次固结对准超固结软土固结特性及堆载预压设计的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当高速公路或铁路修建在软土地基时,堆载预压法因其经济有效在软基处理中被广泛应用,但一些已建高速公路表明,经堆载预压处理后的软基在运行期间往往会出现比理论预测大得多的工后沉降,说明单纯采用主固结理论预测软基工后沉降,并以此提出预压持续时间会导致使用后的工后沉降超出预期,带来危害。当工程对路基的沉降要求较高时就会限制堆载预压法在软基处理中的应用。在以往堆载预压的研究中,另一个没有得到足够重视的问题就是土的预固结现象,大部分天然软土都属于准超固结土,但以往对准超固结土研究较少,因此也有必要对准超固结土的固结特性展开进一步研究。
     本文着力于在考虑次固结的理论基础上分析堆载预压的预压持续时间,并同时考虑准超固结土在沉积过程中形成的“预固结”对软土固结所带来的影响,开展一些研究工作。首先引入充分考虑软土次固结和预固结现象的Yin-Graham等效时间流变模型来作为全文研究的理论基础,其次分别按砂井等效为一维均质土层、砂井等效为砂墙地基、砂井地基轴对称固结三种情况来编制有限差分程序来数值模拟并分析次固结对准超固结土固结特性的影响。最后在相关固结特性分析结果的基础上提出确定预压持续时间的计算方法。
     研究结果显示,当软土地基的预固结绝对等效时间较大时,准超固结软土在固结前期,存在着次固结系数ψ越大,孔压消散越快,固结度越大,沉降越小,达到同样沉降所需的时间也越长这一现象,并对现象产生的物理根源进行了定性分析。随着初始绝对等效时间T0的增大,软土预固结效应越显著,固结越快,长期沉降随着初始绝对等效时间的增大而减小,因此在软土固结特性分析和堆载预压设计时要充分考虑软土“预固结”水平的影响,不考虑预固结效应会对固结特性分析和堆载预压设计带来较大的影响。在上述研究结果的基础上提出了在准超固结软土地基上进行堆载预压设计确定预压持续时间的计算方法。
When building the highways and railways in soft soil the surcharge preloading method has been widely used in the treatment of the soft soil foundation for its economic and effective, but some built highways through preloading treatment showed the post-construction settlement was much bigger than theory predicts during the traffic operation period, this indicated it will lead to the post-construction settlement exceeds than expected and bring hazards if using the primary consolidation theory to predict the post-construction settlement of soft soil foundation and put forward the preloading duration. If there are high requirements on settlement it will limit the application of surcharge preloading method in the treament of soft soil foundation. Another issue that didn't get enough attention in the past was the preconsolidation phenomenon of soft soil, most soft soils in natural are quasi over-consolidated soils but previous research on it was few. therefore it is necessary to study further on the consolidation properties of quasi over-consolidated soils.
     This master's thesis focuses on analysising of preloading duration based on the theory that considering secondary consolidation and carrying out some work about the impact of "preconsolidation".which is formed in the sedimentary of the quasi over-consolidated soils, on the consolidation characteristic. Firstly, introducing Yin-Graham equivalent time rheological model that considering the secondary consolidation and preconsolidation phenomenon of soft soils as the theoretical basis of research of full text. Secondly, compiling the finite difference programs to numerically simulate and studying the impact of secondary consolidation on consolidation characteristics of quasi over-consolidated clay according to equivalent conversion between sand wells and one-dimensional homogeneous soil, equivalent conversion between sand wells and sand-wall, axisymmetric consolidation of sand wells separately. Finally, proposing the calculation method of determining the preloading duration on the basis of the related consolidation properties.
     The results show when the absolute equivalent time of preconsolidation of soft clay is large, at the early stage of the quasi over-consolidated soft soil consolidation the larger the creep coefficient is, the faster the pore pressure dissipates, the greater the degree of consolidation has and the smaller the settlement gets, to reach the same settlement the soil that has less creep coefficient will require more time, the physical reason of this phenomenon is then qualitatively analyzed. The results also show that the larger the initial absolute equivalent time is. the more obvious the preconsolidation effect of soft soil shows, the faster the consolidation has. and the greater the long-term settlement gets, therefore "preconsolidation" level of soft soil should be taken into consideration when analysising the consolidation properties of soft soil and designing the surcharge preloading, if not considering the preconsolidation effect it will bring great influences on consolidation properties and surcharge preloading design. On the basis of previous study the calculation method to determine the preloading duration for the design of surcharge preloading in quasi over-consolidated soft soil is put forward.
