微制造隔振平台的控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合国家自然科学基金项目“精密装置仿生隔振系统理论及基础技术研究”(No.50075078),从理论分析和实验研究两方面,对微制造隔振平台控制理论和主动振动控制技术进行了深入、系统的研究。
     第一章首先阐述了微制造隔振平台主动振动控制研究意义;然后,对国内外主动控制理论和致动器的研究现状进行回顾及评述,指出了微制造隔振平台控制理论和主动振动控制技术研究的重要意义;最后,介绍了本学位论文的主要研究内容。
     第二章对微制造隔振平台结构和致动器安装方式进行了研究。首先,在分析啄木鸟头部独特生物构造和隔振机理的基础上,运用仿生学原理设计了微制造隔振平台结构;然后,对主动隔振致动器的安装方式的合理性进行了理论上的分析与验证。
     第三章分析了微机数字PID控制算法,对位置型、增量型PID算法程序设计作了重点研究。结合微制造隔振平台隔振系统的结构特点和性能要求,提出了闭环二维F-PID主动控制系统,并采用Matlab软件对被动隔振、PID主动隔振和F-PID主动隔振分别进行了仿真,经分析比较得出结论。
     第四章结合面向对象技术,对隔振平台的主动振动控制系统软件进行了面向对象的系统分析与设计,提出了整体框架的实现方法、PID控制模块的流程图和输出数据项的流程图。并在Windows 98操作系统下采用Visual C++6.0开发了微制造隔振平台主动振动控制软件PidAVC V1.0。
     第五章进行了微制造隔振平台的被动隔振和PID主动隔振实验研究,并对实验结果作了比较分析,得出了相关结论。
     第六章概括了全文的主要研究成果,并展望了今后需进一步开展的工作。
In this dissertation, associating with the project "RESEARCH ON THEORY AND SUPPORTING TECHNOLOGY OF BIONICS VIBRATION ISOLATION SYSTEM FOR PRECISION EQUIPMENT", which is aided financially by the National Natural Science Foundation of China (No.50075078), the control theory and active vibration control technology of the micro-manufacturing vibration-isolation platform (MMVIP) have been studied deeply and systematically both in theoretical analysis and experimental study.
    In chapter 1, firstly, a survey of the importance of active vibration control technology of MMVIP is performed. Then the review and appraisement of the present research situation on and the development trend of the key technology of MMVIP, such as active vibration isolation technology and actuator, are discussed in details, and the significance of the study of active vibration control technology of MMVIP is pointed out. Finally the main content of the dissertation is introduced.
    hi chapter 2, the structure of MMVIP and the installment style of actuator are studied. Firstly, based on the bionics of the woodpecker's brain vibration isolation mechanism, the bionic structure of MMVIP are designed. Then the feasibility of the actuator's installment style is analyzed and validated in theory.
    In chapter 3, After analyzing the PID digital algorithm and fuzzy algorithm, a closed loop fuzzy-PID active vibration control system was adopted in consideration of complex and nonlinear vibration environment, it was simulated by Matlab. After the comparison and analysis with the results of simulations, some conclusions were drawn.
    In chapter 4, using object oriented technology, the active vibration control software is analyzed and designed. The design of the flow charts of PID control module and output data module are also discussed. The PidAVC V 1.0 is developed with Visual C-H- 6.0 in Windows 98 operation system.
    In chapter 5, some experiments of passive and PID active vibration control under disturbing signals based on giant magnetostrictive actuator are conducted. After the comparison and analysis with the results of experiments, some conclusions were drawn.
    In chapter 6, all achievements of the dissertation are summarized and the further research work, which will be done from now on, is put forward.
引文
[1] M. Sadiku. MEMS[J]. IEEE Potentials, 2002, 21 (1): 4-5.
    [2] D.J. Bishop, C.R. Giles, G.P. Austin. The Lucent lambdarouter: MEMS technology of the future here today[J]. IEEE Communications Magazine, 2002, 40(3): 75-79.
    [3] 胡强,程耀东,齐津.主动控制的高精度隔振平台的仿真[J].浙江大学学报,1999,33(2):209-213.
    [4] Y.Nakamura, M.Nakayama, K.Masuda, et al. Development of active 6-DOF microvibration control system using giant magnetostrictive actuator[A]. Proceedings of the SPIE Conference on Smart Systems for Bridges, Structures and Highways, Newport Beach, California, March 1999:229-240.
