陆地棉杂种优势及相关性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物,近年来,杂交棉在长江流域、黄河流域已大面积种植。因此,有必要摸索一套杂交棉育种的组配方法,为骨干亲本的构建和应用提供理论依据。本研究选择9个适合黄河流域种植的陆地棉品种(系)作亲本,交配了一套半双列杂交,应用Gardner and Eberhart模型,从群体的角度,分析了多环境下陆地棉杂种优势和配合力反映;并进一步比较了亲本的分子和表型遗传距离与Gardnerand Eberhart模型所估算的多个遗传效应值及F_1表现间的关系,探索杂种优势预测的效果。此外,还分析了个别杂交种后代的开花期、叶形、叶片衰老的遗传变异及后代选择效果等,主要结果和结论如下:
     1.首次应用Gardner and Eberhart模型,分析了陆地棉的杂种优势和配合力反映,结果表明大多数经济和品质性状的品种、杂种优势、杂交组合效应显著,平均杂种优势和品种杂种优势效应不显著,说明加性效应是陆地棉大多数性状杂种优势的遗传基础。通过比较9个亲本产量和产量组成因素的品种、一般配合力(GCA)和品种杂种优势的效应值,表明中棉所41、邯郸109、鲁研棉28是杂种优势利用中比较好的亲本。F_1的大多数性状表现群体平均优势,但群体超亲优势的比例偏低。此外,通过比较亲本和杂交种的遗传和表型相关,发现亲本杂交后部分性状间的遗传关系发生了变化。以上结果表明,可以利用杂种优势改良或提高棉花的大多数性状,在选育杂交棉时,应着重提高结铃数,保持适当的铃重和衣分,协同提高纤维品质。
     2.通过比较分析9个陆地棉品种(系)的分子和表型遗传距离与杂种优势的关系,表明分子和表型遗传距离达极显著的正相关;分别与F_1的单株结铃数、籽棉产量、皮棉产量以及纤维比强度达极显著的负相关,与杂交组合12个农艺性状的SCA效应值均不显著;9亲本的分子和表型平均遗传距离与大多数性状的品种和GCA效应值为显著的负相关,与大多性状的品种杂种优势效应值不显著。
     3.利用主基因和多基因混合模型控制分析了抗3×超鸡463和邯郸109×鸡叶98两个杂交组合的多个世代的开花期遗传。两个杂交组合的F_2群体在两年试验中开花期均表现连续分布,但偏离正态分布。应用联合世代分析法对开花期进行主基因-多基因混合遗传模型分析,证明陆地棉开花期的遗传受一对加性效应的主基因和加性-显性效应的多基因控制;一介和二介模型的遗传参数的结果表明,组合间主基因的加性效应和多基因的显性效应有正、负的差别;结果还表明很难确定开花期与叶形的关系。
     4.应用联合尺度检验法分析了抗3×超鸡463和邯郸109×鸡叶98两个杂交组合的多个世代的叶形性状的数量遗传。对于叶面积、叶裂宽度、叶柄长度及叶裂的长/宽比性状的遗传,六参数模型比三参数模型(加-显模型)更合适,说明上位性效应在叶形变异中的重要性;而叶周长的遗传选择了不同的模型。控制叶形单个性状的最小基因数在0—2之间,控制叶形最小基因数的总和分别为6(抗3×超鸡463)和2(邯郸109×鸡叶98)。结果表明叶形变异在后代的选择是有效的。
     5.通过对9个棉花品种(系)开花前后相对叶绿素含量(SPAD值)的变化,确定开花后35天的叶片SPAD值,最好是和开花当天的差值,可用来预测棉花早衰的程度。利用SPAD差值和衰老分级两种方法调查了杂交组合抗3×超鸡463构建的6个世代群体的叶片早衰,应用联合尺度检验法进行世代均值分析,结果表明两种方法的分析结果比较一致,叶片的早衰主要由加性效应控制,不存在显性和上位性效应遗传,早代选择是有效的。
Cotton is produced as raw material for the textile industry and is considered to be a high value crop. During the past decades, the hybrid cotton was greatly planted by the Yellow River valley and the Changjiang River valley. Therefore, the method for mating hybrid cotton is necessary for establishing the parental core. In this study, nine parental lines of upland cotton, collected from germplasms of the Yellow River valley, were evaluated byGardner and Eberhart's diallel analysis for combining ability, heterosis and other genetic parameters for cotton yield, fiber quality et al. Furthermore, genetic distances from molecule and phenotypic data were estimated. Comparison of phenotypic and molecular distances related with heterosis, combining ability from Gardner and Eberhart's diallel analysis, and F_1 performance was analyzed to predict heterosis. Based on the above genetic distances and leaf morphology among the nine parental lines, the present study also reported the quantitative genetic analysis of time of flowering, leaf morphological traits and premature senescence of leaf from the intraspecific crosses using joint segregation analysis or generation mean analysis.
     1. 45 diallel entries including nine parental lines and their 36 crosses were evaluated by Gardner and Eberhart's diallel analysisⅡandⅢ. For a majority of traits, variety, heterosis, crosses, general combining ability (GCA) effects were significant, and average heterosis and variety heterosis effects was not significant, indicating additive effects were important for heterosis of upland cotton. Estimates of variety, GCA and variety heterosis effects showed Zhongmiansuo 41, Handan 109 and Luyanmian 28 among nine the parental lines were the relative best for heterosis of yield. According to the results of population midparent heterosis and population high-parent heterosis, a majority of the performances of F_1 were between their double parental lines, but proportion of high-parent heterosis, especially positive significance, was relatively less. The genetic relationship among yield and fiber quality had some changes after hybrid occurred among the parental lines. According to the above results, the utilization of heterosis is feasible for several traits, and hybrid cotton cultivars for breeding in upland cotton should increase no. of total bolls, retain suitable boll weight lint%, and cooperatively improved fiber quality.
     2. This study was also undertaken to determine the relationship between parental distances estimated from phenotypic traits and molecular markers with heterosis and F_1 performance. The positive correlation between phenotypic and molecular distances was highly significant. Negative correlations between molecular and phenotypic distances with several traits of F_1 were highly significant. Mean phenotypic and molecular distances were significantly correlated with GCA and variety effects for most of traits with negative. According to the results, the corrections were negative between phenotypic or molecular distances with a majority of heterosis traits.
     3. This paper presents a study of the genetic control for time of flowering in Kang3×Chaoji463 and Handan109×Ji98 crosses obtained from different early-maturity parental lines. In each cross, multiple generations including P_1, F_1, P_2, B_1, B_2 and F_2 were evaluated under two natural field conditions. The data on time to flowering in the F_2 populations had a continuous distribution but deviated from normality. A joint segregation analysis (JSA) revealed that time of flowering in upland cotton was controlled by a mixture of an additive major gene and additive-dominant polygenes. The first- and second-order genetic parameters were all calculated based on the mixture of major gene and polygenes inheritance models using JSA. These results suggested that there was considerable genetic diversity and complexity in days to anthesis in upland cotton. This variation can be used to formulate the most efficient breeding strategy and to design cotton for a particular environment.
     4. Genetic manipulation of leaf architecture may be a useful breeding objective in cotton (Gossypium spp.). The present study firstly reported quantitative genetic analysis of leaf traits from two intraspecific crosses of inbred lines in upland cotton (Gossypium hirsutum L.) viz. Kang3×Chaoji463 and Handan109×Ji98. Six leaf morphological traits (leaf area, leaf perimeter, main lobe length and width, petiole length, and main lobe length/width ratio) were recorded from multiple generations (P_1, F_1, P_2, B_1, B_2, and F_2) in the two crosses. Generation mean analyses were conducted to explain the inheritance of each leaf morphological trait. The six-parameter model showed a better fit to an additive-dominance model for leaf area, main lobe width, petiole length, and main lobe length/width ratio in the two crosses, suggesting the relative importance of epistatic effects controlling leaf morphology. A simple additive-dominance model accounted for the genetic variation of the main lobe length in the Kang3×Chaoji463 cross. Different models were selected as appropriate to explain leaf perimeter in the two crosses. The estimated minimum number of genes controlling each leaf morphological trait ranged from 0-2 for both crosses. Moreover, the sums of the minimum number of genes controlling leaf morphology were 6 and 2 in the Kang3×Chaoji463 and Han109×Ji98 populations. respectively. Most data suggested that there existed a substantial opportunity to breed cottons that transgress the present range of leaf phenotypes found.
     5. According to the changes of leaf Chlorophyll (SPAD) before and after the flowering time in nine cotton lines, the reductions between leaf Chlorophyll at 35 days after the flowering and at flowering was used as one of the indicators of senescence. Another measurement of stay-green was an independent visual estimation of the retention of the green-area for leaves at 35 days after flowering on a 1 to 5 scale. Generation mean analyses were conducted to explain the inheritance of leaf senescence for multiple generations (P_1, F_1, P_2, B_1, B_2, and F_2) in the Kang3×Chaoji463 cross. The results according to the SPAD and scale were relative consistent, both showing additive effects controlled the genetic of leaf senescence without dominance and epistatic effects.
引文
1. 郭小平,赵元明,吴家和,张献龙,聂以春.棉花Bt转基因品系的配合力和杂种优势表现.棉 花学报,2006,18(5):304-308
    