引文
[1]Aboshi, H. An experimental investigation on the similitude in the consolidation of a soft clay,including the secondary creep settlement[J]. Proc.8th Int. Conf. Soil Mech. Fdn Engng. Moscow 4,1973.3:88.
    [2]Asaoka. A. Observational procedure of settlement prediction[J]. Soils and Foundations,1978,18(4):87-101.
    [3]Barden. L. Consolidation of clay with non-linear viscosity[J].Geotechnique.1965.15 (4):345-362.
    [4]Barron R A. Consolidation of fine-grained soils by drain wells[J]. Transactions of American Society of Civil Engineering.1948.113:718-742.
    [5]Berre T, Iversen K. Oedometer tests with different specimens heights on a clay exhibiting large secondary compression[J]. Geotechnique,1972,22(1):53-70.
    [6]Bjerrum. L. Engineering geology of Norwegian normally consolidated clays[J]. Seventh Rankine Lecture. Geotechnique.1967.17 (2):81-118.
    [7]Bjerrum L. Mourn J. Eide O. Application of electro-osmosis to a foundation problem in a Norwegian quick clay[J].Geotechnique,1967,17:214-235.
    [8]Bjerrum, L. Embankments on soft ground. State of the artreport. Proceedings of the special conference on performance of earth and earth-supported structures. Purdue University, ASCE,1972,1:1-54.
    [9]Bjerrum, L.Geotechnical problems involved in foundations of structures in the North-Sea[J]. Geotechnique,1973,23(3):319-358.
    [10]Borja, R.I.& S.R. Lee, Cam-clay plasticity, part 1:implicit integration of elasto-plastic constitutive relations[J]. Computer Methods in Applied Mechanics and Engineering,1990, 78(1).48-72.
    [11]C C Hird et al. Finite element modeling of vertical drains beneath embankments on soft ground[J]. Geotechnique,1992.42(3):499-511.
    [12]C C Hird et al.Modeling the effect of vertical drains in two-dirriensional finite element analyses of embankments on soft ground [J]. Canadian Geotechnical Journal, 1995,32(5):795-807.
    [13]Christe.I.F., A re-appraisal of Merchant's contribution to the theory of consolidation[J]. Geotechnique,1964.14(4):309-320.
    [14]Christian. J T.& Boehmer. J W. Plane Strain Consolidation by Finite Elements[J]. Journal of Soil Mechanics & Foundations Division,1970,96(7):1435-1457.
    [15]Crawford C B. Interpretation of consolidation tests[J].Soil Mech Found Div. ASCE,1964. 90(5):87-102.
    [16]Den Haan, E. J. A compression model for non-brittle soft clays and peat[J]. Geotechnique, 1996.46(1).1-16.
    [17]Eyring. H. Viscosity, plasticity, diffusion as examples of absolute reaction rates, Chem. Phys.,1936.4,283.
    [18]Garlanger. J. E. The consolidation of soils exhibiting creep under constant effective stress[J]. Geotechnique.1972.22(1).71-78.
    [19]Hansbo S. Consolidation of fine-soils by prefabricated drains[J].Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering.Balkema. Rotterdam. The Netherlands.1981.3:677-682.
    [20]Hu Y-Y. Long-term settlement of soft subsoil clay under rectangular or semi-sinusoidal repeated loading of low amplitude[J]. Canadian Geotechnical.Journal,2010,47(10), 1259-1270.
    [21]imai G, Tang Y X. A constitutive equation of one dimensional consolidation derived from inter-connected tests[J]. Soils and Foundation, Tokyo. Japan,1992,32(2):83-96.
    [22]Indraratna B&Redana I W. Plane-strain modeling of smear effects associated with vertical drains [J]. Geotechnical and Geoenvrionmental Engineering.ASCE,1997,123(5):474-478.
    [23]Jamiolkowski. M., Ladd. C.C.. Germaine. J.T. and Lancellotta.R. New developments in field and laboratory testing of soils[J]. Theme Lecture. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering,1985,1:57-1 54.
