基于六自由度运动平台的力加载控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路快速发展,对测试设备的要求越来越高。基于六自由度并联机构的液压综合试验台,能够模拟列车运行时两车端的运动关系,测量整个车端的刚度、阻尼,测试安装在车端的车钩、贯通道、电器连接器、制动管路等部件的干涉情况,为列车动力学分析和结构设计提供参考依据。在测量车端部件贯通道的刚度、阻尼等参数时,需要对基于六自由度运动平台的力加载控制进行研究。
     本文首先介绍了并联机构的特点、发展和应用概况,以及力控制的研究现状和关键性问题。然后,研究了单通道系统位置环和力环的动态特性,并分析了力传感器测量值的坐标系变换过程,对扩展到六自由度运动平台时的动态响应进行了探讨。在相应分析中,采用了可行的控制策略,并设计了有效的力控制器。
     在单通道系统分析中,首先建立了单出杆阀控缸动力机构及贯通道负载的数学模型,通过仿真分析得到了系统的频宽和动态响应特性。在分析力加载控制特性时,采用了力环包容位置环的控制策略。通过基于导纳控制的力控制器,将力误差信号转换为内部位置环的补偿信号,实现了力加载控制,并获得了系统力控制频宽。由于力加载过程中,贯通道负载参数具有时变性,因此本文分别研究了各参数的变化对单通道系统动态响应的影响。
     分析了基于六自由度运动平台力加载测量原理,研究了力传感器测量值从传感器坐标系到贯通道参数计算辅助坐标系的转换过程,并给出了两者间的变换关系式。通过坐标变换的欧拉角描述,给出了该变换关系式的求解过程。
     六自由运动平台广义输出力大闭环力加载控制分析中,首先改进了单通道系统的控制策略,增加了动压反馈环节。然后针对基于内部位置环的六个单自由度和六自由度同时力加载控制,分别分析了其力环动态响应特性。
With the rapid progress in speed railway, the requirment for test devices becomes higher. The comprehensive test-bed of hydraulic researched in this paper is based on 6-DOF parallel mechanism, which can stimulate the movement relationship between car-sides when the train is running, and can measure the whole inter-train stiffness and damping, and can test the coupler, through passage, electrical connector and the brake pipe. All of these provide basis for dynamic analysis and structural design of the train. When measuring parameters of the through passage,such as stiffness and damping , we need to study the force loading control based on 6-DOF motion platform.
     Firstly, this paper introduces the properties, development and application overview of parallel mechanism, and the research and key issues of force control as well. Then the paper analyzes the position and force loop dynamic characteristics of the single channel system, and discusses the coordinate transformation process of the force sensor value , analyzes the dynamic response of which is discussed when it is extended to 6-DOF motion platform. In the corresponding analysis, it applies a feasible control strategy, and designs an effective force controller.
     In the single channel system analysis, this paper establishes the mathematical model of the valve controlled singal-rod hydraulic cylinder power mechanism and the through passage firstly. Through simulation analysis, it obtains the frequency range and dynamic response characteristics of the system. When it analyzes the properties of force loading control, this paper applies the force control strategy inclusive position loop. Through force controller based on admittance control, the force error signal is converted to compensation signal of the internal position loop. Thus the loading force control is realized, and the frequency range of the force control system as well. Because of the time-varying parameters of the through passage in the force loading process, the paper studies the influence of the parameters changes on the dynamic response of the singal-channel system respectively.
     This thesis analyzes the measurement principle of force loading control based on 6-DOF motion platform, and studies the transformation process of the force sensor value from the sensor coodinate to the aided coordinate, in which the parameters of the through passage are computed. And the transformation relationship between them is getted. By the Euler angles discription of coordinate transformation, the solution process of the transformation relationship is given.
     Finally, in the singal degree of freedom force loading control analysis of 6-DOF motion platform with generalized output force closed-loop, it first improves the control strategy of the singal channel system, and add a dynamic presure feedback loop. Then for the sixl degree of freedom force loading control based on internal position loop, the paper analyzes the dynamic response characteristics of its force loop respectively and together.
