基于超磁致伸缩材料的微位移致动器设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土超磁致伸缩材料(GMM)是近年来发展起来的一种新型机敏材料,具有应变大、强力、能量密度高、响应速度快等优异特性,其开发与应用得到世界各国学者的关注,产量及市场销量增长非常迅速。基于其正磁致伸缩效应制作的超磁致伸缩致动器(GMA)具有广阔的应用前景,是一类很有潜力的新型微位移致动器。
     超磁致伸缩材料作为一种功能材料具有很多优异性能,但也存在几个对应用极为不利的固有特性,主要包括磁滞特性、非线性动力学特性和对工作条件的变化非常敏感等,在设计和使用应用系统过程中必须加以充分考虑。
     本文根据超磁致伸缩材料的工作特性及其在工程应用中的要求,以国产稀土超磁致伸缩材料为基础,以超磁致伸缩致动器为研究对象,在超磁致伸缩材料的工作特性、性能参数测定、微位移致动器的设计与实现、静动态特性实验研究等方面进行了较为深入而系统的研究。全文分为六章,各章主要内容分述如下:
     第一章概要说明磁致伸缩现象及其机理;综述超磁致伸缩材料的主要特性、发展历史与研究现状;介绍国内外应用研究概况及存在的问题,在此基础上陈述了本课题的选题意义并给出研究内容和结构安排。
     第二章分析稀土超磁致伸缩材料的工作特性,介绍其在弱磁场激励下的磁机电耦合特性以及相关特性参数的测量方法。测得了国产超磁致伸缩材料的一系列机械和物理特性参数,为采用这些材料开发应用器件提供了重要的数据。
     第三章讨论稀土超磁致伸缩致动器的静态与动态模型分析方法:介绍了超磁致伸缩致动器的静态位移和力输出模型;建立了动态集总参数机电耦合模型,并在传统模型中引入磁通反馈,消除将线圈电感作为常数所带来的模型失真;详细介绍了稀土超磁致伸缩致动器基于能量的非线性滞回特性建模理论与算法。
     第四章在已知稀土超磁致伸缩材料的工作特性,并分析超磁致伸缩致动器的基本结构与工作原理的基础上归纳出设计超磁致伸缩致动器的几个关键问题;提出超磁致伸缩致动器的一般设计与计算方法;给出超磁致伸缩致动器的设计过程与实现结果。将强制水冷与相变温控结合运用,构成了磁致伸缩棒组合温控装置。
     第五章介绍超磁致伸缩致动器的驱动、控制和静动态特性实验的系统原理、实验设备、实验方案、实验结果及其分析。其中静态特性实验包括静态位移输出和静态力输出特性实验,动态特性包括动态位移输出特性、动态动力输出特性和动态响应性特性实验以及温控实验。
     第六章对全文工作进行总结,展望今后开展工作的方向和途径。
Rare Earth Giant Magnetostrictive Materials(GMM) is a new kind of smart material developed in recent years, which has several inherent excellent properties, such as large magnetostrictive strain, fast response, high energy density and so on. Because of its excellent property and promising application foreground, scientists all over the world are interested in it.
    The paper includes six chapters,content of each chapter is stated as follows.
    In chapter one and chapter two.the giant magnetostrictive material and its main features are introduced briefly. First,the mechanism of magnetostriction,the overpassed and current reseach situations are summarized.Second,the significance and main aspects of this reseach project are addressed. Third,the characteristics of magnetization saturation, ma gnetoelastic coupling, magnetostrictive strain, sensitivity of performance to operation conditions, hysteresis,nonlinear dynamics, AE effect,eddy current influence and double frequency property are addressed.Finally,the characteristics measurement methods and results of GMM are introduced.The measurement results supported design of application apparatus.
    Chapter three concerns static and dynamic modelling of Giant Magnetostrictive Actuators(GMA).Two static model is presented, and two kind of lump parameter dynamic modelling methods are addressed. Lump parameter dynamic models has obvious distortion when the inductance of solenoid is treated as a constant.Simulation result showes better coherence with experiment result after flux feedback is introduced into the model.An energy-based hysteresis model is presented to describe the nonlinear input-output characteristic of Giant Magnetostrictive Actuators.