    2. 金骏培,武耀廷,张天真.皖杂40杂交棉产量与品质性状的杂种优势表现及遗传分析.中 国农业科学,2004,37(10):1428-1433
    
    3. 刘芦苇,祝水金.转基因抗虫棉产量性状的遗传效应及其杂种优势分析.棉花学报,2007, 19(1):33-37
    
    4. 刘志文,傅廷栋,刘雪平,涂金星,陈宝元.作物分子标记辅助选择的研究进展、影响因 素及其发展策略.植物学通报,2005,22(增刊):82-90
    
    5. 罗彦长,王守海,李成荃,王德正,吴爽,杜士云.应用分子标记辅助选择培育抗稻白叶 枯病光敏核不育系3418S.作物学报,2003,29:402-407
    
    6. 潘海军,王春连,赵开军,章琦,樊颖伦,周少川,朱立煌.水稻抗白叶枯病基因Xa23的 PCR分子标记定位及辅助选择.作物学报,2003,29:501-504
    
    7. 彭泽斌,刘新芝.玉米F_1产量、杂种优势及双亲特殊配合力与RAPD遗传距离关系的研究.王 连铮,戴景瑞.全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998,221 -226
    
    8. 沈法富,喻树迅,韩秀兰,范述丽.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析.科 学通报,49(22):2318-2323
    
    9. 沈新莲,袁有禄,郭旺珍,朱协飞,张天真.棉花高强纤维主效QTL的遗传稳定性及它的 分子标记辅助选择效果.高技术通讯,2001,10:13-17
    
    10.宋美珍,喻树迅,范术丽,原日红.短季棉早熟不早衰生化性状的遗传分析.西北植物学 报,2005,25(5):903-910
    
    11.宋美珍,喻树迅,范术丽,原日红.短季棉主要农艺性状的遗传分析.棉花学报,2005, 17(2):94-98
    
    12.宋美珍,喻树迅,范术丽.早熟不早衰品种及后代的抗氧化酶活性的变化.棉花学报,2006, 18(1):63-64
    
    13.汪保华,武耀廷,黄乃泰,郭旺珍,朱协飞,张天真.陆地棉重组自交系产量及产量构成 因子性状的上位性QTL分析.作物学报,2007,33(11):1755-1762
    