引文
1何华武.快速发展的中国高速铁路.学术动态[J]. 2006, (3):2~7
    2华允璋.高速铁路发展战略建议.科技导报[J]. 1995, (4):59~62
    3武业春.武广高速铁路对沿线城市体系发展的影响研究.西南交通大学硕士学位论文[D]. 2009:1~7
    4 J.-P. Merlet. Parallel Robots(Second Edition). Springer[M]. 2006:1~4
    5 Yiu Y. K. Geometry, Dynamics and Control of Parallel Manipulators. Ph.D. Thesis. Hong Kong: The Hong Kong University of Science and Technology[D], 2002
    6何景峰.液压驱动六自由度并联机器人特性及其控制策略研究.哈尔滨工业大学博士学位论文[D]. 2007:1-4,21-26,115-120
    7黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].机械工业出版社,1997.
    8 Llian Bonev. Geometric analysis of parallel mechanisms. Ph.D. Thesis. Canada: Laval University[D], 2002.
    9 Gwinnett, J.E., "Amusement devices", US Patent No. 1,789,680, January 20, 1931.
    10 Gough VE, Whitehall SG. Universal tyre test machine. In Proceeding: the FISITA
    9th International Technical Congress[C], 1962, pp. 117-137.
    11 Stewart D. A platform with six degrees of freedom. Proc. Instn. Mech. Engrs. (Part I)[J], 1965, 180(15): 371-386.
    12 Klaus L. Cappel, "Motion simulator," US Patent No. 3,295,224, January 3, 1967.
    13 Thompson C.J., Campbell P.D. "Tendon suspended platform robot", US Patent No. 5,585,707, December 17, 1996.
    14 Dunlop G.R., Jones T.P. Position analysis of a two DOF parallel mechanism- the Canterbury tracker. Mechanism and Machine Theory[J], 1999, 34(4):599~614
    15吴盛殷,南仁东,彭勃等. FAST计划的现状和期望.中国电子学会第七届学术年会论文集[C]. 2001:7~12
    16研究动态.世界最大单口径射电望远镜进入建设实施阶段.光机电信息[J]. 2009, 8:42~42
    17 Haptic Devices Based on Parallel Mechanisms. State of the Art. http://www.parallemic.org/Haptic Devices Based on Parallel Mechanisms_ State of the Art.htm
    18 Koekebakker SH. Model-based control of a flight simulator motion system. Ph.D. Thesis. Netherlands: Delft University of Technology[D], 2001.
    19张燕燕.飞行模拟器大规模真实地形实时可视化技术的研究与实现.哈尔滨工业大学博士学位论文[D]. 2010:1~7
    20熊坚,曾纪国,管欣.驾驶模拟器用于交通系统仿真的研究[J].系统仿真学报. 2001,13(11):385~387
    21 J.-P. Merlet. Parallel Robots(Second Edition). Springer[M]. 2006:70~93
    22 Comin F. Six degree-of-freedom scanning supports and manipulators based on parallel robots. Review of Scientific Instruments[J], 1995, 66(2):1665~1667
    23林盛.基于Stewart结构并联分载式六维大力传感器研究.大连理工大学博士学位论文[D]. 2010:1~15
    24姚建涛.大量程并联式六维力传感器基础理论与实验研究.燕山大学博士学位论文[D]. 2010:1~9
    25赵现朝. Stewart结构六维力传感器设计理论与应用研究.燕山大学博士学位论文[D]. 2002:1~7
    26陈铁华.六自由度力反馈双向伺服控制策略研究.吉林大学博士学位论文[D]. 2010:1~10
    27吴剑.基于并联六自由度电液伺服机构的单自由度力控制研究[D].浙江大学硕士学位论文. 2006:4-8,22-28,36-41
    28常同立,丛大成,叶正茂等.空间对接地面半物理仿真台系统仿真研究.航空学报[J]. 2007,28(4):975~980
    29殷跃红,朱剑英,顾忠信.机器人力控制研究综述.南京航空航天大学学报[J],1997,29(2):220~230.
