三维模型的语义分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维模型的造型、重构和可视化等相关技术的快速发展,以及先进的、高精度的扫描技术的不断推出,三维模型的复杂度和数据量急剧增长,远远超出了当前计算机实时的图形处理能力。因此产生了许多以模型分割为处理初步阶段的算法,以便大幅降低三维模型处理的复杂程度。另外,三维形状分析、模拟压缩、模型检索和三维动画等方面的应用上,三维模型的语义分割具有非常重要的实际意义。
     近年来,三维模型的分割引起了众多研究和实际工作者的关注,成为一个热点研究课题。本论文研究以视觉认知心理学为基础准则,通过对类人形三维模型的骨骼提取,依据人体测量学的先验知识完成三维骨骼的语义特征点提出,从而完成类人形三维模型的语义分割。
     本文的创新工作主要有:
     (1)详细研究了三维模型语义分割算法中的极小值规则和捷径规则,通过大量的实例分析了它的优点和局限性。
     (2)提出了一种基于骨架提取和特征点的三维模型语义分割算法。该算法采用将距离变换及势场方法相结合的一种线形骨架提取算法,提取模型骨骼线;利用人体测量学的先验知识为指导进行特征点的识别选取,从而使保证了语义分割的正确性;以视觉认知心理学为指导,利用骨骼线上的语义特征点完成对三维模型的语义分割。和3D捷径规则指导下的三维模型网格分割算法相比,本文算法的计算效率有了大幅提升。
In last decades, 3D mesh reconstruction and visualization technology has an increasing development. With more advanced an accurate technology the equipment is employed, larger scale the 3d models have. More difficult of real-time processing is increasing with the enlarged data and complexity of model. Semantic segmentation is a curial process in computer animation. Many researches has been done, such as parameter, compression, morphing, which mostly using model segmentation algorithm as a preliminary stage. For mesh segmentation can greatly reduce the complexity of the algorithms.
     3D model segmentation became hot research topic in recent years. This paper presents a semantic segmentation algorithm under the guidance of skeleton of 3D humanoid model. The algorithm is in two phase: (1) extract the skeleton of humanoid model; (2) identify the feature points of the extracted skeleton and segment the model according the key point employ the short-cut rule of cross section.
     The main contributions of our work are:
     1) Research on the minima rule and shortcut rule, this paper analyzes the advantages and limitations of the minima rule and shortcut rule in detail through a lot of specific examples.
     2) This paper presents a semantic segmentation algorithm under the guidance of skeleton of 3D humanoid model. This paper extraction the skeleton line of the model using a curve-skeleton extraction algorithm combining distance transform and potential field, employ pre-knowledge of anthropometry to identification the semantic feature points of skeleton line which assures the correctness of semantic segmentation, finish the semantic segmentation of 3D model using the feature points based on visual cognitive psychology. Comparing with the semantic segmentation algorithm of 3d model in Li’s paper, the calculation efficiency of this algorithm is increased greatly.
引文
1 Mangan. A, Whitaker. R. Partitioning 3D surface meshes using Watershed segmentation. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 308~321
    2 Wu. K, Levine. M. D. 3D part segmentation using simulated electrical charge distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(11): 1223~1235
    3廖毅.基于显著性分析的网格有意义分割技术.国防科学技术大学硕士学位论文. 2007.11: 51-80
    4孙晓鹏,李华.三维网络模型的分割及应用技术综述.计算机辅助设计与图形学学报. 2005.17(8):1647-1655.
    5 Vincent. L, Soille. P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991.13(6): 583-598.
    6 Falcidieno. B, Spagnuolo. M. Polyhedral surface decomposition based on curvature analysis. Proceedings of Modern Geometric Computing of Visualization.1992:57-72.
    7 Maillot. J, Yahia. H, Verroust. V. Interactive texture mapping. Computer Grophics Proeeedings. Annual Conference Series, ACM SIGGRAPH. 1993: 27- 34.
