.
     Again, on the basis of synthesis of (LS-g-P(AA-co-AM)), the cheap, renewable biomass resource-starch (St) was introduced into the lignin-based water absorbent and heavy metal ion adsorbent material to synthesized lignin/starch-graft-acrylic acid-co-acrylamide (LS/St)-g-P(AA-co-AM). The optimal dosage of starch is 5 g/L. The maximum water absorbency,0.09% saline absorbency and 0.9% saline absorbency of the optimized final (LS-g-P(AA-co-AM)/BT) is 1299.6 g/g,296.9 g/g and 85 g/g, respectively. After the introduction of starch, the material's equilibrium water absorbency, repeat water absorption, water retention are also improved while its cost is lowered.
     SEM photographs shows that the three kinds of lignin-based water absorbent and heavy metal ion adsorbent materials, LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) have formed porous network structure. LS-g-P(AA-co-AM) shows a porous sponge net structure. For LS-g-P(AA-co-AM)/BT, Bentonite is stripped and dispersed in the porous sponge net structure of LS-g-P(AA-co-AM). However, (LS/St)-g-P(AA-co-AM) has formed honeycomb three-dimensional net structure.
     Thermogravimetric analysis indicates that LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) feature good thermal stability. Their initial weight-loss temperatures at the maximum mass-change stage are higher than 330℃and their maximum weight-loss temperatures are higher than 360℃.
     The introduction of lignosulfonate into the superabsorbent resin has increased the ion strength in the network of superabsorbent resin. High ion strengths and porous network structures are the foundations for good performances of the three lignin-based water absorbent and heavy metal ion adsorbent materials.
     The kinetic behaviors of LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) absorbing distilled water and 0.09% saline can be simulated by equation dQ/dt=k(Q-Qt)2.
     LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) all shows good adsorption for Zn2+, Pb2+ and Cd2+ cations with fast adsorption rates and high adsorption capabilities.
     As the adsorbent dosage is 1.000 g/L and initial ion concentration is 2.000 mmol/L, the equilibrium adsorption density of LS-g-P(AA-co-AM) for Zn2+, Pb2+ and Cd2+ is 1.3552 mmol/g,1.6021 mmol/g and 1.1902 mmol/g, respectively. Under the same conditions, the equilibrium adsorption density of LS-g-P(AA-co-AM)/BT for Zn2+, Pb2+ and Cd2+ is 1.1239 mmol/g,1.5612 mmol/g and 1.4413 mmol/g, respectively, and the equilibrium adsorption density of (LS/St)-g-P(AA-co-AM) for Zn2+, Pb2+ and Cd2+ is 1.2339 mmol/g,1.4456 mmol/g and 1.4690 mmol/g, respectively. The adsorption mechanism for lignin-based water absorbent and heavy metal ion adsorbent materials-heavy metal ion adsorption systems is not unique and may include chemical adsorption, ion-exchange adsorption, physical adsorption and other mechanisms.
     The kinetic behaviors for LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) adsorbing Zn2+, Pb2+ and Cd2+ can be well simulated by Lagergren quasi-secondary kinetic equation. Both the adsorbent concentration and adsorbate concentration show influences on the adsorption of lignin-based water absorbent and heavy metal ion adsorbent materials-heavy metal ion adsorption systems. Equilibrium adsorption density increases with initial ion concentration (adsorbate concentration) and decreases with adsorbent concentration.
     Except Freundlich adsorption isotherm equation can be barely used to simulate the adsorption of LS-g-P(AA-co-AM)-Zn2+ adsorption system, Langmuir adsorption isotherm equation and Freundlich adsorption isothermal equation can not be employed to describe the adsorption of lignin-based water absorbent and heavy metal ion adsorbent materials-heavy metal ion adsorption systems.
     Since the three lignin-based water absorbent and heavy metal ion adsorbent materials, LS-g-P(AA-co-AM), LS-g-P(AA-co-AM)/BT and (LS/St)-g-P(AA-co-AM) feature good comprehensive performances, i.e., high water absorbency, good water retention, high salt resistance and good adsorption for Zn2+, Pb2+, Cd2+ ions, these three lignin-based water absorbent and heavy metal ion adsorbent materials may be hopefully used in water absorption & retention, saline and alkaline land treatment & improvement, fertilizer absorption & retention, wastewater treatment and other fields.
引文
[1]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [2]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2008.
    [3]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工,2005,22(4):249-252.
    [4]张占业,穆怀珍,黄衍初,刘晨.木质素及其改性物在环境污染防治中的应用研究[J].农业环境科学学报,2006,(S1):360-364.
    [5]中野准三,木质素的化学一基础与应用[M].高洁,鲍禾,李忠正译.北京:轻工业出版社,1988.
    [6]Willis J M, Yean W Q, Goring Pulp D A I. Molecular weights of lignosulphonate and carbohydrate leached from sulphite chemimechanical pulp [J]. J. Wood Chem. Technol.,1987, 7(2):259-268.
    [7]马涛,詹怀宇,王德汉,等.木质素锌肥的研制及生物试验[J].广东造纸,1999,3:9-13.
    [8]穆环珍,黄衍初,杨问波,等.碱法蔗渣制浆黑液木质素磺化反应研究[J].环境化学,2003,22(4):377-379.