    [5] 丁文镜.减振理论[M].北京:清华大学出版社,1988
    [6] 顾乾坤,唐一科,徐友钜等.柔性基础上主动隔振执行器安装方式的动力学研究[J].重庆大学学报(自然科学版),1997,20(06):96—102
    [7] 梅德庆,陈子辰.微制造平台的精密隔振系统研究.光学精密工程,2001,9(6):506-509
    [8] 张春良,梅德庆,陈子辰.微制造平台混合隔振的动力学研究.中国机械工程,已录用
    [9] 杨东利,魏燕定,李国平,陈子辰.主动振动控制中控制技术的发展及其应用.振动工程学报(增刊).2001.10.(14):72—74
    [10] 李国平,杨东利,魏燕定,陈子辰.振动主动控制技术的应用与研究.东南大学学报,2001.10(5A):114-116
    [11] 李国平,魏燕定,杨东利,陈子辰.用于微振动控制的超磁致伸缩驱动器的研究.微电子,已录用
    [12] 陈亚良,梅德庆,傅龙珠,陈子辰.超精密装置二维F-PID振动控制系统设计.中国机械工程,已录用
    [13] 陈亚良,傅龙珠,梅德庆,陈子辰.超精密装置PID振动控制系统的仿真研究.工程设计,已录用
    [14] Kazuki MIZUTANI,Yoshitaka FUJITA,Hideto OHMORI. Hybrid Control System for Microvibration Isolation[J]. AMC '96-MIE. Proceedings,vol(2):577-582
    [15] 丁衡高.微机电系统的科学研究与技术开发[J].清华大学学报,1997,37(9):1-5.
    [16] 李栓庆.下世纪微电子机械系统的发展[J].半导体情报,1997,34(2):11-22.
    [17] 刘平成,杨晓红,吴晓琳等.纳米级微动试验台的隔振设计研究[J].机械设计,2000,9:19-21.
    [18] 夏春林,丁凡,路甬祥.超磁致伸缩材料驱动驱动器实验研究[J].电工技术学报,1999,14(4):14-16,34.
    
    
    [19] 贾宇辉,谭久彬.超磁致伸缩微位移驱动系统的研究[J].仪器仪表学报,2000,21(1):38-41.
    [20] 盖玉先,董申,李旦.亚微米超精密车床的振动模糊主动控制[J].振动工程学报,2000,13(1):156—160.
    [21] C.L.Zhang, D.Q.Mei, Z.C.Chen. Active vibration isolation of a micro-manufacturing platform based on a neural network. Journal of Materials Processing Technology 129(2002) 634-639
    [22] 赵鹏,杨牧,张葆.航空机载光学设备的振动分析及座架减振器的设计.光学精密工程,Vol.5,No3,1997,58-63.
    [23] 贾建援,仇原鹰,曹玉玲.一种新型的方舱电子设备缓冲架及其结构优化设计.西安电子科技大学学报,Vol.23,No3,1996,347-355.
    [24] Teruo Takagami, Yasuo Jimbo. Study of an Active Vibration Isolation System—a learning control method. Journal of Low Frequency Noise and Vibration. Vol.4, No.3, 1985, 143-151.
    [25] N.Tanaka, Y.Kikushima. On the Hybrid Vibration Isolation Method. Journal of Vibration, Acoustics, Stress and Reliability in Design, ASME, Vol.111, 1989, 61-70.
    [26] Okada Y., Harada H. Active and Regenerative Control of an Electrodynamic-Type Suspension., JSME International Journal, Vol.40, No.2, 1997, 272-278.
    [27] 王玉松等.主动隔振控制系统的研究.微机发展,1996(2),3—6.
    [28] Owen, R.C. and Johns, D.I. "Multivariable Control of An Active Anti-vibration Platform". IEEE trans. Vol. Mag_22.1986, 76-82.
    [29] 庄表中,李小平.仿生学与振动.振动与冲击,Vol.16,No.1,1997,84—85.