    8 Hebert. M, Homan. R, Johnson. A. Sensor-based interior modeling. Proceedings of American Nuclear Society 6th Topical Meeting on Robotics and Remote Systems. 1995:731-737.
    9 Mangan. A. P, Whitaker, R. T. Partition 3D Surface Meshes Using Watershed Segmentation. IEEE Transactions on Visualization and Computer Graphics. 1999. Vol.5:308-321.
    10 Rossl. C, Kobbelt. L, Seidel. H. P. Extraction of feature lines on triangulated surfaces using morphological operators. Proceedings of the AAAI Symposium on Smart Graphics. 2000:71-75
    11 Yu. Y, Ferencz. A, Malik. J. Extracting objects from range and radiance images. IEEE Transactions on Visualization and Computer Graphics. 2001.7(4): 351-364
    12 Sander. P, Snyder. J, Gortler. S. Texture mapping progressive meshes. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. 2001: 409-415.
    13 Sun. Y, Page. D, PAIK. J, Kosehan. A and Abidi. M. Triangle Mesh-Based Edge Detection And Its Application To Surface Segmentation And Adaptive Surface Smoothing. IEEE International Conference on Image Processing. 2002. Vol.3. 825-828.
    14 Zuckerberger. E, Tal. A and Shlafman. S. Polyhedral surface decomposition with applications. Computers & Graphics. 2002. vol.26. no.5: 733-743.
    15 Werghi. N, Xiao. Y. Posture recognition and segmentation from 3D human body scans. Proceedings of International Symposium on 3D Data Processing, Visualization, andTransmission. IEEE Computer Society Press. 2002: 636-639.
    16 Bischoff. S, Kobbelt. L. Ellipsoid decomposition of 3D-models. Proceedings of International Symposium on 3D Data Processing, Visualization, and Transmission. IEEE Computer Society Press. 2002: 480-488.
    17 Alface Patrice Rondao, Cayre Francois, Macq Benoit. Lapped spectral decomposition for
    3D triangle mesh compression. Proceedings of International Conference on Image Processing 2003, Barcelona. 2003: 781-784.
    18 Levy. B, Petitjean. S, Ray. N. Least squares conformal maps for automatic texture Atlas generation. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Antonio, Texas. 2002:362-371.
    19 Razdan. A, Bae. M. S. A hybrid approach to feature segmentation of triangle meshes. Computer-Aided Design. 2003. Vol.35: 783-789.
    20 Shamir. A. A formulation of boundary mesh segmentation Proceedings of Second International Symposium on 3D Data Processing. Visualization and Transmission. 2004: 82-89.
    21 Page. D. L, Koschan. A. F, Abidi. M. A. Perception-based 3D triangle mesh segmentation using fast marching Watersheds. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003: 27-32.
    22 Hilaga. M, Shinagawa. Y, Komura. T. Topology matching for fully automatic similarity estimation of 3D shapes. Computer Graphics Proceedings, Annual Comference Series, ACM SIGGRAPH, Los Angeles, California.2001: 203-212.
    23 Leymarie. F, Kimia. B. The shock scaffold for representing 3D shape. Proceedings of the 4th International Workshop on Visual Form, Capri. 2001: 216-228.
    24 Siddiqi. K, Shokoufandeh. A, Dickinson. S. J. Shock graphs and shape matching. International Journal of Computer Vision. 1999. 35(1):13-32.
    25 Sebastian. T. B, Klein. P. N, Kimia. B. Recognition of shapes by editing shock graphs. Proceedings of IEEE International Conference on Computer Vision, Vanconver. 2001:755-762.
    26 Sethian. J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge: Cambridge University Press. 2000:133-136.
    27 Edelsbrunner. H, Letscher. D, Zomorodian. A. Topological persistence and simplification. Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, California. 2000:454-463.
    28 Lazarus. F, Verroust. A. Level set diagrams of polyhedral objects. Proceedings of the 5th Symposium on Solid Modeling and Applications, New York. 1999: 130-140.
    29 Li. X, Woon. T. W, Tan. T. S. Decomposing polygon meshes for interactive applications. Proceedings of the ACM Symposium on Interactive 3D Graphics, Research Triangle Park,North Carolina.2001:35-42.