    [9]穆环珍,刘晨,郑涛,等.木质素的化学改性方法及其应用[J].农业环境科学学报,2006,25(1):14-18.
    [10]Gierer, J. Chemistry of delignification, Part.2 Reaction of lignin during bleaching [J]. Wood Science Technol.,1986,20 (1),1-33.
    [11]20 Gierer J. Basic principles of bleaching. 1. Cationic and radical processes [J]. Holzforschung,1990,44(6):387-394.
    [12]李广学,王震,刘学苏,等.木质素制备香兰素的工艺研究[J].安徽理工大学学报(自然科学版),2005,25(1):62-65,70.
    [13]邓国华,黄焕琼,韦汉道.电极材料对木质素磺酸盐电氧化效果影响的研究[J].纤维素科学与技术,1995,3(2):26.
    [14]方桂珍,李丽英,任世学.钯/炭催化剂对碱木质素还原反应的催化作用[J].中国造纸学报,2004,19(2):129-133.
    [15]黎先发,贺新生.木质素的微生物降解[J].纤维素科学与技术,2004,12(2):4l-46.
    [16]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中南林学院学报,2003,23(1):79-85.
    [17]Meister J J, Patil D R, Field L R. et al. Synthesis and characterization of graft copolymers from lignin and 2-propenamide [J]. Jour. Poly. Sci.,1984,22:1963-1980.
    [18]Meister J J, Li C T. Synthesis and properties of several cationic graft copolymers of lignin [J]. Macromolecules,1992,25:611-616.
    [19]Meister J J, Chen M J, Chang F F. Make polymers from biomass [J]. Chemtech,1992,22: 430-435.
    [20]Meister J J, Chen M J. Graft 1-phenylethylene copolymers of lignin. I. Synthesis and proof of copolymerization [J]. Macromolecules,1991,24:6843-6848.
    [21]Meister J J, Lathia A, Chang F F. Solvent effects, species and extraction method effects, and coinitiator effects in the grafting of lignin [J], Jour, of Poly. Chem., A. Poly. Chem.,1991,29: 1465-1473.
    [22]Meister J J, Chen M J. Graft copolymers of wood pulp and 1-phenylethene.Ⅰ. Generality of synthesis and proof of copolymerization [J], Jour. Appl. Polymer Chem.,1993,49:935-951.
    [23]Meister J J, Chen M J. Synthesis and identification of graft copolymers of wood pulp and 4-methyl-2-oxy-3-oxopent-4-ene [J]. Jour. Wood Chem. Tech.,1994,14:403-428.
    [24]Gunnells D W, Gardner D J, Chen M J et al. Alteration of the surface energy of wood using thermoplastic graft copolymers [J]. Jour. Wood Chem. Tech.,1995,15 (2):287-302.
    [25]Milstein O, Gersonde R, Huttermann A, et al. Fungal biodegradation of lignopolystyrene graft copolymers [J]. Applied and Environmental Microbiology,1992,58:3225-3232.
    [26]Milstein O, Gersonde R, Huttermann A, et al. Fungal biodegradation of lignin graft copolymers from ethene monomers [J]. J. Macromolecular Sci.,1996, A33:685-702.
    [27]Meister J J, Chen M J, Gunnells D W, et al. Graft copolymers of lignin with 1-ethenylbenzene. II. Properties [J]. Macromolecules,1996,29:1389-1398.
    [28]Bonini C, D'Auria M, Mauriello G. Graft copolymers of lignin from straw with 1-ethenylbenzene:Synthesis and characterization [J]. Journal of Applied Polymer Science, 2001,79:72-79.
    [29]Bonini C, D'Auria M, Ferri R, et al. Graft copolymers of lignin with electron poor alkenes [J]. Journal of Applied Polymer Science,2003,90:1163-1171.
    [30]周道兵,储富祥.木质素磺酸盐的接枝改性及应用研究进展[J].林产化学与工业,2005,25(sup):171-174.
    [3l]张致发,邓国华,叶跃华,等.木素磺酸盐和丙烯酸电化学接枝共聚反应的研究[J].纤维素科学与技术,1998,6(17):55-62.
    [32]梁书发,李建波.木质素磺酸盐-马来酸-丙烯酰胺三元共聚物的合成及其应用[J].西南石油学院学报,1993,15(2):103-107.
    [33]张陶云,黄正,韩文,等.木素农药缓蚀剂的研制与应用[J].中国造纸,1995,(3):35.
    [34]李雪峰.以木质素为原料合成油田化学品的研究进展[J].油田化学,2006,23(2):180-183,119.
    [35]Cetin S, Ozmen S. Use of organsolv lignin in phenol-formaldehyde resins for particle board production [J]. International of Adhesion and Adhesives,2002,22:477.
    [36]刘德启.草浆造纸黑改性制备木质素酚醛树脂结合剂[J].耐火材料,2000,(6):337-339.
    [37]张艳芳,普祥钦.磺化木质素改性脲醛树脂的研制[J].贵州工业大学学报(自然科学版),2002,(1):82-84.
    [38]李建章,周文瑞,黄华云,等.木素——UF胶粘剂的研制[J].中国胶粘剂,1996,5(6):4-5,14.
    [39]孔望清,胡伟,周成刚.木质素胶粘剂的开发和应用[J].中国胶粘剂,2005,14(11):44-48.