    14.王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位.作物学报,2007,33(12): 1915-1921
    
    15.王学德,潘家驹.棉花亲本遗传距离与杂种优势间的相关性研究.作物学报,1990,16(1):??32-38
    
    16.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位.遗 传学报,2003,30:443-452
    
    17.吴为人,周元昌,李维明.数量性状基因型选择与基因型值选择潜力的比较.科学通报, 2002,47:2080-2083
    
    18.吴征斌,贺雪平.鸡脚叶无蜜腺若干性状研究.江西棉花,1991,3:21-24
    
    19.武耀廷,张天真,朱协飞,王广明.陆地棉遗传距离与杂种F_1、F_2产量及杂种优势的相关分 析.中国农业科学,2002,35(1):22-28
    
    20.邢朝柱,喻树迅,郭立平,苗成朵,冯文娟,王海林,赵云雷.不同环境下抗虫陆地棉杂 交种优势表现及经济性状分析.棉花学报,2007,19(1):3-7
    
    21.邢朝柱,喻树迅,郭立平,叶子弘,王海林,苗成朵,赵云雷.不同生态环境下陆地棉转 基因抗虫杂交棉遗传效应及杂种优势分析.中国农业科学,2007,40(5):1056-1063
    
    22.喻树迅,范术丽,原日红,余学科,巩万奎.清除活性氧酶类对棉花早熟不早衰特性的遗 传影响.棉花学报,1999,11(2):100-105
    
    23.喻树迅,宋美珍,范术丽,原日红.短季棉早熟不早衰生化辅助育种技术研究.中国农业 科学,2005,38(4):664-670
    
    24.袁有禄,张天真,郭旺珍,Yu J,Kohl R J.棉花高品质纤维性状的主基因与多基因遗传分 析.遗传学报,2002a,29(9):827-834
    
    25.袁有禄,张天真,郭旺珍,潘家驹,Kohel R J.陆地棉优异纤维品系的铃重和衣分的遗传 及杂种优势分析.作物学报,2002b, (2):196-202
    
    26.张涛,韩磊,徐建第,蒋开锋,吴先军,汪旭东,郑家奎.杂交香稻亲本遗传距离与产量 杂种优势的相关性研究.中国农业科学,2006,39(4):831-835
    
    27.张锡顺,杨建国,杨若菡,徐宁生,刘旭云,杜刚.蓖麻数量性状遗传距离与杂种优势关 系的研究.中国农业科学,2006,39(3):633-640
    
    28.张正圣,李先碧,刘大军,肖月华,罗明,黄顺礼,张凤鑫.陆地棉高强纤维品系和Bt基 因抗虫棉的配合力与杂种优势研究.中国农业科学, 2002,35(12):1450-1455
    
    29.赵云雷.棉花杂交种与亲本间DNA胞嘧啶甲基化及其基因差异表达分析.[博士学位论 文].武汉:华中农业大学图书馆,2007
    
    30.朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法.遗传学报,1993,20(3): 262-271
    