    30 Hoppe. H. Progressive meshes. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New Orleans, Louisiana.1996:99-108.
    31 Xiao. Y, Siebert. P, Werghi. N. A discrete Reeb graph approach for the segmentation of human body scans. Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling, Banff. 2003:378-385.
    32 Xiao. Y, Werghi. N, Siebert. P. A topological approach for segmenting human body shape. Proceedings of Computer Analysis of Images and Patterns, Groningen, the Netherlands. 2002:82-88.
    33 Katz Sagi, Tal Ayellet. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics. 2003.22(3): 954-961.
    34 Dey. T. K, Giesen. J, Goswami. S. Shape segmentation and matehing with flow diseretization. Proceedings of the 8th International Workshop On Algorithms and Data Structures. 2003:25-36.
    35 Taubin. G, Zhang. T, Golub. G. Optimal Surface smoothing as filter design. Yorktown, NY:Watson Research Center.1996:67-74.
    36 Karni. Z,Gotsman. C. Spectral compression of mesh geometry. Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH, 2000: 279- 286.
    37 Bisehoff. S,Kobbelt. L. Towards robust broadcasting of geometry data. Computer & Graphics. 2002.Vol.26(5):665-675.
    38 Krishnamurthy. V, Levoy. M. Fitting smooth surfaces to dense polygon meshes. Computer Grophics Proceedings, Annual Conference Series. ACM SIGGRAPH. 1996: 313-324.
    39 Shlafman. S, Tal. A, Katz. S. Metamorphosis of polyhedral surfaces using decomposition. Proceedings of Annual Conference of the European Association for Computer Graphics. 2002:219-228.
    40 Garland. M,Willmott. A,Heckbert. P. Hierarehical face clustering on Polygonal surfaces. Proceedings of ACM Symposium on Interactive 3D Graphics. 2001: 49-58.
    41 S. Piakor. Visual Cognition. The MIT Press. 1985: 254-366.
    42 Jackendoff. R. Semantics and Cognition. Cambridge, MA, MIT Press. 1983: 134-198.
    43 Johnson-Laird. P. N. Mental Models. Cambridge, MA, Harvard University Press. 1983: 199-212.
    44 Shepard. R. N. and Cooper. L. A. Mental Images and their Transformations. Cambridge, MA, MIT Press/Bradford Books. 1982:78-123.
    45 Ballard. D. H, and Brown G. M. Computer Vision. Prentice Hall. 1982:31-74.
    46 Marr. D. and Nishihara. H.K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc, R, Soc, Lond.1978.200:269-294
    47 Baumgart, B. G. Winged edge polyhedron representation. STANCS-320, AIM-179,Stanford AI Lab. 1972.10:122-135.
    48 Lakatos, I. Proofs and Refutations. Cambridge, M.A, Cambridge University Press. 1976:140-201.
    49刘哲,唐雁,陈强.三维模型有意义分割技术现状及应用.计算机科学. 2008.34: 87-89.
    50刘哲,唐雁.基于有意义分割的三维模型简化方法研究.西南大学. 2009.4:21- 27.
    51 Biederman. I. A theory of human image understanding. Psychological Review. 1987. 94(2):115-147.
    52 Biederman. I. Visual object recognition. Visual Cognition. 1995.2(4): 121-165.
    53 Hoffman. D. D, Richards. W. A. Parts of recognition. Cognition. 1984.18(1): 65-96.
    54 M. Singh, G. D. Seyranian, D. Hoffman. Parsing silhouettes: the short-cut rule. Perception and Psychophysics. 1999:636-660.
    55 Lai Yu-Kun, Zhou Qian-Yi. Feature Sensitive Mesh Segmentation. ACM. 2006. 17(2): 396-413.
    56 Ariel Shamir. A survey on Mesh Segmentation Techniques. COMPUTER GRAPHICS FORUM. 2008.vol27:1539–1556.
    57杨钒沁.面向CAD应用的三维网格分割算法研究.浙江大学. 2007.6: 2-36.