    [40]Tan T T M. Cardanol-lignin-based polyurethanes [J]. Polymer International,1996,41:13-16.
    [41]Cui G, Xia W, Chen G, et al. Enhanced mechanical performances of waterborne polyurethane loaded with lignosulfonate and its supramolecular complexes [J]. Journal of Applied Polymer Science,2007,106:4257-4263.
    [42]Nadji H, Bruzzese C, Belgacem M N, et al. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols [J]. Macromol. Mater. Eng.,2005,290: 1009-1016.
    [43]吴耿云,程贤甦,靳艳巧,等.高沸醇木质素合成浇注型聚氨酯弹性体[J].世界橡胶工业,2008,35(8):24-28.
    [44]吴耿云,程贤,杨相玺.高沸醇木质素聚氨酯的合成及其性能[J].精细化工,2006,23(2):165-169.
    [45]Hirose S, HataKeyama T, Hatakeyama H. Synthesis and thermal properties of epoxy resin from ester-carboxylic acid derivative of alcoholysis lignin [J]. Macromol, Symp.,2003,197: 157-169.
    [46]叶菊娣,洪建国.蒙脱土对木质素基环氧树脂材料的影响[J].南京林业大学学报(自然科学版),2006,30(3):75-77.
    [47]胡春平,方桂珍,王献玲,等.麦草碱木质素基环氧树脂的合成[J].东北林业大学学报,2007,35(4):53-55.
    [48]林玮,程贤甦.高沸醇木质素环氧树脂的合成与性能研究[J],纤维素科学与技术,2007,15(2):8-12,16.
    [49]杨相玺,程贤甦.高沸醇木质素环氧树脂改性水泥砂浆的力学性能研究[J].纤维素科学与技术,2006,14(2):18-22.
    [50]Alexy P, Kosikova B, Podstranska G. The effect of blending lignin with polyethylene and polypropylene on physical properties [J]. Polymer,2000,41:4901-4908.
    [51]Canetti M, Bertini F, Chirico A D, et al. Thermal degradation behaviour of isotactic polypropylene blended with lignin [J]. Polymer Degradation and Stability,2006,91:494-498.
    [52]Mishra S B, Mishra A K, Kaushik. N K, et al. Study of performance properties of lignin-based polyblends with polyvinyl chloride [J]. Journal of Materials Processing Technology,2007,183:273-276.
    [53]Fernandes D M, Hechenleitner A A W, Job A E, et al. Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends [J]. Polymer Degradation and Stability,2006,91: 1192-1201.
    [54]Botros S H, Eid M A M, Nageeb Z A. Thermal stability and dielectric relaxation of natural rubber/soda lignin and natural rubber/thiolignin composites [J]. Journal of Applied Polymer Science,2006,99:2504-2511.
    [55]Li J, He Y, Inoue Y. Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin [J]. Polym. Int.,2003,52:949-955.
    [56]Silva M F, Silva C A, Fogo F C, et al. Thermal and FTIR study of polyvinylpyrrolidone/lignin blends [J]. Journal of Thermal Analysis and Calorimetry,2005,79:367-370.
    [57]Canetti M, Bertini F. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites [J]. Composites Science and Technology,2007,67: 3151-3157.
    [58]Koscaronikova B, Gregorova A. Sulfur-free lignin as reinforcing component of styrene-butadiene rubber [J]. Journal of Applied Polymer Science,2005,97(3):924-929.
    [59]Guan C, Chen D, Tang W, et al. Properties and thermal degradation study of blend films with poly(4-vinylpyridine) and lignin [J]. Journal of Applied Polymer Science,2005,97(5): 1875-1879.
    [60]Wei M, Fan L, Huang J, et al. Role of star-like hydroxylpropyl lignin in soy-protein plastics [J]. Macromolecular Materials and Engineering,2006,291(5):524-530.
    [61]Kazayawoko M, Balatinecz J J, Woodhams R T, et al, X-Ray photoelectron spectroscopy of lignocellulosic materials treated with malea ted polypropylenes [J]. J. Wood Chem. and Tech., 1998,18(1):1-26.
    [62]南开大学高分子化学研究所.离子交换与吸附[M].天津:南开大学出版社,1988.
    [63]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995.
    [64]Lalvani, S B, Wiltowski T, Murphy D, et al. Metal removal from process water by lignin [J]. Environmental Technology,1997,18:1163-1168.
    [65]Srivastava S K, Singh A K, Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material [J]. Environ Technol,1994,15: 353-356.
    [66]潘学军,谢来苏,隆言良.氨基酸型木素鳌合树脂的制备[J].纤维素科学与技术,1995,3(3):25-31.
    [67]刘明华,邹锦光,洪树楠,等.造纸黑液制备球形阳离子木质素吸附树脂[J].环境科学,2005,26(5):120-123.
    [68]边艳勇.微波——乙醇萃取木质素及其吸附Cr(Ⅵ)的研究[D].昆明:昆明理工大学,2007.
    [69]谢燕;曾祥钦.巯基木质素的制备及其对重金属离子的吸附[J].水处理技术,2006,32(6):73-74.
    [70]范娟,詹怀宇,刘梦茹.球形木素基离子交换树脂对Cr3+和Cr2072-的吸附研究[J].中国造纸学报,2005,20(1):111-113.
    [71]胡春平.木质素基p-环糊精醚的制备及吸附性能研究[D].哈尔滨:东北林业大学,2007.