    31.朱军.作物杂种后代基因型值和杂种优势的预测方法.生物数学学报,1993,8(1):32 -44
    
    32. Abdelkhalik A F, Shishido R, Nomura K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226-1235
    33. Abdurakhmonov I Y, Buriev Z T, Saha S, Pepper A E, Musaev J A, Almatov A, Shermatov S E, Kushanov F N, Mavlonov G T, Reddy U K, Yu J Z, Jenkins J N, Kohel R J, Abdukarimov A. Microsatellite markers associated with lint percentage trait in cotton (Gossypium hirsutum). Euphytica, 2007, 156: 141-156
    34. Adefris T, Heiko C, Becker. Comparison of phenotypic and molecular distances to predict heterosis and F_1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor Appl Genet, 2005, DOI 10,1007/s00122-005-0180-3
    35. Ahuja S L, Dhayal L S, Prakash R. Comparative yield component analysis in Gossypium hirsutum parents using fiber quality grouping. Euphytica, 2007, DOI 10.1007/s10681-007-9588-y
    36. Ahuja S L, Dhayal L S. Combining ability estimates for yield and fiber quality traits in 4 × 13 line × tester crosses of Gossypium hirsutum, Euphytica. 2007,153:87-98
    37. Ajmone M P, Castiglioni P, Fusari F, Kuiper M, Motto M. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet, 1998, 96:219-227
    38. Akaike H. In: Applications of statistics (Krishnaiag G, ed.), North-Holland Publishing Company, Amsterdam, Netherlands. On entropy maximum principles, 1977
    39. Allard R W. Principles of Plant Breeding. New York: John Wiley and Sons, Inc., 1960
    40. Al-Rawi K M, Kohel R J. Diallel analyses of yield and other agronomic characters in Gossypium hirsutum L. Crop Sci, 1969,9: 779-783
    41. Anbessa Y, Warkentin T, Vandenberg A, Ball R. Inheritance of time to flowering in chickpea in a short-season temperate environment. J Here, 2006: 97(1): 55-61
    42. Andrew K, Borrell, Graeme L, Hammer, Andrew C L, Douglas. Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? I. Leaf Growth and Senescence. Crop Sci, 2000, 40: 1026-1037
    43. Andries J A, Jones J E, Sloane L W, Marshall J G. Effects of Okra leaf shape on boll rot, yield, and other important characters of upland cotton, Gossypium hirsutum L. Crop Sci, 1969, 9:705-710
    44. Balestre M, Machado J C, Lima J L, Souza J C, Filho L N. Genetic distance estimates among single cross hybrids and correlation with specific combining ability and yield in corn double cross hybrids. Genetics and Molecular Research, 2008, 7 (1): 65-73
    45. Berloo R V, Stam P. Comparison between marker assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet, 1999,98: 113-118
    46. Bernardo R. Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet, 1992, 83: 628-634
    47. Betran F J, Ribaut J M, Beck D, Leon D G. Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci, 2003,43:797-806
    48. Bhandari H S, Pierce C A, Murray L W, Ray I M. Combining Abilities and Heterosis for Forage Yield among High-Yielding Accessions of the Alfalfa Core Collection. Crop Sci, 2007, 47: 665-673
    49. Birchler J A, Auger D L, Riddle N C. In search of a molecular basis of heterosis. Plant Cell, 2003, 15: 2236-2239
    50. Blazquez M A. Flower development pathways. J Cell Sci, 2000, 113: 3547-3548
    51. Blenda A, Scheffler J, Scheffler B, Palmer M, Lacape J M, Yu J Z, Jesudurai C, Jung S, Muthukumar S, Yellambalase P, Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, Burr B, Liu S, Zhang T, Fang D, Pepper A, et al. CMD: a Cotton Microsatellite Database resource for Gossypium genomics. BMC Genomics, 2006, 7: 132
    52. Brevedan R E, Egli D B. Short Periods of Water Stress during Seed Filling, Leaf Senescence, and Yield of Soybean, Crop Sci, 2003,43:2083-2088
    53. Campbell B T, Bowman D T, Weaver D B. Heterotic Effects in Topcrosses of Modern and Obsolete Cotton Cultivars. Crop Sci, 2008,48: 593-600
    54. Cavalli L L. Analysis of linkage quantitative inheritance. In Quantitative Inheritance (Eds E. C. R. Reevea & C. H. Waddington), London: HMSO, 1952, 135-144
    55. Charcosset A, Essioux L. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor Appl Genet, 1994, 89: 336-343
    56. Chardon F, Hourcade D, Combes V, Charcosset A. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet, 2005,112:1-11
    57. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004: 168: 2169 -2185
    58. Coors J G, Pandey S. Genetics and exploitation of heterosis in crops. Crop Science Society of America, Madison, WI, 1999, 33:700-705.
    59. Crasta R, Xu W W, Mullet D T R J, Nguyen H T. Mapping of post-flowering drought resistance traits in grain sorghunrassociation between QTLs influencing premature senescence and maturity. Mol Gen Genet, 1999, 262: 579-588
    60. Crow J F. Dominance and overdominance. In the genetics and exploitation of heterosis in crops (eds J.G. Coors and S. Pandey), Crop Science Society of America, Madison, WI, 1999,49-58
    61. Davenport, CB. Degeneration, albinism and inbreeding. Science, 1908,28: 454-455
    62. Diaz C, Purdy S, Christ A, Morot-Gaudry J F, Wingler A, Masclaux-Daubresse C. Characterization of Markers to Determine the Extent and Variability of Leaf Senescence in Arabidopsis. A Metabolic Profiling Approach1, Plant Physiology, 2005, 138: 898-908
    63. Dong H, Li W, Tang W, Li Z, Zhang D, Niu Y. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Research, 2006, 98:106-115
    64. Du X, Zhou Z. Descriptors and Data Standard for Cotton (Gossypium ssp.). Beijing:China Chinese Agriculture Press. 2005
    65. Dudley J W, Busbice T H, Levings C S. III.Estimates of genetic variance in 'Cherokee' alfalfa (Medicago sativa L). Crop Sci, 1969,9:228-231
    66. Dudley J W, Moll R H. Interpretation and use of heritability and genetic estimates in plant breeding. Crop Science, 1969,9:257-262
    67. Dudley J W. Molecular markers in plant improvement Manipulation of genes affecting quantitative traits. Crop Science, 1993, 33: 660-668
    68. Duvick D N. Heterosis: Feeding people and protecting natural resources. In The genetics and exploitation of heterosis in crops (eds. J. G. Coors and S. Pandey). Crop Science Society of America, Madison, WI, 1999,19-30
    69. East E M. Inbreeding in corn. Rep. Connecticut Agric. Exp. Stn, 1908,1907: 419-429
    70. Elston R C, Steward J. The analysis of quantitative traits for simple genetic models from parental, F, and backcross data. Genetics, 1973, 73: 695-711
    71. Endrizzi J E, Turcotte E C, Kohel R J. Qualitative genetics, cytology, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. ASA/CSSA/SSSA Publishers, Madison, Wisconsin, 1984,81-129
    72. Everina P, Lukonge, Labuschagne M T, Herselman L. Combining ability for yield and fiber characteristics in Tanzanian cotton germplasm. Euphytica, 2007, DOI 10.1007/sl0681-007-9587-z
    73. Frary A, Fritz L A, Tanksley S D. A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet, 2004,109:523-533
    74. Gardner C O, Eberhart S A. Analysis and interpretation of the variety cross diallel and related populations. Biometrics, 1966, 22:439-452
    75. Gimelfarb A, Lande R. Simulation of marker assisted selection in hybrid population. Genetical Research, 1994, 63: 39-47
    76. Godoy A S, Palomo G A. Genetic analysis of earliness in upland cotton (Gossypium hirsutum L.). I. Morphological and phenological variables. Euphytica, 1999,105: 155-160
    77. Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome 5 of maize by fine mapping. Crop Sci, 1997,37: 1601-1610
    78. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci, 1956,9:463-493
    79. Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007,176: 527-541
    80. Guo W, Ma G, Zhu Y, Chen X, Zhang T. Molecular Tagging and Mapping of Quantitative Trait Loci for Lint Percentage and Morphological Marker Genes in Upland Cotton. Journal of Integrative Plant Biology, 2006,48: 320-326
    81. Gurevitch J. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics, 1992,130: 385-394
    82. Gusmini G, Wehner T C, Donaghy S B. SASQuant: A SAS Software Program to Estimate Genetic Effects and Heritabilities of Quantitative Traits in Populations Consisting of 6 Related Generations. Journal of Heredity, 2007, doi:10.1093/jhered/esm033
    83. Gutierrez A, Basu S, Saha S, Jenkins J N, Shoemaker D B, Cheatham C L, McCarty J C Jr. Genetic Distance among Selected Cotton Genotypes and Its Relationship with F2 Performance. Crop Sci, 2002,42:1841-1847
    84. Hallauer A R, Miranda J B. Quantitative genetics in maize breeding. 2nd ed. Ames (IA): Iowa State University Press, 1988
    85. Hao J, Yu S, Dong Z, Fan S, Ma Q, Song M, Yu J. Quantitative inheritance of leaf morphological traitsin upland cotton. Journal of Agricultural Science, 2008,146: 1-9
    86. Harris K, Subudhi P K, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 2007, (58) 2: 327-338
    87. Heckenberger M, Bohn M, Klein D, Melchinger A E. Identification of Essentially Derived Varieties Obtained from Biparental Crosses of Homozygous Lines: II. Morphological Distances and Heterosis in Comparison with Simple Sequence Repeat and Amplified Fragment Length Polymorphism Data in Maize. Crop Sci, 2005,45: 1132-1140
    88. Heitholt J J, Meredith W R. Yield, flowering, and leaf area index of Okra-leaf and normal-leaf cotton isolines. Crop Sci, 1998, 38: 643-648
    89. Heitholt J J. Cotton boll retention and its relationship to lint yield. Crop Sci, 1993,33: 486-490
    90. Holland J B. Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maximum Likelihood Estimation with SAS Proc MIXED. Crop Sci, 2006,46: 642-654
    91. Hollick J B, Chandler V L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics, 1998,150: 891-897
    92. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS, 2003,100: 2574-2579
    93. Hua J, Xing Y, Xu C, Sun X, Yu S, Zhang Q. Genetic Dissection of an Elite Rice Hybrid Revealed That Heterozygotes Are Not Always Advantageous for Performance. Genetics, 2004, 162: 1885-1895
    94. Huang N, Angeles E R, Domingo J. Pyramiding of bacterial blight resistance genes in rice, marker-asisted selection using RFLP and PCR. Theoretical and Applied Genetics, 1997, 95: 313-320
    95. Hutchinson J B, Simw R A, Stephens S G. The Evolution of Gossypium and the Differentiation of Cultivated Cottons. London:Oxford University Press, 1947
    96. Hutchinson J B. Intraspecific differentiation in Gossypium hirsutum. Heredity, 1951, 3: 161-193
    97. Jeffrey C Z, Scheffler B E, Elizabeth D, Barbara A T, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy Richard, Saha S, et al. Toward Sequencing Cotton
    ??(Gossypium) Genomes. Plant Physiology, 2007,145:1303-1310,
    