    Chapter four discusses Giant Magnetostrictive Actuator's design,include mechanical structure design, electromagnetic structure design and magnetostrictive rod's temperature control system design.A new design idea is put forward that pumbed-water-cooling system and phase change set is used to control the magnetostrictive rod's temperature together.
    Giant Magnetostrictive Actuator's drive and control method is described in Chapter five.Before design the control system,GMA's static and dynamic characteristics must be studied by experiment.The static test includes static displacement and force output,while dynamic test covers the repeatability, linearity,hysteresis property and response speed of the dynamic output of GMA.The temperature increase of magnetostrictive rod is also tested.
    Chapter six: summarizes the work of this dissertation and puts forward the future research work.
引文
[01] 杨大智主编。智能材料与智能系统。天津:天津大学出版社,2000,12。
    [02] 田民波。磁性材料。北京:清华大学出版社,2000。
    [03] A.E. Clark. Ferromagnetic Material. Vol. 1,Edited by E. P. Wohlfarth. North-Holland Publishin Company, 1980.
    [04] 蒋志红,刘湘林,金绥更。稀土超磁致伸缩材料的发展。稀土,1991,12(1):19—26。
    [05] Clark A. E. et al., USP 4378258,1983.
    [06] Legvold et al.,Physical Review Letters,1963,10,509.
    [07] Clark A. E. et al. ,Phys. Rev. B,1972,5,3642.
    [08] Clark A. E. et al. ,USP 3949351,1976.
    [09] 李碚,伍虹。国外稀土超磁致伸缩材料的研究状况。稀土,1990,11(6):52—59。
    [10] 唐与湛,高功能稀土金属材料开发现状和展望。稀土,1990,11(2):34-47。
    [11] McMasters O.D., Proc 10th Intcr. Workshop RE Mag. and Their APPl., 1989, Part 1: 289, 357.
    [12] 何国,周寿增,李建国,魏朋义,傅恒志。我国稀土超磁致伸缩材料的研究与应用现状。材料导报,1996,5:12-17。
    [13] 高新。我国直径最大的稀土超磁致伸缩材料研制成功。辽宁科技参考,2003(1):38—38。
    [14] Fablander Metal. Proc 10th Inter Workshop Rare Earth Magn and Their Appl[C]. AMTDA, 1989, Part 1: 289.
    [15] Dariusz A. Bushko, James H. Goldie. High Performance Magnetostrictive Actuators. IEEE AES Systems Magazine, November, 1991: 21—29.
    [16] Mel Goodfriend, John Sewell, Cal Jones. Application of a Magnetostrictive Alloy, Terfenol-D to Direct Control of Hydraulic Valves. SAE International Off-Highway & Powerplant Congress & Exhibition, 1990.
    [17] Takahiro Urai, Takahiro Sugiyama. Development of a Direct Drive Servo Valve Using a Giant Magnetostrictive Material. Fluid Power, Edited by T.Maeda,1993.
    [18] Eda H., Ohmura E, Sahashi M et al. Machine Tool Equipped with a Giant Magnetostrictive Actuator— Development of new materials Tb_(0.27)Dy_(0.73)(FeMn)_(1.93) and Their Application. Annals of the CIRP,1992, 41(1): 421—424.
    [19] 邬义杰,项占琴。新功能材料在活塞异形销孔制造中的应用。制造技术与机床,1997(8):36—38。
    [20] F. Claeyssen. Design and construction of a new resonant magnetostrictive motor. IEEE Trans. MAG, Sept. 1996, 32(5), Part 2: 4779—4751.
    [21] Claeyssen F, Lhermet N, Letty R Le etc. Actuators, Transducers and Motors Based on Giant Magnetostrictive Materials. J. Alloys Comp., 1997,258(8) : 61-73.