    [72]胡春平,方桂珍,李志娜,等.木质素基p-环糊精醚的合成及对Cu2+的吸附性能[J].中国造纸学报,2008,23(4):66-69.
    [73]李爱阳,宋楚华,蔡玲.改性木质素磺酸盐对水中Cr6+的吸附[J].过程工程学报,2008,8(5):877-88.
    [74]何莼,李忠,赵桢霞,等.低成本木质素吸附剂对废水中Pb2+吸附性能的研究[J].离子交换与吸附,2006,22(6):481-488.
    [75]Sciban M, Klasnja M. Wood sawdust and wood originate materials as adsorbents for heavy metal ions [J]. Holz Roh Werkst,2004,62:69-73.
    [76]Crist R H, Martin J R, Crist D R. Use of a novel formulation of Kraft lignin for toxic metal removal from process waters [J]. Separation Science and Technology,2004,39(7):1535-1545, 2004.
    [77]Mohan D, Pittman Jr C U, Steele P H. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent [J]. Journal of Colloid and Interface Science 2006,297:489-504.
    [78]Koch H F, Roundhill D M. Removal of mercury(II) nitrate and other heavy metal ions from aqueous solution by a thiomethylated lignin material [J]. Separation Science and Technology, 2001,36(1):137-143.
    [79]Celik A, Demirbas A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes [J]. Energy Sources,2005,27:1167-1177.
    [80]Acemioglu B, Samil A, Alma M H, et al. Copper(II) removal from aqueous solution by organosolv lignin and its recovery [J]. Journal of Applied Polymer Science,2003,89: 1537-1541.
    [81]Merdy P, Guillon E, Aplincourt M, et al. Copper sorption on a straw lignin:experiments and EPR characterization [J]. Journal of Colloid and Interface Science,2002,245:24-31.
    [82]Guo X, Zhang S, Shan X, Adsorption of metal ions on lignin [J]. Journal of Hazardous Materials,2008,151:134-142.
    [83]Wu Y, Zhang S, Guo X, et al. Adsorption of chromium(Ⅲ) on lignin [J]. Bioresource Technology,2008,99(16):7709-7715.
    [84]Demirbas A, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication [J]. Journal of Hazardous Materials,2004, B109:221-226.
    [85]Demirbas A. Adsorption of Cr(III) and Cr(VI) ions from aqueous solutions on to modified lignin [J]. Energy Sources,2005,27:1449-1455.
    [86]Parajuli D, Inoue K, Ohto K, et al. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel [J]. Reactive & Functional Polymers,2005,62:129-139.
    [87]洪树楠,刘明华,范娟.木质素吸附剂研究现状及进展[J].造纸科学与技术,2004,23(2):38-43.
    [88]吴季怀,林建明,魏月琳,等.高吸水保水材料[M ].北京:化学工业出版社,2005.
    [89]Fanta G F, Burr R C, Russell C R. Copolymers of starch-Ⅰ copolymerization of gelatinized wheat starch with acrylonitrile:Fractionation of copolymer and effect of solvent on copolymer composition [J]. J. Appl. Polymer Sci.,1966,10:926-927.
    [90]Fanta G F, Burr R C, Russell C R. Copolymers of starch-Ⅱ copolymerization of gelatinized wheat starch with acrylonitrile:influence of reaction conditions on copolymer composition [J]. J. Appl. Polymer Sci.,1966, B4:765-769.
    [91]Fanta G F, Burr R C, Russell C R. Copolymers of starch-Ⅲ copolymerization of gelatinized wheat starch with acrylonitrile:influence of chain modifiers on copolymer composition [J]. J. Appl. Polymer Sci.,1967,11:457-452.
    [92]邹新禧.超强吸水剂[M](第一版).北京:化学工业出版社,1991.
    [93]薄敏,王海霞,周根树.吸水性凝胶材料的研究现状与发展趋势[J].材料导报,1997,11(4):43-45.
    [94]尹国强.羽毛蛋白基高吸水性树脂的制备与性能研究[D].西安:西北工业大学,2006.
    [95]王品,崔英德,刘展眉.可生物降解高吸水性树脂及其研究进展[J].广州化工,2009,37(2):6-8.
    [96]许晓秋,刘廷栋.高吸水性树脂有工艺与配方[M].北京:化学工业出版社,2004.
    [97]董雪英.高吸水性树脂的生产和市场前景[J].江苏化工,2008,36(2):54-58.
    [98]郑宁来.高吸水性树脂市场需求旺盛[J].国外塑料,2009,27(6):72.
    [99]谢建军,陶国华,罗迎社.我国高吸水树脂发展中存在的问题与趋势[J].精细化工中间体,2008,38(4):7-11.
    [100]Dhodapkar R, Rao N N, Pande S P. Adsorption of cationic dyes on Jalshakti, super absorbent polymer and photocatalytic regeneration of the adsorbent [J]. Reactive & Functional Polymers 2007,67:540-548.
    [101]Swanson C L, Wing R E, Doane W M. Mercury removal from waste water with starch xanthate-cationic polymer complex [J]. Environ. Sci. Technol.,1973,7(7):614-619.
    [102]Rayford W E, Wing R E, and Doane W M, Carboxyl-containing starch graft polymer: preparation and use in heavy metal removal [J]. Journal of Applied Polymer Science,1979, 24:105-113.