    98. Jiang C, Wright R, Woo S, DelMonte T A, Paterson. QTL analysis of leaf morphology in tetraploid Gossypium (Cotton). Theor Appl Genet, 2000,100:409-418
    
    99. Jiang G, He Y, Xu C, Li X, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688-698
    
    100. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917,2: 223-238
    
    101. Kerby T A, Buxton D R, Matsuda K. Carbon source sink relationships within narrow-row cotton canopies. Crop Sci, 1980, 20: 208-213
    
    102. Kerby T A, Buxton D R. Effect of leaf shape and plant population on rate of fruiting position appearance in cotton. Agron J, 1978,70: 535-538
    
    103. Knott S A, Haley C S, Thompson R. Methods of segregation analysis for animal breeding data: a comparison of power. Heredity, 1991,68: 299-311
    
    104. Kohel R J, Richmond T R. The genetics of flowering response in cotton. IV. Quantitative analysis of photoperiodism of Texas 86, Gossypium hirsutum race latifolium, in a cross with an inbred line of cultivated American Upland cotton. Genetics, 1962,47: 1535-1542
    
    105. Kusterer B, Muminovic J, Utz H F, Piepho H P, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a Triple Testcross Design With Recombinant Inbred Lines Reveals a Significant Role of Epistasis in Heterosis for Biomass-Related Traits in Arabidopsis. Genetics, 2007,175: 2009-2017
    
    106. Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G, Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci, 2005,45:123-140
    
    107. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics, 1981,99: 541-553
    
    108. Lee J A, Miller P A, Rawlings J O. Interaction of combining ability eff ects with environments in diallel crosses of upland cotton (Gossypium hirsutum L.). Crop Sci, 1967, 7: 477-481
    
    109. Lee M, Godshalk E B, Lamkey K R. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Science, 1989, 29: 1 067-1 071
    
    110. Lewis C F, Richmond T R. The genetics of flowering response in cotton. I. Fruiting behavior of Gossypium hirsutum var. marie-galante in a cross with a variety of American Upland cotton. Genetics, 1957,42:499-509
    
    111. Lewis C F, Richmond T R. The genetics of flowering response in cotton. II. Inheritance of flowering response in a Gossypium barbadense cross. Genetics, 1960,45: 79-85
    