    [22] L. Kiesewetter. Terfenol in linear motor. Proc. of Sec. Int. Conf. on GMA, C. Tyren, Amter(Fr), 1988, Ch. 7: 15.
    [23] Vranish J M, Naik D P, Restorff J B etc. Magnetostrictive Direct Drive Rotary Motor Development. IEEE Trans. Magn, 1991, Nov. 27(6): 5355—5357.
    [24] M. Anjanappa, J. Bi.. A Theoretical and Experimental Study of Mgnetostrictive Mini-Actuator. Smart Mater. Struct., 2, 1994.
    [25] Ohmata K, Zaike M, Koh T. A three-link arm Type Vibration Control Device Using Magnetostrictive Actuators. J Alloys Comp. 1997,258(8):74—78.
    [26] 朱金才,顾仲权。磁致伸缩作动器的设计及其动态特性研究。南京航空航天大学学报,1998,30(8):413—418。
    
    
    [27] 顾仲权,朱金才,彭福军,马扣根。磁致伸缩材料作动器在振动主动控制中的应用研究。振动工程学报,1998,11(4):381—388。
    [28] 盖玉先、滕燕和董申。超精密机床磁致伸缩作动器隔振系统。制造技术与机床,2001(1):29—30。
    [29] 梅德庆,陈子辰。微制造平台的精密隔振系统研究。光学 精密工程,2001,9(6):506—510。
    [30] 欧阳光耀,施引。磁致伸缩材料及其作动器设计。海军工程学院学报,1998(1),44—47。
    [31] 金绥更,刘湘林,蒋志红。稀土超磁致伸缩器件的设计与应用。稀土,1992,13(1):39—43。
    [32] 郭东明,杨兴,贾振元等。超磁致伸缩执行器在机电工程中的应用研究现状[J]。中国机械工程,2001,12(6):724—727。
    [33] H. Wakiwaka, K. Aoki,T. Yoshikawa, H. Kamata,M. Igarashi, H. Yamada. Maximum output of a low frequency sound source using giant magnetostrictive material. Journal of Alloys and Compounds, 1997,258:87—92.
    [34] 张洪平,杜挺,王龙妹,邝马华,朱厚卿。稀土—铁系超磁致伸缩材料水声换能器的研制。金属功能材料,1995,3:107—109。
    [35] 周利生,曹荣,唐雨良等。多边形稀土换能器。声学与电子工程,1996(1):8—10。
    [36] Chung R et al.精密工学会志[J],1991,3:57.
    [37] 董孝义,赵启大,开桂云,冯德军。光纤布喇格光栅电流传感器研究。红外与毫米波学报,2001,20(4):241—243。
    [38] Wun-Fogle M. J Appl. Phys.[J], 1987, 61 (8) :3803.
    [39] Sahashi M et al. IEEE Trans. Mags.[J], 1987, 23(5) :2194.
    [40] 胡明哲,李强,李银祥,张一玲。磁致伸缩材料的特性及应用研究(Ⅱ)。稀有金属材料与工程,2001,30(1):1—4。
    [41] 郭沛飞,贾振元,杨兴,齐薇。压磁效应及其在传感器中的应用。压电与声光,2001年2月,第23卷,第1期:26—29。
    [42] 王信义等。机电一体化手册——传感器技术[M]。北京:机械工业出版社,1989,5—113。
    [43] H. T. Savage, A. E. Clark, J M Powers. Mangnetomechanical coupling and . E effect in highly magnetostrictive rare earth-Fe2 Compounds. IEEE Transactions on Magnetics,1975,11(5):1355—1357.
    [44] A.E. Clark, J.P. Savage. Giant Magnetically Induced Changes in the Elastic Moduli in Tb_(0.3)Dy_(0.7)Fe_(2). IEEE Transactions on Sonics and Ultrasonics, Vol. Su-22, No. 1, January 1975.