    [103]Oren S, Caykara T, Kantoglu 0, et al. Effect of pH, ionic strength, and temperature on uranyl ion adsorption by poly(N-vinyl 2-pyrrolidone-g-tartaric acid) hydrogels [J]. Journal of Applied Polymer Science,2000,78:2219-2226.
    [104]Caykara T, Inam R, Ozyurek C, Radiation synthesis and uranyl-ion adsorption of poly(2-hydroxyethyl methacrylate/maleic acid) hydrogels [J]. Journal of Polymer Science: Part A:Polymer Chemistry,2001,39:277-283.
    [105]Caykara T, Recai Inam R. Determination of the competitive adsorption of heavy metal ions on poly(N-vinyl-2-pyrrolidone/acrylic acid) hydrogels by differential pulse polarography [J]. Journal of Applied Polymer Science,2003,89:2013-2018.
    [106]Inam R, Caykara T, Alan S S. Polarographic determination of the competitive adsorption of U(VI), Pb(II), and Cd(II) ions on poly(N-vinyl-2-pyrrolidone-g-citric acid) hydrogels [J]. Journal of Applied Polymer Science,2003,89:2019-2024.
    [107]Inam R, Gumus Y, Caykara T. Competitive removal of Pb2+, Cd2+, and Zn2+ by poly(acrylamide-co-maleic acid) hydrogels/differential pulse polarographic determination [J], Journal of Applied Polymer Science,2004,94:2401-2406.
    [108]Pekel N, Shiner N, VEN O G, Thermodynamics of adsorption of uranyl ions onto amidoximated poly(acrylonitrile)/poly(N-vinyl-2-pyrrolidone) interpenetrating polymer networks [J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:986-993.
    [109]El-Sayed Hegazy A, El-Salmawy K M, El-Naggar A A. Recovery of heavy metals from aqueous solution by using radiation crosslinked poly(vinyl alcohol) [J]. Journal of Applied Polymer Science,2004,94(4):1649-1656.
    [110]Yilmaz Z, Akkas P K, Sen M, et al. Removal of nitrite ions from aqueous solutions by poly(N,N-dimethylamino ethylmethacrylate) hydrogels [J]. Journal of Applied Polymer Science,2006,102:6023-6027.
    [111]Shawky H A, El-Hag Ali A, El Sheikh R A. Characterization and adsorption properties of the chelating hydrogels derived from natural materials for possible use in the improvement of groundwater quality [J]. Journal of Applied Polymer Science, (2006),99(6):2904-2912.
    [112]Bajpai S K, Johnson S. Poly(acrylamide-co-maleic acid) hydrogels for removal of Cr(VI) from aqueous solutions, Part 1:synthesis and swelling characterization [J]. Journal of Applied Polymer Science,2006,100:2759-2769.
    [113]Bajpai S K, Johnson S. Superabsorbent hydrogels for removal of divalent toxic ions. Part Ⅰ: Synthesis and swelling characterization [J]. Reactive & Functional Polymers,2005,62: 271-283.
    [114]Wasikiewicz J M, Mitomo H, Seko N, et al. Platinum and Palladium ions adsorption at the trace amounts by radiation crosslinked carboxymethylchitin and carboxymethylchitosan hydrogels [J]. Journal of Applied Polymer Science,2007,104:4015-4023.
    [115]Guilherme M R, Reis A V, Paulino A T, et al. Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance [J]. Journal of Applied Polymer Science,2007,105:2903-2909.
    [116]Yetimoglu E K, Kahraman M V, Ercan O, et al. N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels:Synthesis, characterization and their application in the removal of heavy metals [J]. Reactive & Functional Polymers 2007,67:451-460.
    [117]Zhao L, Mitomo H. Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation [J]. Journal of Applied Polymer Science,2008,110(3):1388-1395.
    [118]Kasgoz H, Durmus A, Kasgoz A. Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal [J]. Polym. Adv. Technol.,2008,19:213-220.
    [119]邹新禧.SGPAC型螯合剂吸附重金属离子的研究[J].离子交换与吸附,1991,7(1):15-20.
    [120]邹新禧.羧基淀粉的制备及其吸附性能的研究[J].湘潭大学自然科学学报,1992,(4):99-102.
    [121]邹新禧.两性淀粉螯合剂吸附性能的研究[J].功能高分子学报,1996,9(3):468-474.
    [122]邹新禧.阴、阳离子化红薯淀粉螯合剂的制备及吸附性能的研究[J].湘潭大学自然科学学报,1998,(3):87-91.
    [123]柯金炼.两种高吸水性树脂对地表水及其中几种离子吸附性能的研究[J].福建林业科技,1997,24(02):38-42.
    [124]林杰,刘鸿洲,陈淳,等.高吸水性树脂吸附离子性能的研究[J].亚热带植物通讯,1997,26(1):11-15.
    [125]倪靖滨,李晓冰,刘宇光.吸水树脂脱除重金属离子的研究[J].化学工程师,2002,(3):9,26.
    [126]李杰,马凤国,谭惠民.羧甲基纤维素接枝聚磺甲基化丙烯酰胺的制备及其吸附性能的研究[J].化工进展,2004,23(05):532-535.