    112. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris) . Theor Appl Genet, 2002, 105:1050-1057
    113. Luo Z W. Detecting linkage disequilibrium between a polymorphic marker locus and a trait locus in natural population. Heredity, 1998, 80: 198-208
    114. M Q, Yang X, Liu J, Wang Z, Cheng R, Niu Z, Xing T. Study on developmental courses and bolls in hybrid cotton: BiaozaA_1. China Cotton, 2004, 31(2): 21-23
    115. Marani A. Heterosis and F_2 performance of intraspecific crosses among varieties of Gossypium hirsutum L. and of G.barbadense L. Crop Sci, 1968, 8: 111-113
    116. Mather K, Jinks J L. Biometrical Genetics, 3rd edn. London: Chapman and Hall, 1982
    117. McCarty J C, Wu J, Jenkins J N. Use of Primitive Derived Cotton Accessions for Agronomic and Fiber Traits Improvement: Variance Components and Genetic Effects. Crop Sci, 2007, 47: 100-110
    118. Melchinger A E, Messmer M M, Lee M, Woodman W L, Lamkey K R. Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci, 1991,31:669-678
    119. Meng F R, Ni Z F, Wu L M, Sun Q X. Differential gene expression between cross-fertilized and self-fertilized kernels during the early stages of seed development in maize. Plant Science, 2005, 168: 23-28
    120. Meredith W R, Jr, Bridge R R. The relationship between F_2 and selected F_3 progenies in cotton (Gossypium hirsutum L.). Crop Sci, 1973, 13: 354-356
    121. Meredith W R, Jr. Yield and fiber quality potential for second-generation cotton hybrids. Crop Sci, 1990, 30: 1045-1048
    122. Meredith W R, Jr., Bridge R R. Heterosis and gene action in cotton, Gossypium hirsutum L. Crop Sci, 1972,12: 304-310
    123. Meredith W R. Lint yield genotype environment interaction in upland cotton as influenced by leaf canopy isolines. Crop Sci, 1985, 25: 509-512
    124. Meredith W R. Quantitative genetics in cotton. Edited by Kohel R J, Agron Mongr, 1984, 24: 131-150
    125. Meyer P, Saedler H. Homology-dependent gene silencing in plants. Annu Rev Plant Physiol. Plant Mol Bio, 1996,47: 23-48
    126. Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998,148: 1353-1365
    127. Morton M E, MacLean C J. Analysis of family resemblance. III Complex segregation analysis of quantitative traits. Amer J Human Genet, 1974, 26:489-503
    128. Murray L W, Ray I M, Dong H, Segovia-Lerma A. Clarification and reevaluation of population-based diallel analyses: Gardner and Eberhart analyses II and III revisited. Crop Sci, 2003,43:1930-1937
    129. Nei M, Li W. Mathematical model for studying genetic variation terms of restriction endonucleases. Proc Natl Acad Sci, 1979,6:5269-5273
    130. Ng T J. Generation means analysis by microcomputer. HortScience, 1990,25,363
    131. Oscar R V and Matthijs T. Vertical Profile of Leaf Senescence during the Grain-Filling Period in Older and Newer Maize Hybrids, Crop Sci, 2004,44:827-834
    132. Parkhurst D F, Loucks D L. Optimal leaf size in relation to environment. Journal of Ecology, 1972,60:505-537
    133. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter, 1993, 11 (2) : 122-127
    134. Paterson A, Saranga, Menz, Jiang. Wright QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics, 2003,106: 384-396
    135. Perez-Perez J M, Serrano-Cartagena J, Micol J L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics, 2002,162: 893-915
    136. Pettigrew W T, Heitholt J J, Vaughn K C. Gas exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Sci, 1993,33: 1295-1299
    137. Podich D W, Cooper M. QU-GENE: a simulation platform for quantitative analysis of genetic models. BIOINFORMATICS, 1998,14:632-653
    138. Podlich D W, Winkler C R, Cooper Ml Mapping as you go: An effective approach for marker assisted selection of complex traitsl. Crop Sci, 2004,44 :1560-1571
    139. Poirier L, Seroude L. Genetic approaches to study aging in Drosophila melanogaster. AGE, 2005, 27:165-182
    140. Quisenberry J E. Inheritace of Plant Height in Cotton. II. Diallel Analyses among Six Semidwarf Strains. Crop Sci, 1977,17: 347-350
    141. Ragsdale P I, Wayne S C. Germplasm Potential for TraitImprovement in Upland Cotton: Diallel Analysis of Within-Boll Seed Yield Components. Crop Sci, 2007,47:1013-1017
    142. Rahman H, Khan W S. Expressivity of H_2 gene of hairiness and L°gene of leaf shape in upland cotton under different genetic back grounds. Pak J Bot, 1998, 30:95 -100
    143. Reif J C, Melchinger A E, Xia X C, Warburton M L, Hoisington D A, Vasal S K, Srinivasan G, Bohn M, Frisch M. Genetic Distance Based on Simple Sequence Repeats and Heterosis in Tropical Maize Populations. Crop Sci, 2003,43: 1275-1282
    144. Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138: 829-847
    145. Richmond T R, Ray L L. Product-quantity measures of earliness of crop maturity in cotton. Crop Sci, 1966,6:235-239
    146. Robinson D C, Comstock R E, Harvey P H. Genetic variances in open pollinated com. Genetics, 1955,40:45-60
    147. Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marter B S. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166:389-417
    148. Rong J, Bowers J E, Schulze S R, Waghmare V N, Rogers C J, Pierce G J, Zhang H, Estill J C, Paterson A H. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res, 2005, 15: 1198-1210
    149. Sadras V O, Echarte L, Andrade F H. Profiles of Leaf Senescence During Reproductive Growth of Sunflower and Maize. Annals of Botany, 2000, 85: 187-195
    150. Sadras V O, Quiroz F, Echarte L, Escande A, Pereyra V R. Effect of Verticillium dahliae on Photosynthesis, Leaf Expansion and Senescence of Field-grown Sunflower. Annals of Botany, 2000,86: 1007-1015
    151. Sarma R N, Gill B S, Sasaki T, Galiba G, Sutka J, Laurie D A, Snape J W. Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998, 97:103-109
    152. SAS Institute. SAS Version 8. 02 for Windows. Cary, NC, USA: SAS Institute Inc, 1999
    153. Sebastian R L, Kearsey M J, King G J. Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L Theoretical and Applied Genetics, 2002, 104: 601-609
    154. Segovia-Lerma A, Murray L W, Townsend M S, Ray I M. Population-based diallel analyses among nine historically recognized alfalfa germplasms. Theor Appl Genet, 2004, 109: 1568-1575
    155. Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci, 2006, 103: 12981-12986
    156. Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by REL approach in Upland cotton. Euphytica, 2007, 155: 371-380
    157. Shen X L, Guo W Z, Yu J, Kohel R J, Zhang T Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR marker. Mol Breed, 2005, 15 (2) : 169-181
    158. Shen X L, Zhang T Z, Guo W Z, Zhu X F, Zhang X Y, Mapping Fiber and Yield QTLs with Main, Epistatic, and QTL X Environment Interaction Effects in Recombinant Inbred Lines of Upland Cotton. Crop Sci, 2006,46:61-66
    159. Shieh G J, Thseng F S. Genetic diversity of Tainan-whitemaize inbred lines and prediction of single cross hybrid performances using RAPD markers. Euphytica, 2002, 124:307-313
    160. Shoemaker D N. A study of leaf characters in cotton hybrids. Annual Report of the American Breeders' Association, 1908,5: 116-119
    161. Shull G H. The composition of a field of maize. Am Breed Assoc Rep, 1908,4: 296-301
    162. Snape J W, Butterworth K, Whitechruch E, Worland A J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190
    
