基于超磁致伸缩驱动器的主动隔振系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对超磁致伸缩驱动器(GMA)在主动隔振系统中的应用进行了系统的理论分析和实验研究,旨在采用超磁致伸缩驱动器作为主动隔振系统中的执行机构抑制隔振平台的振动,以提高隔振平台的隔振精度。
     绪论从主动隔振技术及其工程背景和超磁致伸缩驱动器的应用研究概况着手,对它们的背景、应用和发展等作了较为详细的论述,着重介绍主动隔振技术及控制规律和智能材料在其中的应用,对超磁致伸缩驱动器的发展概况、优点及其应用现状也作了较为详细的叙述。
     第二章介绍精密隔振平台的设计及设计原理,详细论述超磁致伸缩驱动器的设计,包括:磁致伸缩现象、Terfenol—D的基本特性、空心交流电磁路的设计、偏置磁场以及预压弹簧的设计。
     第三章建立主动隔振系统的模型,首先对隔振平台进行理论建模;其次,从本构方程导出超磁致伸缩驱动器的数学模型,并考虑温度对Terfenol—D棒应变的影响;最后从宏观角度介绍整个测控系统,分别详细说明系统的硬件构成和软件构成,重点介绍驱动器的功率放大电路设计和主动隔振测控软件的模块化设计。
     第四章为主动隔振试验与仿真研究,首先介绍了PID控制算法在主动隔振中的应用;在主动隔振试验中利用PID建模技术对所建识别模型进行离线识别,然后考察不同外扰频率下的隔振效果;再次对外扰力为单频、双频、噪声信号的情况下对系统进行数值仿真。
     第五章对超磁致伸缩驱动器的特性进行测试,通过试验数据研究了驱动器的静态特性、频响特性、滞回特性与磁滞模型以及动态阶跃响应。
     最后,概况本论文的主要工作、得出相关结论并对本课题下一步的发展提出了自己的意见。
The theory analysis and experiment research of active isolation system based on Giant Magnetostrictive Actuator (GMA) are discussed in this dissertation. The main purpose of the research is to improve the vibration controlling precision of vibration isolation platform by means of Giant Magnetostrictive Actuator as the active vibration control element.
    In the preface we begin with the engineering background of active isolation technology and GMA, of which the research, use and development are stated in detail, especially the control rule and AI material used in active isolation system, practical use and advantage of them.
    In chapter 2 design and principle of the precision active isolation platform are discussed. Design of GMA is discussed in detail and it consists of magnetostrictive phenomenon, basic characteristics of Terfenol-D, design of hollow AC electro-magnetism circuit, design of the Bias Magnetic Field and precompression spring.
    In chapter 3 model of active isolation system is constructed. Firstly, theoretical model of the isolation platform is constructed. Secondly, mathematical model of the GMA is inferred from constitutive equation and the temperature influence to the strain of Terfenol-D is considered. At last the whole measurement and control system is introduced in this dissertation. The software element and the hardware element are discussed in detail especially. Special emphasis is put on the design of the power amplifier and modularization design of the measurement and control system software.
    Chapter 4 mainly include active isolation experiment and simulation research. The use of PID control algorithm in active isolation system is discussed firstly. We identify the constructed model offline by means of PID modeling technology in the active isolation experiment, then the isolation result leading from different disturb frequency is reviewed. Secondly, numerical simulation is carried out according to the disturb signal of single frequency, double frequency and noise.
    The characteristics of GMA include static, frequency response, hysteresis and hysteresis model, dynamic step response is tested in chapter 5.
    At last main achievements of this dissertation are summarized and the further research work, which will be done in the near future is put forward.
引文
[1] Karnopp D. Active and semi-active vibration isolation[J]. Journal of Vibration and Acoustics, 1995(117): 177-184。
    [2] A. Abu Hanieh, M. Horodinca & A. Preumont Universite Libre de Bruxelles, Bruxelles, Belgium N. Loix & J. Ph. Verschueren Micromega Dynamics sa., Angleur, Belgium. Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations.