    30 Daniel E. Whitney. Historical Perspective and State of the Art in Robot Force Control. 1985 IEEE Int. Conf. on Robotics and Automation[C], 1985, :262~268
    31 Hongan N. Impedance Control An Approach To Manipulation: Part I-theory, Part II-implementation, Part III- Applcation. J Dyn Sys Meas Cont[J],1985:1~24
    32 Homayoun Seraji, Richard Colbough. Recent Force Tracking in Impedance Control. The International Journal of Robotics Research[J]. 1997, 16(1): 97~117
    33 Caccavale F., Chiacchio P., Marino A., etc. Six-DOF Impedance Control of Dual-Arm Cooperative Manipulators. IEEE/ASME Tansactions on Mechatronics[J]. 2008, 13(5): 576~586
    34 A.A.A.Khayyat. Force Tracking of Hydraulic Manipulators Within an Impedance Control Framework. PhD thesis, University of Manitoba[D]. 2000:1~15
    35 Zuev A.V. Filaretov V.F. Features of Designing Combined Force/Position Manipulator Control System. Journal of Computer and Systems Sciences International[J]. 2009, 48(1): 146~154
    36 Xu GZ, Song AG. Adaptive Impedance Control Based on Dynamic Recurrent Fuzzy Neural Network for Upper-limb Rehabilitation Robot. IEEE International Conference on Control and Automation[C],2009:1376~1381
    37 Wang HL, Xie YC. Adaptive Jacobian Position/force Tracking Control of Free-flying Manipulators. Robotics and Autonomous Systems[J]. 2009,57(2):173~181
    38张尚盈.液压驱动并联机器人力控制研究.哈尔滨工业大学博士学位论文[D]. 2009:81~107
    39殷跃红,尉忠信,黄晓曦.智能机器系统力觉及力控制技术[M].国防工业出版社, 2001,4:89~113
    40杨智勇,归丽华,杨秀霞等.基于位置内环的骨骼服力控制方法.中南大学学报(自然科学版)[J]. 2010,41(1):225~230
    41蒋再男,刘宏,黄剑斌等.基于阻抗内环的新型力外环控制策略.航空学报[J]. 2009,30(8):1515~1520
    42吴博.基于定量反馈理论的飞行模拟器运动平台控制系统研究.哈尔滨工业大学博士学位论文[D]. 2007:41~52
    43袁立鹏.并联运动模拟平台及其液压伺服系统的研究.哈尔滨工业大学博士学位论文[D]. 2005:55~59
    44张业建.数字式电液伺服系统控制策略和通信技术研究.哈尔滨工业大学博士学位论文[D]. 2000:20~40
    45 Richard Volpe, Pradeep Khosla. A Theoretical and Experimental Investigation of Explicit Force Control Strategies for Manipulators. IEEE Transactions on Automatic Control[J]. 1993,38(11):1634~1650
    46 James A Maples, Joseph J Becker. Experiment in Force Control of Robotic Manipulators. IEEE Conf. Robot. Automat[C]. 1986:695~702
    47 Hiroshi Ishikawa, Chihiro Sawada, Kei Kawase, Masayuki Takata. Stable Compliance Control and Its Implemetation for a 6 D.O.F. Manipulator. IEEE Conf. Robot. Automat[C]. 1989:98~103
    48 J. De Schudder. A Study of Active Compliant Motion Control Methods for Rigid Manipulators Based on A Generic Scheme. IEEE Conf. Robot. Automat[C]. 1987:1060~1065
    49 Tadokoro S. Control of Parallel Mechanisms. Advanced Robotics[J]. 1994,8(6):559~571
    50 Liu G.F., Wu X.Z., Li Z.X., Inertial Equivalence Principle and Adaptive Control of Redundant Parallel Manipulators. IEEE Conf. Robot. Automat[C]. 2002:834~840
    51 Liu M.J., Li C.X., Li C.N.. Dynamics Analysis of The Gough-Stewart Platform Manipulators. IEEE Transactions on Robotics and Automation[J]. 2000,16(1):94~98
    52 Chen C. T. A Lagrangian Formulation in Terms of Quasi-Coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing[J]. 2003, 46(3): 1084~1090
    53 Harib K. and Srinivasan K. Kinematic and Dynamic Analysis of Stewart Platform-Based Machine Tool Structures. Robotica[J]. 2003, 21: 541~554
    54 Koekebakker S. H., Teerhuis P. C. and van der Weiden A. J. J. Alternative Parameterization in Modeling and Analysis of a Stewart Platform. Selected Topics in Identification, Modeling and Control[J]. 1996, 9: 59~68
    55王春行.液压控制系统.机械工业出版社[M], 2009,1:42-52
    56李洪人.液压控制系统.国防工业出版社[M], 1981,6:10-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700