    [30] 邵海忠.仿生学纵横谈.江西人民出版社.1981
    [31] 路小波等.基于神经网络的柔性结构振动主动控制研究.振动工程学报.2000.3
    [32] 朱荣等.模糊自适应隔振技术的研究.噪声与振动控制.1998.2
    [33] 王存堂等.柔性结构的模糊主动振动控制研究.振动工程学报.1998.9
    [34] 吴广玉.系统辨识与自适应控制(下册).哈尔滨工业大学出版社.1987
    [35] 孙庚山等.工程模糊控制.机械工业出版社.1995
    [36] 韩曾晋.自适应控制系统.机械工业出版社.1983
    [37] 陶永华等.新型PID控制及其应用.机械工业出版社.1998.9
    [38] 张际先,宓霞.神经网络及其在工程中的应用.机械工业出版社.1996.3
    [39] 程相君.神经网络原理及其应用.国防工业出版社.1995.1
    [40] 李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土.11(6) 1990
    [41] 金绥更,刘湘林,蒋志红.稀土超磁致伸缩器件的设计与应用.稀土,13(1)1992
    [42] 蒋志红,刘湘林,金绥更.稀土超磁致伸缩材料的发展.稀土,12(1)1991
    
    
    [43] 夏春林,丁凡.超磁致伸缩材料的特性参数测量及其应用研究.仪器仪表学报,1999.8 368—370
    [44] 王存堂,唐建中等.主动振动控制中传感/作动元件配置问题的全局优化方法研究.1998.355—59
    [45] 钟文定.铁磁学(下).北京:科学出版社.1987.8
    [46] 戴道生等.铁磁学.北京:科学出版社.1974.8
    [47] 宛德福,马兴隆.磁性物理学.电子科技大学出版社.1994.11
    [48] 杨强,李堂秋.Win 9x虚拟设备驱动程序编程指南.清华大学出版礼.1999.3
    [49] 张英会.弹簧.机械工业出版社.1982.11
    [50] 张晋格.计算机控制原理与应用.电子工业出版社.1995.9
    [51] 程耀东.机械振动学(上).浙江大学出版社.1992.8
    [52] 张培强.Matlab语言.中国科学技术大学出版社.1995.11
    [53] 张阿舟,姚起杭.振动控制工程.航空工业出版社.1989
    [54] 顾仲权,朱金才,彭福军等.超磁致材料作动器在振动主动控制中的应用研究.振动工程学报.1998.12(4)381—388
    [55] 丁文镜.振动主动控制当前的主要研究课题.力学进展.1994.5(2)173—180
    [56] 费宇辉,谭久彬.超磁致伸缩微驱动器在纳米测量中应用的研究.压电与声光.2000.4(2)127-130
    [57] 蒋静坪.计算机实时控制系统.浙江大学出版社.1992.
    [58] 马扣根,顾仲权.时域离敞系统的可控度及其在传感器/作动器配置中的应用.振动与冲击.1993(3):1-7
    [59] 马扣根,顾仲权.振动主动控制系统的一种鲁棒设计方法.振动与冲击.1992(4):23—28
    [60] 盖玉先,董申,李旦等.超精密机床的振动混合控制.中国机械工程.2000.3(3).289-291
    [61] 路小波.陶去刚,何延伟.基于压电元件的振动主动控制.振动、测试与诊断.1999.6(2)92—94
    [62] 龙志强,伊力明,常文森.磁悬浮隔振系统控制方法研究.噪声与振动控制.1996.4(2)6—10
    [63] 张洪出,刘志刚等.电磁式主动隔振装置性能实验研究.噪声与振动控制.1996.2(1)15—18
    [64] 贾振元,杨兴,郭东明.超磁致伸缩材料控制模犁的研究.压电与声光.2001.4(2)164-166
    [65] 欧阳光耀,施引,黄映云.用磁致伸缩材料作动器进行主动隔振的研究.噪声与振动控制.1997.8(4):2—5
    [66] 袁树清,赵玉成,许庆余等.采用压电材料的振动主动控制.西安交通大学学报.1999.8(8):61-64
    
    
    [67] 颜泽飞,黄林,王寿荣等.FUZZY-PID半联控制减振系统的仿真研究.振动与冲击.1999.(2):56-93
    [68] Owen, R.C.John, D.I. Multivariable Control of An Active Anti-vibration Platform. IEEE trans. Vol. Mag 22, 1986
    [69] 任勇生,王世文等.形状记忆合金在结构主被动振动控制中的应用.力学进展.1999(1):19—33
    [70] 王社良,巨生茅,苏三庆.形状记忆合金的动力响应特性及振动控制.西安建筑科技大学学报.1999.3(1):14—17
    [71] 王吉军,初奕,马孝江等.NiTi形状记忆合金振动感知与主动控振研究.大连理工大学学报.1997.11(6):736—741
    [72] WASSIM M.HADDAD, ALI RAZAVI, DAVID C.HYLAND. Active vibration isolation of multi-degree-freedom systems. Journal of vibration and control. 5:577-589, 1999
    [73] Anthony E Ackerman, Chen Liang, Craig A Rogers. Dynamic transduction characterization of magnetostrictive actuators. Smart Mater. Struct. 5:115-120, 1999
    [74] M.Wun-Fogle, J.B.Restorff, K.Leung, J.R.Cullen. Magnetostriction of Terfenol-D heat treated under compressive stress. IEEE TRANSACTIONS ON MAGNETICS. 5:3817-3819, 1999
    [75] Marcelo J.Dapino, Alison B.Flatau, Frederick T.Calkins. Statistical analysis of Terfenol-D material properties. SPIE. Vol. 3041:256-267, 1997
    [76] A.Gjenner, R.J.E.Smith, A.J.Wilkinson, R.D.Greenough. Actuation and transduction by giant magnetostrictive alloys. Mechatronics. 10:457-466, 2000