    58 Stefano Berretti, Alberto Del Bimbo, Pietro Pala. 3D Mesh decomposition using Reeb graphs. Image and Vision Computing 27. 2009:1540-1554.
    59 Zhang. Y, Pank. J, Koschan. A, Abidi. M. A simple and efficient algorithm for decomposition of 3D triangulated models based on curvature analysis. Proceedings of Intl. Conf. on Image Processing.2002: 273-276.
    60 Yunjin Lee, Seungyong Lee, Ariel Shannr. Mesh Seissoring with Minima Rule and Part Salienee. DigitalM/atermarking(LNCS3304). 2005:283-293.
    61 Lloyd. S. Least square quantization in pcm. IEEE Transactions on Information Theory. 1982. vol.28:129-137.
    62 T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms. Cambridge, MA: MIT Press. 2001;558-562.
    63 Roberts, L. Machine perception of three-dimensional solids. Optical and electrooptical information processing. Cambridge, MA: MIT Press. 1965. 125- 143.
    64 Waltz. D. Generating semantic descriptions from drawings of scenes with shadows. The psychology of computer vision, New York.1975:19-91.
    65 Winston. P. A. Learning structural descriptions from examples. The psychology of computer vision. New York. 1975: 157–209.
    66 Binford. T. O. Visual perception by computer. IEEE Systems Science and Cybernetics Conference, Miami, FL. 1971:125-132.
    67 Marr. D, Nishihara. H. K. Representation and recognition of three-dimensional shapes. Proceedings of the Royal Society of London. 1978.200:269–294.
    68 Pentland, A. P. Perceptual organization and the representation of natural form. Arti?cialIntelligence.1986. 28:293–331.
    69 Hoffman. D. D. Representing shapes for visual recognition. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA. 1983: 143-144.
    70 Hoffman. D. D. The interpretation of visual illusions. Scienti?c American, 1983.249: 154–162.
    71 Bennett. B. M, Hoffman. D. D. Shape decompositions for visual shape recognition: The role of transversality. Image understanding, Norwood, New Jersey. 1987:215–256.
    72 Beusmans. J, Hoffman. D. D, Bennett. B. M. Description of solid shape and its inference from occluding contours. Journal of the Optical Society of America. 1987. 4:1155–1167.
    73 Hoffman. D. D, Singh. M. Salience of visual parts.Cognition. 1997.63:29–78.
    74 Attneave. F. Multistability in perception. Scienti?c American. 1971.225: 63–71.
    75 Braunstein. M. L, Hoffman. D. D, Saidpour. A. Parts of visual objects: an experimental test of the minima rule. Perception. 1989.18:817–826.
    76 Biederman. I, Cooper. E. E. Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cognitive Psychology. 1991. 23: 393–419.
    77 Baylis. G. C, Driver. J. Parallel computation of symmetry but not repetition in single visual objects. Visual Cognition. 1994.1: 377–400.
    78 Baylis. G. C, Driver. J. Obligatory edge assignment in vision– the role of ?gure and part segmentation in symmetry detection. Journal of Experimental Psychology: Human Perception and Performance. 1995. 21: 1323–1342.
    79 Driver. J, Baylis. G. C. One-sided edge assignment invision part decomposition, shape description, and attention to objects. Current Directions in Psychological Scienc. 1995.4: 201–206.
    80 Singh. M, Hoffman. D. D. Part boundaries alter the perception of transparency. Psychological Science.1995:212-224.
    81 Attneave. F. Some informational aspects of visual perception. Psychological Review. 1954.61: 183–193.
    82 Richards. W. A, Hoffman. D. D. Codon constraints on closed 2d shapes. Computer Vision, Graphics, and Image Processing. 1985. 31: 156–177.
    83 Richards. W. A, Dawson. B, Whittington. D. Encoding contour shape by curvature extrema. Journal of the Optical Society of America. 1986.3: 1483- 1489.