    [127]Sun B, Mi Z, Ouyang J, et al. Pb2+ binding by polyaspartyl polymers and their application to Pb2+ removal from glycyrrhizin [J]. Journal of Applied Polymer Science,2005,97:215-2220.
    [128]Sun B, Mi Z, An G. et al. Binding of several heavy metal ions by polyaspartyl polymers and their application to some Chinese herbal medicines [J]. Journal of Applied Polymer Science, 2007,106(4):2736-2745.
    [129]黄美荣,彭前云,李新贵.聚合物吸附剂的改性及其对重金属离子的吸附性能[J].曲阜师范大学学报,2005,31(1):64-69.
    [130]Guo L, Zhang S, Ju B. Removal of Pb(II) from aqueous solution by cross-linked starch phosphate carbamate [J]. Journal of Polymer Research,2006,13:213-217.
    [131]王立君,张丽华,段秀平.丙烯酸-丙烯酰胺共聚物的制备及其重金属离子敏感性研究[J].应用化工,2007,36(11):1114-1117.
    [132]王立君,张丽华,项建亮.聚羟乙基丙烯酰胺螯合树脂合成及其对铜离子吸附性研究[J].化工生产与技术,2007,14(05):21-25.
    [133]陈效珍,徐世美,李欣,等两性半互穿型高吸水树脂对氯化钙的吸附及解吸热力学行为研究[J].新疆大学学报(自然科学版),2008,25(4):461-465.
    [134]马凤国.羧甲基纤维素接枝共聚物的制备及对铜离子的吸附性能[J].高分子材料科学与工程,2008,24(6):46-49.
    [135]郑易安,杨效和,王爱勤.高吸水性树脂Super-1对Pb2+的吸附性能.精细化工,2008,25(11):1045-1048.
    [136]田昀,冯刚.亚硝酸根离子在P(DMAEMA/HEMA)水凝胶中的吸附和扩散性能[J].环境化学,2009,28(1):68-71.
    [137]谢建军,刘新容,梁吉福.PAAAM高吸水树脂在盐液中吸水及吸附性能[J].化工学报,2006,57(7):1715-1717.
    [138]Xie J, Liu X, Liang J. Absorbency and adsorption of poly(acrylic acid-coacrylamide) hydrogel [J]. Journal of Applied Polymer Science,2007,106:1606-1613.
    [139]谢建军,吴海刚,蒋佳星,等.PAAS高吸水树脂对重金属离子盐溶液的吸液及吸附性能[J].功能材料,2007,38(8):1331-1333;
    [140].谢建军,梁吉福,刘新容,等.聚丙烯酸/丙烯酰胺高吸水性树脂吸附性能[J].化工学报,2007,58(7):1762-1767.
    [141]谢建军,梁吉福,何新建,等.丙烯酸系高吸水树脂反相悬浮聚合法制备及其吸附性[J].功能高分子学报,2008,21(4):448-451.
    [142]谢建军,刘赛.PAMPS高吸水性树脂吸附性能[J].高分子材料科学与工程,2008,24(4):15l-154.
    [143]谢建军,刘赛.聚2-丙烯酰胺-2-甲基丙磺酸高吸水性树脂等温吸附重金属离子[J].化学工程,2008,36(5):5-8.
    [144]谢建军,刘新容,粱吉福,等.吸水树脂吸附分离研究进展[J].高分子通报,2007,(9):52-58.
    [145]何刚,耿晨光,罗睿,等.重金属污染的治理及重金属对水生植物的影响[J].贵州农业科学,2008,36(03):147-150,153.
    [146]常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境,2005,24(4): 29-33.
    [147]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学,2003,25(6):15-17.
    [148]成新.太湖流域重金属污染亟待重视[J].水资源保护,2002,(4):39-41.
    [149]Thornton G J P, Walsh P D. Heavy metals in the waters of the Nanty-Fendrod:change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK [J]. The Science of the total environment,2001,278 (1-3):45-55
    [150]Jensen S, Mazhitova Z, Zetterstrom R. Environmental pollution and child health in the AralSeargion in Kazakhstan [J]. The Science of the Total Environment,1997,206(2-3): 187-193.
    [151]朱映川,刘雯,周遗品,等.水体重金属污染现状及其治理方法研究进展[J].广东农业科学,2008,(8):143-146.
    [152]冯彬,张利民.电镀重金属废水治理技术研究现状及展望[J].江苏环境科技,2004,17(3):38-40.
    [153]鲁栋梁,夏璐.重金属废水处理方法与进展[J].化工技术与开发,2008,37(12):32-36.
    [154]马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,(7):10-14.
    [155]Garcia-Diaz A, Philips D T. Principles of experimental design and analysis [M]. London: Chapman & Hall,1995.
    [156]Rafizadeh M, Morshedian J, Ghasemi I, Bolouri A, Experimental relationship for impact strength of PC/ABS blend based on the Taguchi method [J]. Iran. Polym. J.,2005,14: 881-889.
    [157]李建颖.高吸水与高吸油性树脂[M].北京:化学工业出版社.2005.
    [158]刘新容,谢建军,梁吉福.丙烯酸一丙烯酰胺高吸水树脂溶液共聚合成与吸液吸附性能研究[J].精细化工中间体,2006,36(6):56-60.
