满液式太阳能蒸汽发生器的结构设计及传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家科技支撑计划项目(2008BAJ12B03):建筑物(群)全天候耦合能量传递优化控制及节能关键技术。本文主要集中于满液式太阳能蒸汽发生系统中蒸汽发生器传热过程的研究以及蒸汽发生器的结构设计,研究如何在保证太阳能蒸汽发生器汽化率的前提下,减小传热介质输送功率以及换热面积,进而提高蒸汽发生器的效率,降低蒸汽发生器的成本。本文的研究工作主要包括以下几个部分:
     (1)分析该太阳能蒸汽发生器在运行工况下的热流密度大致范围,以此为基础,研究管束外沸腾在该热流密度范围内管束效应大小及其影响因素,从提高汽化率的角度,选择大间距满液式作为蒸汽发生器的结构类型;
     (2)对换热管数量、长度、管内流速与导热油输送功率间的关系进行研究,在汽化率要求一定的情况下,确定各参数的合理取值,以减小输送功率和换热面积,从而提高蒸汽发生器效率;
     (3)对蒸汽发生器换热过程各部分热阻进行分析,确定蒸汽发生器传热强化的主要途径为降低管内对流换热热阻,然后对对流换热强化机理和泵的输送功率进行理论分析,推导出传热强化的综合评价准则PEC,提出了蒸汽发生器传热强化的方案。
The technology of generating steam of middle or high temperature using solar energy include two types: direct and indirect. To generate steam of high temperature higher than 300℃, the direct method is mainly applied; to generate steam of temperature lower than 300℃, the indirect method is also applied. The indirect method is that the heat-transfer medium circulates in the solar collector tubes to collect solar energy, and then flows into the steam generator to heat water to generate steam. Current research on the indirect method is mainly about the process of collecting solar energy. The research of this thesis is mainly on the heat transfer and economical efficiency of the flooded steam generator. The main content of the research is as follows:
     First, the heat flow density of the steam generator is analyzed, based on the heat flow density, the bundle effect in nucleate boiling outside tube bundle is researched, to improve vaporization rate, flooded-type with large gap of tubes is selected;
     Second, the relation between the number of the tubes, the length of the tubes, the flow velocity in the tubes and the conveying power consumption of the heat transfer medium is researched, on condition that the vaporization rate is fulfilled, the value of these parameters is determined to decrease conveying power consumption and heat transfer area;
     The thermal resistance of each sections of heat transfer is analyzed, then the thermal resistance of convection inside the tubes is discovered to be the main element of the total thermal resistance, then the performance evaluation principle of heat transfer augment is deduced, the methods of heat transfer augment is put forward.
引文
[1]郑美华,黄邦根.全球能源危机条件下的中国经济可持续发展研究[J].北方经济:综合版, 2008(19): 38-39.
    [2]孟浩,陈颖健.我国太阳能利用技术现状及其对策[J].中国科技论坛, 2009(05): 96-101.
    [3]赵媛,赵慧.我国太阳能资源及其开发利用[J].经济地理, 1998, 18(1): 56-61.
    [4]廖伟初,柯秀芳.太阳能集热器在中高温蒸汽生产中的应用[J].节能技术, 2008, 26(4): 328-331.
    [5]郑贤德.制冷原理与装置[M].北京:机械工业出版社, 2000.
    [6] Montes M J, Abanades A, Martinez-Val J M. Performance of a direct steam generation solar thermal power plant[J]. solar energy, 2009(83): 679-689.
    [7]杨敏林,杨晓西,林汝谋.太阳能热发电技术与系统[J].热能动力工程, 2008, 23(3): 221-228.
    [8] Almanza R, Lentz A, Jimenez G. Receiver behavior in direct steam generation with parabolic troughs[J]. Solar Energy, 1997, 61(4): 275-278.
    [9] Montes M J, Abanades A, Martinez-Val J M. Solar multiple optimization for a solar-only thermal power plant,[J]. solar energy, 2009(83): 2165-2176.
    [10] Eck M, Hirsch T. Dynamics and control of parabolic trough collector loops with direct steam generation[J]. Solar Energy, 2007, 12(81): 268-279.
    [11]战栋栋,张红,庄骏.槽式太阳能直接产蒸汽系统接收器的研究进展[J].热力发电, 2009, 38(3): 10-13.