    [77] Marcelo J.Dapino, Ralph C.Smith, Alison B.Flatau. A coupled structural-magnetic strain model for magnetostrictive transducers. SPIE (Part of the SPIE Conference on Smart Structures and Integrated Systems) Vol.3668, 405-416, 1999
    [78] Ralph C.Smith. A nonlinear model-based control method for magnetostrictive actuators. Proceedings of the 36th Conference on Decision and Control. San Diego, California USA. December 1997
    [79] M.E.H.Benbouzid. Artificial Neural Networks for Finite Element Modeling of Giantmagnetostrictive Devices. IEEE TRANSACTIONS ON MAGNETICS , VOL. 34, :3853-3856, NOVEMBER 1998
    [80] Yoshi Yamamoto, Takaaki Makino. Micro Positioning and Actuation Devices Using Giant Magnetostriction Materials. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, CA. April 2000, 3635-3640
    [81] Mayergoyz I.D. Mathematical Models of Hysteresis. IEEE Trans. on Magn. 1986, MAG-22(5):603-607
    
    
    [82] Restorff J.B, Savage H.T, Clark A.E. Preisach Modeling of Hysteresis in Terfenol. J.Appl. Phys. 1990, 67(9):5016-5018
    [83] Anjanappa M, Bi J. Magnetostrictive Mini Actuator for Smart Structure Applications. Smart Material Structure. 1994.3(4):383-390
    [84] Dozor D.M, Engel B.B, Kiley J.E. Modeling. Optimizations and Control of Magnetostrictive High Force to Mass Ratio Reaction Mass Actuators. SPIE Vol.3044: 370-381
    [85] Kosuke Nagaya, Masashi Ishikawa. A Non-contact Permanent Magnet Levitation Table with Electromagnetic Control and Its Vibration Isolation Method Using Direct Disturbance Cancellation Combining Optimal Regulators. IEEE TRANSACTION ON MAGNETICS. Vol.31, No.1, January 1995
    [86] Jurgen Schafer, Hartmut Janocha. Compensation of hysteresis in solid-state actuators[J]. Sensors and Actuator. 1995, A 49:97-102
    [87] Anjanappa M, Bi J.A. Theoretical and experimental study of magnetostrictive mini-actuators. Smart. Mater. Struct. 1994(2)
    [88] 荣列润.面向21世纪的高科技——纳米技术.上海机床.1997(2)
    [89] Jenner A.G, Greenough R. D, Wilkinson A.J, Parvinmher A. Performance of magnetostrictive rare earth iron compounds for device. IEEE Trans. On Magn. , 1990, 26 (5):3216-3220
    [90] Greenough R. D, Schulze M. P, Jenner A. G. Actuation with Terfenol-D. IEEE Transactions of Magnetics, 1991, 27 (6): 5346-5348
    [91] D.C. jiles and D. L. Atherton. Theory of ferromagnetic hysteresis. J. Appl. Phys., 1984. 55(6): 2115-2120
    [92] D.J. Craik and M. J. Wood. Magnetization changes induced by stress in a constant applied field. J. Phys. 1997.6(4):1009-1015
    [93] D.C. Jiles. Theory of the magnetomechanical effect. J. Phys. 1995.6:1537-1546
    [94] D.C. Jiles and D. L. Atherton. Theory of the magnetization process in ferromagnets and its application to the magnetomechanical effect. J. Phys. 1984(17): 1265-1281
    [95] 李锡雄,陈婉儿,鲍鸿,程良伦 编著.微型计算机控制技术.北京:科学出版社.1999.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700