    
    163. Sneath P H, Sokal R R. Numerical taxonomy. San Francisco: Freeman and Company. 1973
    
    164. Soengas P, Ordas B, Malvar R A, Revilla P, Ordas A. Combining Abilities and Heterosis for Adaptation in Flint Maize Populations. Crop Sci, 2006,46:2666-2669
    
    165. Sprague G F, Tatum L A. General versus specific combining ability in single crosses of corn. Jour Amer Soc Agron, 1942, 34:923-932
    
    166. Springer N M, Stupar R M. Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res, 2007,17: 264-275
    
    167. Stephens S G. A genetic survey of leaf shape in New World cottons - a problem in critical identification of alleles. Journal of Genetics, 1945,46: 313-330
    
    168. Stettler R F, Fenn R C, Heilman P E, Stanton B J. Populus trichocarpa x Populus deltoides hybrids for short rotation culture: variation patterns and 4-year field performance. Canadian Journal of Forest Research, 1988,18: 745-753
    
    169. Stiller W N, Read J J, Constable G A, Reid P E. Selection for water use efficiency traits in a cotton breeding program: cultivar differences. Crop Science, 2005,45: 1107-1113
    
    170. Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992,132: 823-839
    
    171. Stuber C W. Mapping and manipulating quantitative trait in maize. Trends in Genetics, 1995, 11: 477-481
    
    172. Sun Q, Wu L, Ni Z, Meng F, Wang Z, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science, 2004,166: 651-657
    
    173. Tang B, Jenkins J N, McCarty J C, Watson C E. F_2 hybrids of host plant germplasm and cotton cultivars: II. Heterosis and combining ability for fi ber properties. Crop Sci, 1993, 33:706-710
    
    174. Tiffany D, Malm N R. A comparison of twelve methods of measuring earliness in upland cotton. Proc. Beltwide Cott. Prod. Res. Conf. New Orleans, LA. 1981
    
    175. Ulloa M, Saha S, Jenkins JN, Meredith WR Jr, McCarty JC Jr, Stelly D M. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap. J Hered, 2005,96: 132-144
    
    176. Ulloa M. Heritability and correlations of agronomic and fiber traits in an okra-Leaf upland cotton population. Crop Science, 2006,46: 1508-1514
    
    177. Venkatramana P, Caleb K, John R, Jyoti S. Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEF1CIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid 1. Plant Physiology, 2005,139: 1927-1934
    