    [12] Helnmut K, Rainer K, Joachim N. Solar thermal power plants for solar countries- technology[J]. Applied Energy, 1995, 52(8): 165-183.
    [13] Odeh S D, Morrison G L, Behnia M. MODELLING OF PARABOLIC TROUGH DIRECT STEAM[J]. Solar Energy, 1998, 62(6): 395-406.
    [14]黄兴华,王启杰,王如竹.基于分布参数模型的满液式蒸发器性能模拟[J].上海交通大学学报, 2004, 38(7): 1164-1169.
    [15]李卉,朱鸿.满液式蒸发器换热管布置的优化设计[J].机电设备, 2008, 25(2): 7-10.
    [16]黄兴华,王启杰.管壳式换热器壳程流动和传热的三维数值模拟[J].化工学报, 2000, 51(3): 297-302.
    [17]吕振海,谷波.污垢的形成及其对壳管式换热器设计的影响[J].制冷与空调(北京), 2009(1): 28-31.
    [18]施明恒.降膜式液膜蒸发器换热特性的实验研究[J].工程热物理学报, 1997, 18(1): 77-80.
    [19]刘振华.表面加工管束的垂下液膜沸腾换热强化的实验研究[J].上海交通大学学报, 1996, 30(11): 127-132.
    [20]王国庆,谭盈科.机械加工表面多孔管降膜沸腾传热的研究[J].化工学报, 1990, 41(1): 87-93.
    [21]郭宜祜,沈吟秋.水平管外喷淋式降膜蒸发的研究[J].化工学报, 1987, 12(4): 467-475.
    [22]刘振华,廖亮.低压条件下紧凑式顺排管束满液型蒸发换热器的强化换热特性研究[J].太阳能学报, 2007, 28(2): 146-150.
    [23]刘振华,杨荣华.低压条件下紧凑叉排管束沸腾换热特性试验[J].机械工程学报, 2007, 43(8): 224-228.
    [24]秋雨豪,刘振华.紧凑满液型叉排管束蒸发换热器内水的沸腾强化换热特性[J].太阳能学报, 2005, 26(5): 708-711.
    [25]刘振华,秋雨豪.紧凑管束蒸发换热器内水的沸腾强化换热特性[J].上海交通大学学报, 2005, 39(8): 1240-1243.
    [26]刘振华,易杰.紧凑型强化传热管管束受限空间内沸腾强化换热特性[J].太阳能学报, 2002, 23(6): 795-798.
    [27]刘振华,陈玉明.满液型海水淡化蒸发器的换热特性研究[J].太阳能学报, 2002, 23(4): 450-454.
    [28]刘振华,陈玉明.紧凑传热管束的池内核沸腾换热强化特性[J].上海交通大学学报, 1999, 33(3): 289-291.
    [29]陈玉明,刘振华.紧凑传热管束受限空间内沸腾强化换热特性[J].太阳能学报, 1999, 20(4): 444-448.
    [30]朱长新,张鸣远.水在水平管束管外池沸腾传热的实验研究[J].西安交通大学学报, 1999, 33(7): 46-49.
    [31]陈学俊,朱长新.水平管束池沸腾换热机理的研究[J].西安交通大学学报, 1994, 28(5): 108-113, 142页.
    [32]温志敏,朱长新.对流循环和滑移汽泡机制在管束核态沸腾换热中的影响[J].化工学报, 1994, 45(1): 45-50.
    [33]朱长新,陈学俊,张鸣远.强化表面管束池沸腾传热的实验研究[J].西安交通大学学报, 1994, 28(5): 114-119.
    [34]刘进荣,沈自求.水平管束沸腾传热的对流与薄层蒸发贡献[J].化工学报, 1998, 49(1): 125-130.
    [35]罗运俊,陶桢.太阳热水器及系统[M].北京:化学工业出版社, 2007.
    [36]郭玉,金洪光,牛远方.国内外导热油的研究进展[J].河北化工, 2008, 31(06): 17-19.
    [37]肖遵林,施钰川.槽式太阳聚光器的研究[J].可再生能源, 2007(2): 10-12.
    [38] Fernandez-Garcia A, Zarza E, Valenzuela L. Parabolic-trough solar collectors and their applications[J]. Renewable and Sustainable Energy Reviews , 2010(14): 1695-1721.