    [24]Kabbaj. M., Oka, F., Leroueil. S.& Tavenas. F. Consolidation of natural clays and laboratory testing[J]. In Consolidation of soils:testing and evaluation (eds R. N. Yong and F. C. Townsend), ASTM STP892.1986:71-103.
    [25]Kabbaj. M., Tavenas, F.,&Leroueil. S. In situ and labaratary stress-strain relationship^]. Geotechnique,1988.38(1).83-100.
    [26]Ladd.C.C. Foot,R. Ishihara,K. Schlosser.F. Poulous,H.J. Stress-deformation and strength characteristics[J].Proc.9th ICSMFE,Tokyo,1977.421-494.
    [27]Lekha et al.Consolidation of clays for variable permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering.2003,129(11).1001-1009.
    [28]Leonards,G.A. Proc.9th Int. Conf. Soil Mech.Fdn Engng. Tokyo 3,Panel discussion.1977: 384-386.
    [29]Leoni M, Karstunen M, Vermeer PA. Anisotropic creep model for soft soils[J]. Geotechnique,2008,58(3):215-226.
    [30]Leroueil S. Kabbaj M. Tavenas F. Bouchard R. Stress-strain-strain rate relation for the compressibility of natural sensitive clay[J].Geotechnique.1985.35(2):159-180.
    [31]Leroueil S. Recent development in consolidation of natural clays[J].Canadian Geotechnical Journal,1988,25(1):85-107.
    [32]Mesri,Gholamreza,Rokhsar,Anoushiravan.Theory of consolidation for clays[J].American Society of Civil Engineers,Journal of Gotechnical Engineering Division, 1974.100(8):889-904.
    [33]Mesri G. Godlewski P M. Time and stress compressibility interrelationship[J]. Journal of Geotechnical Engineering Division. ASCE.1977,103(GT5):1067-1070.
    [34]Mesri G, Choi Y K. Settlement analysis of embackment on soft clays[J].Journal of Geotechnical Engineering, ASCE,1985,111(4):441-464.
    [35]Mesri G & Castro A. Ca/Cc concept and Ko during secondary compression[J].J. Geotech. Engrg,1987.113(3):231-247.
    [36]Miskasa M. Consolidation of soft clay[M]. Tokyo,Kajima-Shuppan-kai,1963.
    [37]Nader Abbasi. Finite difference approach for consolidation with variable compressibility and permeability[J].Computers and Geotechnics,2007.34(1):41-52.
    [38]Nash. D. F. T.& Ryde S. J. Modelling consolidation accelerated by vertical drains in soils subject to creep[J]. Geotechnique.2001,51(3),257-273.
    [39]Perrone, One Dimensional Computer Analysis of Simultaneous Consolidation and Creep of Clay[M]. Blacksburg, Virginia,1998.12-13.
    [40]Rujikiatkamjorn.Numerical modelling of soft soil stabilized by vertical drains, combining surcharge and vacuum preloading for a storage yard[J]. Canadian Geotechnical Journal. 2007.44(3):326-342.
    [41]Ryde, S. J. The performance and back-analysis of embankments on soft estuarine clay[D]. PhD thesis, University of Bristol,1997.
    [42]Sakai A, Samang L, Miura N. Partially-drained cyclic behavior and application to the settlement of a low embankment road on silty-clay[J]. Soils and Foundations,2003,43(1): 33-46.
    [43]Sandhu R S.&Wilson E L. Finite Element Analysis of Seepage in Elastic Media[J]. Journal of Engineering Mechanics Division. ASCE.1969.
    [44]Schmertmann J H. The mechanical aging of soils[J]. The twenty-fifth Karl Terzaghi Lecture. Journal of geotechnical engineering.1991.117(9):1288-1330.
    [45]Skempton A.W, Bjerrum L. A contribution to settlement analysis of foundation on clay[J].Geotechnique,1957,7(4):168-178.
    [46]Suklje, L. The analysis of the consolidation process by the isotache method. Proc.4th Int. Conf. on SMFE.1957.1.200-206.
    [47]Taylor. D. W. Fundamentals of soil mechanics[M]. London. Chapman & Hall. New York. Wiley,1948.
    [48]Vermeer P.A. and Neher H.P. A soft soil model that account for creep[J].10 Years of PLAXIS International. Balkema. Rotterdam, ISBN 905809040 Ⅹ,1999.