    [45] 夏春林,丁凡等。弱磁场激励下超磁致伸缩材料κ_(33)、λ的测量。浙江大学学报(自然科学版增刊),2/98。
    [46] 吉林工大编。应变片电测技术。机械工业出版社,1978。
    [47] 万红,邱佚,谢海涛,斯永敏,扬德明。电容位移法精确测量磁性薄膜的磁致伸缩系数。功能材料,2002,33(3):262—263。
    [48] 夏春林,丁凡,路甬祥。超磁致伸缩材料特性参数测量及其应用研究。仪器仪表学报,1999,20(4):368—370,379。
    [49] 杨李色,李成英,袁惠群,周卓。稀土超磁致伸缩材料电磁参数的实验研究。辽宁工学院学报,1999,1(19):14—18。
    [50] A. E. Clark, M.Wun-Fogle. A NEW METHOD MAGNETOSTRICTIVITY AND MAGNETOSTRICTION MEASUREMENT. IEEE TRANSACTIONS ON MAGNETICS,VOL.25, NO.5, SEPTEMBER 1989:P3611—3613.
    [51] 李远,秦自楷,周志刚。压电与铁电材料的测量。科学出版社,1984。
    [52] 夏春林,丁凡,路甬祥。超磁致伸缩电—机械转换器模型分析。中国机械工程,2000,11(11):1288—1291。
    [53] Besbes M, Ren Z, Razek A. Finite element analysis of magneto-mechanical coupled phenomena
    
    in magnetostyictive materials. IEEE Trans. on Mag.,1996,32(3):1058—1061.
    [54] Bryant M. O., Ning Wang. "Audio Range Dynamic Models and Controllability of Linear Mot ion Terfenol-D Actuators,"Journal of Intelligent Material Systems and Structures, May 1994.
    [55] 林青,张国贤,何青玮,虞兰。超磁致伸缩材料致动器的数学模型。机电一体化,2001(6):26—29。
    [56] D.M. Dozor, Shankar Jagannathan, M.J. Gerver, R.C. Fenn, D.M. Logan, J.R. Berry. "High Force toVolume Terfenol-D Research Mass Actuator: Modelling and Design." SPIE, 1996, Vol. 2717: 576—586.
    [57] ANSYS User's Manual(RevS. 2), Vol. Ⅳ, Chapterll.
    [58] M. E. H. Benbouzid. Artificial Neural Networks for Finite Element Modeling of Giant Magnetostrictive Devices. IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 6, NOVEMB ER 1998: 3853—3856.
    [59] Mohamed E.H. Benbouzid etc. Dynamic Modelling of Giant Magnetostriction in Terfenol-D R odsby the Finite Element Method, IEEE TRANSACTIONS ON MAGNETICS. 1995, VOL. 31,NO. 3: 1821-1824.
    [60] M. E. H. Benbouzid,G Reyne,G Meunier. A 2D Dynamic Formulation for Non-linear Finite Element Modelling of Terfenol-D Rods. Computation in Electromagnetics, 1994, Second Interna tional Conference on 12-t4 Apr. 1994: 52—55.
    [61] 杨庆新,阎荣格,徐挂芝。超磁致伸缩器件的数值计算模型。电工技术学报,1999,14(4):17—20
    [62] 贾宇辉,谭久彬。超磁致伸缩致动器及有限元分析方法的研究。光学精密工程,2000,8(2):161—1 64。
    [63] 莫喜平,朱厚卿,刘建国,崔政。Terfenol—D超磁致伸缩换能器的有限元模拟。应用声学,2000,19(4):5—8。
    [64] Steven W. Meeks, Robert W. Timme. Acoustic Resonance of a Rare Earth Iron Magnetostrictive Rod in the Presence of Large Eddy Currents. IEEE Transactions on Sonics and Ultrasonics, Vol. Su-27, No. 2, March 1980.
    [65] F. T. Calkins, R. C. Smith, A. B. Flatau. Energy-Based Hysteresis Model for Magnetostrictive Transducers. IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 2, MARCH 2000: 429-439.