    [39]姚叙红,朱林泉,薛忠晋.菲涅尔透镜提高太阳能利用率的研究[J].红外, 2009, 30(3): 30-34.
    [40]范志林,张耀明,刘德有.太阳能热发电系列文章(7)——塔式太阳能热发电站接收器[J].太阳能, 2007(1): 12-14.
    [41]王军,张耀明,刘德有.太阳能热发电系列文章(9)——DSG技术在槽式太阳能热发电中的实践[J].太阳能, 2007(3): 20-22.
    [42]王如竹,代彦军.太阳能制冷[M].北京:化学工业出版社, 2007.
    [43]邓爱根.浅析降膜式蒸发技术[J].制冷与空调(北京), 2005, 5(3): 29-30.
    [44]陶文铨,杨世铭.传热学[M].北京:高等教育出版社, 1998.
    [45]吴玉庭,杨春信.核态池沸腾换热的数值模拟[J].化工学报, 2002, 53(5): 479-486.
    [46]程尚模,黄素逸,白彩云.传热学[M].北京:高等教育出版社, 1990.
    [47]肖波齐,王宗篪,蒋国平.池沸腾传热的数学分析[J].物理学报, 2009, 58(4): 2523-2527.
    [48]王凤魁,陈嘉宾.池式沸腾人工汽化中心表面汽泡脱离频率的研究[J].化工学报, 1989, 40(4): 438-444.
    [49] Chien L H. Mechanism and Analysis of Nucleate Boiling on surfaces[D]. Pennsyivania State University, 1996.
    [50] Rohsenow W M, Hartnett J P, Ganic E N. Handbook of heat teansfer[M]. New York: John Wiley&Sons, 1985.
    [51] Incropera F P, Dewitt D P. Introduction to heat transfer[M]. New York: John Wiley&Sons, 1996.
    [52] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows[J]. Int Chem Eng, 1976, 16: 359-368.
    [53] Zuber N. On the stability of boiling heat transfer[J]. Trans ASME, 1958, 80(3): 711-716.
    [54]施林德尔E. U.换热器设计手册[Z].机械工业出版社, 1989.
    [55] Xin M D, Long E S. Boiling heat transfer in horizontal annular gaps[J]. Int. J. Heat Mass Transfer, 1989, 21(6): 120-132
    [56]许莉,王世昌,王宇新.水平管外壁薄膜蒸发侧表面传热系数[J].化工学报, 2004, 55(1): 19-24.
    [57]刘振华,张彤.紧凑高效型水平管束降膜蒸发换热器的实验研究[J].热能动力工程, 2004, 19(2): 160-162.
    [58] Bergles A E. Some Perspectives on Enhanced Heat Transfer Second Generation Heat Transfer Technology[J]. ASME Journal of Heat Transfer, 1988, 110: 1082-1096.
    [59] Balaras. Review of Augmentation Techniques for Heat Transfer Surfaces in Single-phase Heat Exchangers[J]. Energy, 1990, 15(10): 899-906.
    [60] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. Int. J. Heat Transfer, 1998, 41(14): 2221-2225.
    [61] Guo Z Y, Tao W Q, Shah R K. The field synergy(coordination) principle and itsapplications in enhancing single phase convective heat transfer[J]. Int. J. Heat Mass Transfer, 2005, 48(9): 1797-1807.
    [62]何雅玲,陶文铨.强化单相对流换热的基本机制[J].机械工程学报, 2009, 45(3): 27-38.
    [63]孟继安,陈泽敬,李志信.管内对流换热的场协同分析及换热强化[J].工程热物理学报, 2003, 24(4): 652-654.
    [64] Manglik R M, Bergles A E. Heat Transfer and pressure Drop Correlations for Twisted-tape Inserts in Isothermal Tubes [J]. Transactions of ASME, 1993, 115: 881-896.
    [65]胡振军,神家锐.扰流元诱发的二次流及其在强化传热中的应用[J].工程热物理学报, 1997, 18(1): 69-72.
    [66] Webb R L. Principle of enhanced heat transfer[M]. New York: John Wiley&Sons, 1994.
    [67]奚同庚.隔热材料的热设计及其在节能中的应用[J].自然杂志, 1983, 6(1): 38-43.
    [68]郭鸿.高温与低温大型贮罐保温结构设计[J].化工设计, 1997, 7(2): 15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700