    [49]Wu. T. H.. Rasendiz.D., Neukirchner. R. J. The analysis of consolidation by rate process theory [J]. ASCE,1966,92(SM6),229-248.
    [50]Yin. J. H.&Graham. J. Visco-elastic-plastic modeling of 1-D time-dependent behaviour of clays[J]. Canadian Geotechnical Journal,1989.26(2).199-209.
    [51]Yin. J. H.& Graham. J. Visco-elastic-plastic modeling of 1-D time-dependent behaviour of clays:Reply [J]. Canadian Geotechnical Journal.1990.27(2).262-265.
    [52]Yin. J. H.&Graham. J. Equivalent times and 1-D elastic visco-plastic modeling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal,1994, 31(1).42-52.
    [53]Yin. J. H., Graham. J., Clark. J. I., Gao. L. Modeling unanticipated pore water pressures in soft clays[J]. Canadian Geotechnical Journal.1994.31(5).773-778.
    [54]Yin. J. H., Graham. J. Elastic visco-plastic modelling of one-dimensional consolidation[J]. Geotechnique,1996,46(3),515-527.
    [55]Yin, J. H.&Graham, J. Elastic visco-plastic modeling of the time-dependent stress-strain behavior of soils[J]. Canadian Geolechnical.Journal,1999,36(4),736-745.
    [56]Yin, J. H.&Zhu, J. G. Elastic visco-plastic consolidation modeling of soft clay[J].Chinese Journal of Geotechnical engineering,1999,21 (3).360-365.
    [57]Yoshikuni H, Nakanodo H. Consolidation of soils by vertical drain wells with finite permeability[J]. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering,1974,14(2):35-46.
    [58]蔡新,谢康和.初始孔压非均布条件下涂抹区渗透系数变化的砂井地基固结解[J].岩土工程学报,2010,1:104-108.
    [59]岑仰润.真空预压加固地基的试验及理论研究[博士学位论文].浙江杭州,浙江大学,2003,3-4.
    [60]陈道志.陈东升.软土路基超载设计与卸载时机的确定[J].中南公路工程,2004,3:66-69.
    [61]陈宗基.Three-dimensional theory on the the consolidation and flow of the clay-layers[J].中国科学A辑(英文版),1957.1:203-215.
    [62]陈宗基.粘性层沉陷(由于固结和次时间效应)的二维问题[J].力学学报,1958,1:1-9.
    [63]顾晓鲁,钱鸿缙等.地基与基础(第三册)[M].北京:中国建筑工业出版社,2003:196.
    [64]龚晓南.地基处理新技术[M].西安:陕西科学技术出版社,1997:27-40.
    [65]龚晓南.地基处理手册[M].北京:中国建筑工业出版社,第一版,1988;第三版,2008.
    [66]胡亚元.准塑性的黏弹性模型在黏土中的应用[J].岩土工程学报,2009,3:353-360.
    [67]胡亚元.考虑次压缩时堆载预压的临界沉降和持续时间[C].2009海峡两岸地工技术/岩土工程交流研讨会论文集(大陆卷),北京:中国科学技术出版社,2009.67-72.
    [68]胡亚元.利用EVP模型确定堆载预压法的卸载时机[J].岩土力学,2010,6:1827-1832.
    [69]胡亚元.考虑预固结时堆载预压卸载的沉降标准[J].浙江大学学报(工学版),2010,8:1615-1620.
    [70]黄文熙.水工建筑物土壤地基的沉降量与地基中的应力分布[J].水利学报,1957.3.
    [71]黄文熙.土的工程性质[M].北京.清华大学出版社.1983:343-353.
    [72]蓝柳和.成层软粘土地基非线性流变固结形状研究[博士学位论文].浙江杭州,浙江大学,2002.
    [73]蓝柳和,谢康和.成层软粘土地基粘弹性一维固结半解析解[J].岩土工程学报,2003. 4:105-1]0.
    [74]李国维,杨涛,殷宗泽.公路软基超载预压机理研究[J].岩土工程学报,2006,7:896-901.
    [75]李国维盛维高蒋华忠殷宗泽.超载卸荷后再压缩软土的次压缩特征及变形计算[J].岩土工程学报,2009,1:896-901.
    [76]李豪,高玉峰,刘汉龙,彭劫.Mahfouz A H.真空-堆载联合预压加固软基简化计算方法[J].岩土工程学报.2003,1:58-62.