    [3] 顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997,6:203~206
    [4] 顾仲权.振动主动控制.北京:航空工业出版社,1997.
    [5] 陈大跃,胡宗武,范祖尧.振动控制的特征结构配置.振动工程学报,1991,2(2):75~81
    [6] 顾仲权.振动控制中低阶控制器的优化设计.振动工程学报,1990,3(3);1~8
    [7] Fuller C R. Active control of broad bend structural vibration using the LMS adaptive algorithm. Journal of Sound and Vibration. 1993, 166(2); 283~299
    [8] 周军,陈新海.大型柔性空间结构的变结构模型参考自适应控制.航空学报,1992,13(4):158~163
    [9] 顾家柳.转子系统振动主动控制的目的及对策.振动与冲击,1993,2:1~7
    [10] 骆志明,顾家柳.转子动力系统时滞H~∞控制.振动工程学报,1998,11(3):317~321
    [11] 张庙康,胡海岩.车辆悬架模糊神经网络半主动振动控制系统的研究.振动、测试与诊断,1996,16(2):18~24
    [12] Shelley F J, Clark W W. Experimental applilcation of feedback control to localilze vibration[J]. Journal of Vibration and Acoustics, 2000(12): 142~149.
    [13] Fuller C R, Flotow A H. Active vibration control of bridge tower under construction by musynthesis[J]. Proceedings of Institute Mechanical Engineering, 1996(210): 153~164.
    [14] Nagase K, Hayakawa Y. Active vibration control of bridge tower under construction by musynthesis[J]. Proceedings of 3rd International Conference on Motion and Vibration Control, 1996(3): 175~184.
    
    
    [15] Huang S J, Lian R j. A combination of fuzzy logic and neural network algorithms for active vibration control[J]. Proceedings of institute Mechanical Engeerings, 1996(210): 153~167.
    [16] Soong T T. Active Structrual Control: Theory and Practice[M]. Longman Scientific<echnical. 1990.
    [17] Lee S Y, Mote C D. Wave characteristics and vibration control of translating beams by optimal bound—ary damping[J]. Journal of Vibration and Acoustics, 1999(121): 18~24.
    [18] 岩壶卓三.机械构造与控制器同时最优设计[A].日本机械学会论文集[C].1993,59(559):631~637.
    [19] Schubert. U. S. Patent No. 5, 660, 255, 1997.
    [20] 吕智,季守振.EEA/DCP材料的形状记忆特性研究[J].北京航空航天大学学报,2001(1):9~11。
    [21] 关新春,欧进萍。磁流变耗能器的阻尼力模型及其参数确定[J] 。振动与冲击,2001(1):5~8。
    [22] 李国荣,陈大任。PZT系多层片式压电陶瓷微驱动器位移性能研究[J].无机材料学报,1999,14(3):72~78.
    [23] 严天宏,段登平。振动主动控制中传感器/作动器最优配置问题的模拟退火研究[J] 。振动与冲击(2):54~59。
    [24] 李俊宝,张景绘。振动工程中智能结构的研究进展[J] 。力学进展,1999(2):27~34。
    [25] Yoshika H, Takahashi Y, Katayama K, et al. An active microvibration isolation system for hi-tech manufacturing facilities[J]. Journal of Vibration and Acoustics. 2001, 123(2): 269~275.
    [26] 刘先曙.智能材料研究动态[N].科技导报,1993—01(2) 。
    [27] Tang P, Palazzolo A. Combined piezoelectric-hydramic actuator based active vibration control for rotor dynamic system[J]. Journal of Vibration and Acoustics, 1995(117): 78-85.