    178. Vijay N, Waghmare, Rong J k. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet, 2005, 111: 665-676
    
    179. Vijaya G K, Kambham R R, Duli Z, Wei G. Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide, Physiologia Plantarum. 2004, 121: 250-257
    180. Waddle B M, Lewis C F, Richmond T R. The genetics of flowering response in cotton. II. Fruiting behavior of Gossypium hirsutum race latifolium in a cross with a variety of cultivated American Upland cotton. Genetics, 1961,46: 427-437
    181. Waghmare V N, Rong J K, Rogers C J, Pierce G J, Wendel J F, Paterson A H. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theoretical and Applied Genetics, 2005, 111: 665-676
    182. Wang B, Wu Y, Guo W, Zhu X, Huang N, Zhang T. QTL Analysis and Epistasis Effects Dissection of Fiber Qualities in an Elite Cotton Hybrid Grown in Second Generation. Crop Sci. 2007,47:1384-1392
    183. Wang J K, Gai J Y. Mixed inheritance model for resistance to agromyzid bean fly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001,122: 9-18
    184. Wang J, Chapman S C, Bonnett D G, Rebetzke G J, Jonathan C. Application of Population Genetic Theory and Simulation Models to Efficiently Pyramid Multiple Genes via Marker-Assisted Selection. Crop Sci, 2007,47: 582-590
    185. Wang J, Podlich D W, Cooper M, DeLacy I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor Appl Genet, 2001,103: 804-816
    186. Warner J N. A method for estimating heritability. Agronomy Journal, 1952,44: 427-430
    187. Wassenegger M. RNA-directed DNA methylation. Plant Mol Biol, 2000,43: 203-220
    188. Weels R, Meredith W R. Normal vs Okra-leaf yield interactions in cotton. II. Analysis of vegetative and reproductive growth. Crop Sci, 1986, 26: 223-228
    189. Wilson F D. Pink bollworm resistance, lint yield, and lint yield components of Okra-leaf cotton in different genetic backgrounds. Crop Sci, 1986, 26:1164-1167
    190. Wilson F D. Relative resistance of cotton lines to pink bollworm. Crop Sci, 1990, 30:500-504
    191. Wright S. Evolution and the Genetics of Populations. Chicago: University of Chicago Press. 1968
    192. Wright S. The genetics of quantitative variability. In: Wright S, editor. Evolution and genetics of populations. 2nd ed. Volume 1. Chicago (IL) : University of Chicago Press, 1968, 373-420
    193. Wu R L. Quantitative genetic variation of leaf size and shape in a mixed diploid and triploid population of Populus. Genetical Research, 2000, 75: 215-222
    194. Wu R, Bradshaw H D, J r, Stettler R F. Molecular genetics of growth and development in Populus (Salicaceae) . V. Mapping quantitative trait loci affecting leaf variation. American Journal of Botany, 1997,84: 143-153
    195. Wu R, Stettler R F. Quantitative genetics of growth and development in Populus I. A three-generation comparison of tree architecture during the first two years of growth. Theoretical and Applied Genetics, 1994, 88: 1046-1054
    196. Xiao J H, Li J M, Yuan LP, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as released by QTL analysis using molecular markers. Genetics, 1995,140:745-754
    197. Xiao J, Li J, Yuan L, McCouch S R, Tanksley S D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theoretical and Applied Genetics, 19%, 92:637-643
    198. Xiao J, Li J, Yuan L, Tanksley S D. Dominance Is the Major Genetic Basis of Heterosis in Rice as Revealed by QTL Analysis Using Molecular Markers. Genetics, 1995,140: 745-754
    199. Xing C Z, Zhao Y L, Yu S X, Guo L P, Zhang X L, Wang H L Relationship between leaves gene differential expression in full opening flower stages of hybrids & their parents and heterosis in Pest-resistant cotton. Acta Genetica Sinica, 2006, 33 (10): 948-956
    200. Xiong L Z, Yang G P, Xu C G. Relationship of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed, 1998,4: 129-136
    201. Xu Y, Kang D, Shi Z,Shen H, Wehner T. Inheritance of resistance to zucchini yellow mosaic virus and watermelon mosaic virus in watermelon. Journal of Heredity, 2004 95:498-502
    202. Gai J Y, Zhang Y M, Wang J K. The Genetic System of Quantitative Traits in Plants. Beijing: China Science Press, 2003
    203. Yamada T, Jones E S, Cogan N O I, Vecchies A C, Nomura T, Hisano H, Shimamoto Y, Smith K F, Hayward M D, Forster J W. QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Science, 2004,44:925-935
    204. Young E F, Murray J C, Heterosis and inbreeding depression in diploid and tetraploid cottons. Crop Sci, 1966, 6:436-438
    205. Yu C, Hu S, Zhao H, Guo A, Sun G. Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.). Theor Appl Genet, 2005,110: 511-518
    206. Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. A high-density linkage map of cultivated allotertrapoid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integrated Plant Biol, 2007,49: 716-724
    207. Yu S X, Song M Z, Fan S L. Biochemical Genetics of Short-Season Cotton Cultivars that Express Early Maturity Without Senescence, Journal of Integrative Plant Biology. 2005,47 (3) : 334-342
    208. Yu S X, Xia J Y. Genetics and breeding of cotton in China. Jinan: Shangdong Science Technology Press, 2003
    209. Yu S, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS, 1997,94: 9226-9231
    210. Zalapa J E, Staub J E, Mccreight J D. Generation means analysis of plant architectural traits and fruit yield in melon. Plant Breeding, 2006, 125:482-487.
    211. Zhang Q F, Zhou Z Q, Yang G P, Xu C G, Liu KD, Saghai Maroof M A. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet, 1996, 93: 1218-1224
    212. Zhang X Q, Wang X D, Jiang P D, Hua S J, Zhang H P, Dutt Y. Relationship between molecular marker heterozygosity and hybrid performance in intra- and interspecific hybrids of cotton, Plant Breeding, 2007,126:385-391
    213. Zhang Y D, Kang M S, Lamkey K R. DIALLEL-SAS05: A Comprehensive Program for Griffing's and Gardner-Eberhart Analyses. Agron J, 2005, 97:1097-1106
    214. Zhang Y M, Gai J Y, Yang Y H, The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81:157-163
    215. Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genentic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L). Euphytica, 2005:1-9
    216. Zhao Y, Xing C, Fan S, Song M. Analysis of DNA Methylation in Cotton Hybrids and Their Parents. Molecular Biology, 2008,42 (1):
    217. Zhou P, Tan Y, He Y, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice by molecular marker assisted selection. Theoretical and Applied Genetics, 2003,106: 326-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700