    [159]Zhao Y, Tan T. Poly(aspartic acid) super-absorbent resin produced by chemical crosslinking and physical freeze/thawing [J]. Macromol. Chem. Phys.,2006,207:1297-1305.
    [160]Qiu H, Yu J. Polyacrylate/(Carboxymethylcellulose Modified Montmorillonite) Superabsorbent Nanocomposite:Preparation and Water Absorbency [J]. Journal of Applied Polymer Science,2008,107:118-123.
    [161]Liu J, Zheng Y, Wang W. Preparation and swelling properties of semi-IPN hydrogels based on chitosan-g-poly(acrylic acid) and phosphorylated polyvinyl alcohol [J]. Journal of Applied Polymer Science,2009,114:643-652.
    [162]Rafizadeh M, Morshedian J, Ghasemi I, et al. Experimental relationship for impact strength of PC/ABS blend based on the Taguchi method [J]. Iran. Polym. J.,2005,14:881-889
    [163]郑用熙.分析化学丛书,第一卷,第七册,分析化学中的数理统计方法(第一版).北京: 科学出版社,1986.
    [164]Raju K M, Raju M P, Synthesis and swelling properties of superabsorbent copolymers [J]. Adv. Polym. Tech.,2001,20:146-154.
    [165]周智敏,苏高申.丙烯酸与丙烯酰胺共聚制备高吸水性树脂[J].化学研究,2008,(3):58-60.
    [166]Pourjavadi A, Ayyari M, Amini-Fazl M S, Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel [J]. Eur. Polym. J., 2008,44:1209-1216.
    [167]Pourjavadi A, Kurdtabar M, Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics [J]. Eur. Polym. J.,2007,43:877-889.
    [168]尹国强.羽毛蛋白基高吸水性树脂的制备与性能研究[D].西安:西北工业大学.2006.
    [169]王爱勤,张俊平.有机-无机高吸水性树脂[M].北京:科学出版社,2006.
    [170]邹新禧.超强吸水剂[M](第二版).北京:化学工业出版社,2002.
    [171]Saraydin D, Karada E, Isikver Y. et al. The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers [J]. Journal of Macromolecular Science, Part A Pure and Applied Chemistry,2004,41(4):419-431.
    [172]Garcia D M, Escobar J L, Bada N, et al. Synthesis and characterization of poly(methacrylic acid) hydrogels for metoclopramide delivery [J]. Eur Polym J,2004,40(8):1637-1643.
    [173]谢建军,刘赛.PAMPS高吸水性树脂吸附性能[J].高分子材料科学与工程,2008,24(4):151-154.
    [174]Al-Asheh S, Banat F. Adsorption of copper and zinc by oil shale [J]. Environmental Geology, 2001,40(6):693-698.
    [175]刘勇,肖丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报(工程科学版),2005,37(5):62-67.
    [176]Jiang K, Sun T, Sun L, et al. Adsorption characteristics of copper, lead, zince and cadmium ions by tourmaline [J]. Journal of Environmental Sciences,2006,18(6):1221-1225.
    [177]赵芳.蛭石—水溶液体系中锌、镉离子吸附特性与离子吸附理论[D].长沙:中南林业科技大学.2006.
    [178]范娟.多功能球形木质素基吸附材料的制备及其性能研究博士论文[D].广州:华南理工大学.2005.
    [179]武振华,孙津生,宋慧平,等.趋磁细菌(MTB)吸附Pd2+的实验研究[J].离子交换与吸附,2006,22(5):385-391.
    [180]Panday K K, Prasad G, singh V N. Copper (II) removal from aqueous solutions by fly ash [J]. Water Research,1985,19:869-873.
    [181]Antonio R. Cestari, Eunice F S, Vieira, Joana D S Matos, et al. Determination of kinetic parameters of Cu(II) interacton with chemically modified thin chitosan membranes [J]. Journal of Colloid and Interface Science,2005,285(1):288-295.
    [182]Selvaraj R, Younghun K, Cheol K J. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas:kinetics and equilibrium [J]. Journal of Colloid and interface Science,2004,273:14-21.
    [183]曹煊,金春姬,刘兴超,等.碱渣对铜(Ⅱ)离子吸附特征的研究[J].环境化学,2006,25(4):414-419.
    [184]Juang R S, Chen M L. Competitive sorption of metal ions from binary sulfate solutions with solvent-impregnated resins [J]. Reactive and Functional Polymers,1997,34(1):93-102.
    [185]Marc A Anderson, Alan J Rubin,水溶液吸附化学——无机物在固-液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译.北京:科学出版社,1989.
    [186]Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum [J]. J. Am. Chem. Soc.,1918,40(9):1361-1403.
    [187]傅献彩,沈文霞,姚天扬.物理化学[M](第四版).北京:高等教育出版社,1990.
    [188]蔡炳新.基础物理化学[M](第二版).北京:科学出版社,2006.
    [189]Panduranga Rao K, Kanniappan E P, Jayaraman K S, et al. Synthesis and characterization of mica-vinyl graft copolymers [J]. J Appl Polym Sci,1981,26(10):3343-3354.
    [190]钟金凤,吴季怀,魏月琳,等.反相悬浮制备高岭土/聚丙烯酸钠盐超吸水性复合材料的研究[J].矿物学报,2005,25(1):55-59.
    [191]姚丽霞,武占省,陶晶,等.无N2下合成钠基膨润土/P(AA-AM)复合吸水树脂的研制[J].化工新型材料,2008,36(5):76-78.