    [28] 李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土.11(6) 1990
    [29] 金绥更,刘湘林,蒋志红,稀土超磁致伸缩器件的设计与应用,稀土,13(1) 1992
    [30] 蒋志红,刘湘林,金绥更,稀土超磁致伸缩材料的发展,稀土,12(1) 1991
    [31] 夏春林 丁凡,超磁致伸缩材料的特性参数测量及其应用研究,仪器仪表学报,1999.8 P368-370
    [32] 钟文定.铁磁学(下).北京:科学出版社.1987.8
    [33] 戴道生等.铁磁学.北京:科学出版社.1974.8
    [34] 宛德福 马兴隆.磁性物理学.电子科技大学出版社.1994.11
    
    
    [35] 顾仲权 朱金才 彭福军等.超磁致材料作动器在振动主动控制中的应用研究.振动工程学报.1998.12(4) P381-388
    [36] 贾宇辉 谭久彬.超磁致伸缩微驱动器在纳米测量中应用的研究.压电与声光.2000.4(2) P127-130
    [37] 贾振元 杨兴 郭东明.超磁致伸缩材料控制模型的研究.压电与声光.2001.4(2) P164-166
    [38] Hiller M W, Bryant M D, Umegaki J. Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. Journal of Sound and Vibration, 1989; 134(3): 507-519
    [39] Anjanappa M, Bi J. A theoretical and experimental study of magnetostrictive mini-actuators. Smart Mater. Struct., 1994;(3): 83-91
    [40] Anjanappa M, Bi J. magnetostrictive mini-actuators for smart structure applications. Smart Mater. Struct., 1994;(3): 383-390
    [41] Geng Z J, Leonard S H. Six degree-of-freedom active vibration control using the Stewart platform, OIEEE Transaction on Control System Technology, 1994; 2(1): 45-53
    [42] Micheal D B, Benito F, et al. Active vibration control in structures using magnetostrictive Terfenol with feedback and/or neural network controllers. Journal of Intelligent Material System and System and Structures, 1993; 4: 484-489
    [43] Anthony E A, Chen L, Craig A R. Dynamic transduction characterization of magnetostrictive actuators. Smart Mater. Struct., 1996;(5): 115-120
    [44] 周炎勋等.计算机自动测量和控制系统[M].北京:国防工业出版社,1992.2,1~3
    [45] 周泽魁.控制仪表与计算机控制装置[M].北京:化学工业出版社,2002.9,191~193
    [46] 张学成 压电致动器双向电源研究 压电与声光20(1):34~37.1998
    [47] 陈凯良 恒流源及其应用电路 浙江科学技术出版社:18~20.1992
    [48] 陶永华等.新型PID控制及其应用.机械工业出版社.1998.9
    [49] 杨东利,魏燕定,李国平,陈子辰.主动振动控制中控制技术的发展及其应用.振动工程学报(增刊).2001.10.(14):p72-74
    [50] 李国平,杨东利,魏燕定,陈子辰.振动主动控制技术的应用与研究。东南大学学报,2001.10(5A):p114-116
    [51] 李国平,魏燕定,杨东利,陈子辰.用于微振动控制的超磁致伸缩驱动器的研究.微电子2002
    [52] 张培强.Matlab语言.中国科学技术大学出版社.1995.11
    [53] C.H.汉森,S.H.施奈德,仪垂杰等译.噪声和振动的主动控制北京:科学出
    
    版社.2002:294—302
    [54] 王益群 孔祥东.控制工程基础 北京:机械工业出版社.2000.5:66—80
    [55] 夏春林 丁凡 路甬祥.超磁致伸缩电—机械转换器模型分析.中国机械工程.2000.11(11):P1287-1290
    [56] Mayergoyz I. D. Mathematical Models of Hysteresis. IEEE Trans. on Magn., 1986, MAG-22(5): 603-607