    [77]李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析[J].中国公路学报,2006,1:1-5.
    [78]李军世.孙钧.上海淤泥质粘土的一维固结-蠕变问题[J].同济大学学报.1999,4:389-392.
    [79]刘吉福.应用沉降速率法计算软土路堤剩余沉降[J].岩土工程学报,2003,3:233-235.
    [80]刘吉福.对工后沉降法确定卸载时机的研究[J].岩石力学与工程学报,2006,10:3518-3522.
    [81]刘吉福.对沉降速率法确定卸载时机的认识[J].岩石力学与工程学报2007.7:3065-3072.
    [82]刘加才,施建勇.一种竖井地基竖墙化等效计算方法[J].岩土力学,2004.11:1782-1785.
    [83]刘世明, 曾国熙.软粘土的次固结变形特性[J].浙江大学学报(自然科学版),1990.11:840-848.
    [84]鲁绪文.娄炎等.超载预压技术加固高速公路软基的试验研究[J].岩石力学与工程学报.2007,7:3277-3282.
    [85]马驰.考虑固结系数为非常数时固结方程差分解[硕士学位论文].北京,铁道科学研究院,2006.
    [86]马时冬.拟似超固结粘土的应力-应变-强度特性[J].岩土工程学报,1987,1:53-60.
    [87]潘秋元.朱向荣.谢康和.关于砂井地基超载预压的若干问题[J].岩土工程学报,1991,2:1-12.
    [88]沈珠江.用有限单元法计算软土地基的固结变形[J].水利水运科技情报,1977.1:7-23.
    [89]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.367.
    [90]王军、陈云敏.考虑土结构性影响的砂井地基固结度计算[J].中国公路学报.2001.2:22-26.
    [91]魏汝龙.三维变形条件下的最终沉降量计算[J].水利水运科学研究,1979,1:50-84.
    [92]文海家,张永兴等.多层超软土大变形固结的有限差分解[J].重庆大学学报(自然科学 版),2003,6:101-104.
    [93]吴晓梅.回填土软土地基蠕变问题的有限元分析[硕士学位论文].天津,天津大学,2006.
    [94]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论[J].岩土工程学报,1989,2:3-17.
    [95]姚仰平.冯兴.UH模型在有限元分析中的应用[J].岩土力学.2010,1:237-245.
    [96]杨涛,李国维.公路软基超载预压卸荷时间确定的沉降速率法研究[J].岩土工程学报,2006,11:1942-1946.
    [97]杨涛,张文彦,李国维,韩东晓.基于双曲线拟合法的超载预压卸荷沉降速率标准研究[J].中国公路学报,2010,5:10-14.
    [98]殷建华,Jack I C.土体与时间相关的一维应力-应变形状、弹黏塑性模型和固结分析[J].岩土力学,1994.15(3):65-80:15(4):65-75.
    [99]殷宗泽.饱和土平面固结问题有限单元法[J].华东水利学院院报,1978,1:71-82.
    [100]殷宗泽,张海波,朱俊高,李国雄.软土的次固结[J].岩土工程学报,2003,5:521-526.
    [101]于芳.非线性流变结构性软粘土弹粘塑性固结理论及砂井地基沉降计算[博士学位论文].江苏南京,河海大学,2006.
    [102]余湘娟.荷载对软土次固结影响的试验研究[J].岩土工程学报,2007,6:913-916.
    [103]曾国熙、杨锡令.砂井地基沉陷分析[J].浙江大学学报,1959.3:34-71.
    [104]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报.1991,3:54-620.
    [105]赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法[J].水利学报,1998,6:53-57.
    [106]赵维炳.排水固结加固软基技术指南[M].北京:人民交通出版社,2005.
    [107]张超杰.结构性软土一维弹粘塑性固结性状研究[博士学位论文].浙江杭州,浙江大学,2003.
    [108]张广永,王靖涛,徐辉.超载预压法的超载比及卸载控制研究[J].华中科技大学学报(城市科学版),2003,4:37-39.
    [109]中华人民共和国交通部.JTG D30-2004公路路基设计规范[S].北京:人民交通出版
    社,2004.
    [110]周汉斌,李光耀.空间地基沉降分析半差分半加权余量法[J].工程力学,1993,2:117-122.
    [111]周全能.软土路基后期沉降推算方法及误差分析[J].岩土力学,2007,3:512-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700