    [192]Lee W F, Chen Y C. Effect of intercalated reactive mica on water absorbency for poly (sodium acrylate) composite superabsorbents [J]. Eur. Polym. J.,2005,41:1605-1612.
    [193]周仕林,陶红,周传庭,等.硅藻土-聚丙烯酰胺系高吸水性复合材料的研制[J].上海理工大学学报,2004,(02):15l-154.
    [194]朱红,邹静,王芳辉,等.聚丙烯酸钾与腐殖酸复合高吸水性树脂的合成研究[J].现代化工,2006,26(11):42-44.
    [195]Li A, Wang A Q, Chen J M. Studies on poly (acrylicacid)/attapulgite superabsorbent composite (I):Synthesis and characterization [J]. J. Appl. Polym. Sci.,2004,92:1596-1603.
    [196]Wu J, Lin J, Zhou M, et al. Synthesis and properties of starch-graft-polyacrylamide/clay super absorbent composite [J]. Macromol. Rapid Comm.,2000,21:1032-1034.
    [197]陈浩,张俊平,王爱勤.有机凹凸棒粘土的制备及复合高吸水性树脂的性能[J].应用化学,2006,23(1):69-73.
    [198]张亚涛,张林,陈欢林.聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂的制备及表征[J],化工学报,2008,59(6):1565-1570.
    [199]杨连利,梁国正.海藻酸钠/累托石插层复合高吸水性树脂制备及性能[J].功能材料,2008,39(10):1706-1709.
    [200]林宝辉,高芒来.一种二价季铵盐在粘土矿物上的吸附[J].物理化学学报,2005,21(7):808-812.
    [201]Santiago F, Mucientes A E, Osorio M, et al. Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour [J]. European Polymer Journal,2007,43:1-9.
    [202]Wan T, Wang X, Yuan Yi, et al. Preparation of bentonite-poly[(acrylic acid)-acrylamide] water superabsorbent by photopolymerization [J]. Polym. Internation.,2006,55:1413-1419.
    [203]杨国华,黄统琳,姚忠亮,等.吸附剂的应用研究现状和进展[J].化学工程与装备,2009,6:84-88,83.
    [204]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998.
    [205]刘亚伟.玉米淀粉生产及转化技术[M].北京:化学工业出版社,2003.
    [206]张燕萍.变性淀粉的制造与应用[M](第二版).北京:化学工业出版社,2007.
    [207]Passauer, L, Liebner F, Fischera K. Starch phosphate hydrogels. Part Ⅰ:synthesis by mono-phosphorylation and cross-linking of starch [J]. Starch/Starke,2009,61(11):621-627.
    [208]Zhang Q, Xu K, Wang P. Study on structure and molecular dynamics of starch/poly(sodium acrylate)-grafted superabsorbent by 13C solid state NMR [J]. Fibers and Polymers,2008,9(3): 271-275.
    [209]Al E, Giiclu G, Iyim T B, et al. Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels [J]. Journal of Applied Polymer Science,2008,109(1):16-22.
    [210]Zhang J, Wang L, W A. Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly(acrylic acid-co-sodium acrylate) [J]. Macromolecular Materials and Engineering,2006,291(6):612-620.
    [211]Wu J, Wei Y, Lin J, et al. Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency [J]. Polymer International,2003,52(12):1909-1912.
    [212]Hua S, Wang A. Preparation and properties of superabsorbent containing starch and sodium humate [J]. Polymers for Advanced Technologies,2008,19(8):1009-1014.
    [213]徐忠,缪铭.淀粉基吸附剂的制备及应用研究进展[J].化学与黏合,2006,28(6):435-439,445.
    [214]宁青菊,肖吴江,李仲谨.淀粉接枝共聚微球对Cd2+的吸附性能研究[J].食品科学,2009,30(1):31-34.
    [215]Chaudhari S, Tare V, Analysis and evaluation of heavy metal uptake and release by insoluble starch xanthate in aqueous environment [J]. Water Science and Technology,1996,34(10): 161-168.
    [216]钱欣,郑荣华,钱伟江,等.淀粉黄原酸酯吸附性能研究[J].离子交换与吸附,2001,17(5):341-345.
    [217]Heinze U, Klemm D, Unger E, et al. New starch phosphate carbamides of high swelling ability:Synthesis and Characterization [J]. Starch,2003,55(2):55-60.
    [218]张力,刘玲玲,李康兰,等.羧基淀粉接枝聚合物对重金属离子的吸附等温方程[J].甘肃科学学报,2009,21(2):51-53.
    [219]王磊,李仲谨,赵新法,等.交联淀粉微球对Cu2+的吸附性能[J].高分子材料科学与工程,2008,24(8):104-107,111.
    [220]粟时金,陈叔涵.高吸水性聚合物[J].化学通报,1983,(4):25-29.
    [221]Lanthong P, Nuisin R, Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents [J]. Carbohydrate Polymers,2006,66:229-245.
    [222]龙剑英.淀粉接枝共聚物的合成及性能研究[D].南京:中国林业科学研究院,2003.
    [223]Dragunski D C, Pawlicka A. Preparation and characterization of starch grafted with toluene poly(propylene oxide) diisocyanate [J]. Mat. Res.,2001,4(2):1516-1439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700