    84 Guillemin. V, Pollack. A. Differential topology. Englewood Cliffs, NJ: Prentice- Hall. 1974:543-565.
    85 Rom. H, Medioni. G. Hierarchical decomposition and axial shape description. IEEE Transactions on PAMI. 1993.11:823–839.
    86 Siddiqi. K, Kimia. B. B. Parts of visual form: computational aspects. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995.17:239–251.
    87 Kimia. B. B, Tannenbaum. A. R, Zucker. S. W. Entropyscale-space. New York: PlenumPress. 1991:333-344.
    88 Blum. H, Nagel. R. N. Shape description using weighted symmetric axis features. Pattern Recognition. 1978.10:167–180.
    89 Brady. M, Asada. H. Smoothed local symmetries and their implementation. The International Journal of Robotics Research. 1984.3: 36–61.
    90 Leyton. M. Symmetry, causality, mind. Cambridge, MA:MIT Press.1992:76-90.
    91 Freeman. W. T. The generic viewpoint assumption in a framework for visual perception. Nature. 1994. 76: 181–189.
    92 Blum. H. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form. Cambridge: MIT Press. 1967: 362- 380.
    93 Blum. H. Biological shape and visual science: part I. Journal of Theoretical Biology. 1973. 38: 205-287.
    94 Ma. C. M, Wan. S. Y. Parallel thinning algorithms on 3D binary images. Computer Vision and Image Understanding. 2000. 80(3):364-378.
    95 Xie. W, Thompson. R. P, Perucchio R. A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recognition. 2003. 36(7): 1529-1544.
    96 Che Wu-Jun, Yang Xun-Nian, Wang Guo-Zhao. A dynamic approach to skeletonization. Journal of Software. 2003. 14(4):818-823.
    97 Choi. W. P, Lam. K. M, Siu. W. C. Extraction of the Euclidean skeleton based on a connectivity criterion. Pattern Recognition. 2003.36(3): 721-729.
    98 Ding Yi, Liu Wen-Yu, Zheng Yu-Hua. Hierarchical connected skeletonization algorithm based on distance transform. Journal Infrared and Millimeter Waves. 2005.24(4): 281-285.
    99 Chuang. J. H, Tsai. C. H, Ko. M. C. Skeletonization of three-dimensional object using generalized potential field. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. 22(11): 1241-1251.
    100 Ahuja. N, Chuang. J. H. Shape representation using a generalized potential field model. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. 19(2): 169-176.
    101 F. Dachille, A. Kaufman. Incremental triangle voxelization. Proceedings of Graphics Interface. 2000: 205-212.
    102 N. Ahuja, J. H. Chuang. Shape representation using a generalized potential field model. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. 19(2): 169-176.
    103 D. N. Cornea, D. Silver, X.S.Yuan, R.Balasubramanian. Computing hierarchical curve-skeletons of 3D objects. The Visual Computer. 2005.21(11): 945-955.
    104 A. Globus, C. Levit, T. Lasinski. A tool for visualizing the topology of three-dimensional vector fields. Proceeding of IEEE Visualization. 1991: 33-40.
    105 Z. Wood, H. Hoppe, M. Desbrun, P. Schroder. Removing excess topology from isosurfaces. ACM Transactions on Graphics. 2004.23(2):190-207.
    106 Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H. P. Seidel. Mesh scissoring with minima ruleand part salience. Computer Aided Geometric Design. 2005. 22:444-465.
    107 Y. Ohtake, A. Belyaev, H. P. Seidel. Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics. 2004. 23(2):609-612.
    108 LIU Jun-Tao, LIU Wen-Yu, WU Cai-Hua, YUAN Liang. A New Method of Extracting Objects’Curve-skeleton. ACTA AUTOMATICA SINICA. 2008. 6: 1-8.
    109彭艺.三维模型骨架提取算法研究与实现.华中科技大学硕士学位论文. 2008.6:22-28.
    110 Zhu-Ge Ying, Tian Jie, Wang Wei-Hong. A new method of three-dimensional Eeuclidean distance transform. Journal of Software. 2001. 12(3):383-389

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700