    [57] Restorff J. B, Savage H. T, Clark A. E. Preisach Modeling of Hysteresis in Terfenol. J. Appl. Phys., 1990, 67(9): 5016-5018
    [58] 林青,张国贤等.超磁致伸缩材料驱动器的数学模型.机电一体化,2001(6):26~28
    [59] 李鹤,袁惠群.超磁致伸缩材料执行器非线性动力学行为分析.非线性动力学学报,2001,6(2):155~156
    [60] 贾宇辉,谭久彬,张杰.超磁致伸缩微位移驱动器的研究,微细加工技术,2000(2):71~73
    [61] 杨兴,贾振元等.超磁致伸缩微位移驱动系统的研究.制造技术与机床,2001(9):21~23
    [62] 超杨兴,贾振元等.磁致伸缩执行器驱动磁场理论分析与实验研究.大连理工大学学报,2001,9(5):578~579
    [63] 贾宇辉,谭久彬.基于超磁致伸缩材料的微位移驱动器特性研究.中国机械工程,1999,11(11):1213~1215
    [64] 林青,张国贤等.稀土超磁致伸缩材料高速强力微位移机构的开发及动态响应特性研究.机电一体化,2001(6):26~28
    [65] 欧阳光耀,施引,黄映云.用磁致伸缩作动器进行主动隔振的研究.噪声与振动控制,1997(8)
    [66] 许黎明,胡德金.Windows环境下机电控制软件实时性的探讨.机电一体化,2001(4):34~35
    [67] 陈莉,陈忠保,赵振西.基于构件技术的工业控制软件设计.系统仿真学报,2001,7(4):446~448
    [68] 古天龙,蔡国永,庞建雄.控制系统软件的方法论设计.桂林电子工学院学报,1999,6(2):1~4
    [69] 程科,陈庆芳 VC++环境下开发计算机测控系统的几个关键问题.华东船舶工业学院学报,2001,4(2):58~60
    [70] 胡飞.面向仪器与测控系统的计算机软件应用平台技术现状与发展.测控技术,2001(4):34~35
    [71] 韩保红,马英忱等.用Matlab仿真非线性混沌振动的主动隔振研究.控制与决策,2003,1(1):120~122
    [72] 刘志刚,张天元等.周期激励下主动隔振试验研究.内燃机工程,1996(1):
    
    41~45
    [73] 王玉松,谭达明.主动隔振控制系统的研究.微机发展,1996(2):3~4
    [74] 胡强,程耀东,齐津.主动控制的高精度隔振平台的仿真.浙江大学学报,1999,3(2):209~212
    [75] 张锐,陈以方,陈玉宝.基于计算机的多功能信号测量与处理系统.电测与仪表,2002,4(4):24~27
    [76] 郭东明,杨兴等.超磁致伸缩执行器在机电工程中的应用研究现状.中国机械工程,2001,6(6):724~726
    [77] Geng, Z. J. and Haynes, L. S., 1994, "An Effective Kinematic Calibration Method for Stewart Platforms, " ISRAM, pp. 87-92.
    [78] Gosselin, C., 1990, "Stiffness Mapping for Parallel Manipulators, " IEEE Transactions on Robotics and Automation, Vol. 6, No. 3, pp. 377-383.
    [79] Griffis, M. and Duffy, J., 1991, "Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement, " Transaction of the ASME, Vol. 113, pp. 508-515.
    [80] Innocenti, C., 1995, "Algorithms for Kinematic Calibration of Fully-Parallel Manipulator, " In J.-P. Merlet B. Ravani(eds.), Computational Kinematics, pp. 241-250.
    [81] Kim, H. S. and Choi, Y. J., 1999a, "The Analysis of forward/Inverse Force Transmission Capabilities of the Stewart Platform, " ASME Design Enginnering Technical Conferences, Las Vegas, Nevada, 12-15 September.
    [82] 魏燕定,吕猛,李国平,陈子辰。一种主动精密隔振装置。杭州:求是专利事务所。申请号03115297. X,公开号1431409,2003年7月(已公开)
    [83] 吕猛,魏燕定,李国平,陈子辰。超磁致伸缩驱动器动态输出特性的改进研究[J] 。机床与液压,2004(6)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700