    [66] C. Natale, F. Velardi, C. Visone. Modelling and Compensation of Hysteresis for Magnetostrictive Actuators. 2001 IEEE/ASME International Conference on Advanced Inteligent Mechatronics Proceedings 8-12 July 2001. Como, Italy:744-749.
    [67] D. C. Jilesand J. B. Thoelke, "Theoretical modeling of the effects of anisotropy and stress on the magnetization and magnetostriction of Tb_(0.3)Dy_(0.7)Fe_2," J. Magn. Magn. Mater., 1994, vo1.134: 143-160.
    [68] Ann Reimers, Edward Della Torte. Fast Preisach Based Magnetostriction Model for Highly Magnetostrictive Materials. IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 3, MAY 1999:429—439.
    [69] H. W. L. Nans. Ferromagnetic hysteresis and the effective field. IEEE TRANSACTIONS ONMAGNETICS, VOL. 38, NO. 5, SEPTEMBER 2002:3417—3419.
    [70] Xiaobo Tan, John S. Baras. Modeling and Control of a Magnetostrictive Actuator. Proceedingd of the 41st IEEE Conference on decision and Control, Las Vegas, Nevada USA, December 2002:866—872.
    [71] A. Bergqvist, G. Engdahl. A Stress-dependent Magnetic Preisach Hysteresis Model. IEEE TRANSACTIONS ON MAGNETICS. 1991, VOL. 27, NO. 6: 4796—4798.
    
    
    [72] 夏春林,丁凡。超磁致伸缩电-机械转换器设计及其滞回特性分析。工程设计,1998(4):43-46。
    [73] 李鹤,袁惠群。超磁致伸缩材料执行器非线性动力学行为分析。非线性动力学学报,2001,8(2):155—159.
    [74] 袁惠群等。超磁致伸缩换能器的非线性特性。东北大学学报(自然科学版),2002,23(4):404—407。
    [75] Steven Ashley. Magnetostrictive Actuators. Mechanical Engineering,1998,120(6): 68—69.
    [76] 夏春林。超磁致伸缩电—机械转换器及其在流体伺服元件中的应用基础研究。浙江大学,博士学位论文,1998。
    [77] 傅龙珠。稀土超磁致伸缩致动器的设计及实验研究。浙江大学,硕士学位论文,2003。
    [78] 朱金才,顾仲权。磁致伸缩作动器的设计及其动态特性研究。南京航空航天大学学报,1998,30(8):413—418。
    [79] 贾振元,杨兴,郭东明,侯璐景。超磁致伸缩材料微位移执行器的设计理论及方法[J]。机械工程学报,2001,37(11):46—49。
    [80] A. E. Clark,D. N. Crowder. HIGH TEMPERAT-URE MAGNETOSTRICTION OF TbFe_2 AND Tb_(.27) Dy_(.73)Fe_(2). IEEE Transactions on Magne-tics, Vol. MAG-21, No.5, SEPTEMBER,1985:1945—1947.
    [81] Schulze M. P., Greenough R. D., Galloway N. The Stress Dependence of k_(33) ,d_(33) ,λand μ in Tb_(0.3)Dy_(0.7)Fe_(1.95).IEEE Transactions on Magnet-ics,Vol.28,No.5,September,1992.
    [82] Nakamura T.,Nakano I.,Kawamori A.,Yoshik-awa T..Static and dynamic characteristics of giant magnetostrictive materials under high pre-stress[J]. J. of Applied Physics, Part 1, Vol.40,No.5,May,2001: 3658—3663.
    [83] H. Wakiwaka, K. Aoki,T. Yoshikawa, H. Kamata, M. Igarashi,H. Yamada.Maximum output of a low frequency sound source using giant magnetostrictive material.Journal of Alloys and Compounds,1997,258: 87—92.
    [84] Dhilsha, K.R., etc.Design and fabrication of a low frequency giant magnetostrictive transducer Journal of Alloys and Compounds Vol.258,No.1-2,8,1997: 53—55.
    [85] A.G. Jenner, R.J.E. Smith, A.J. Wilkinson, R.D.Greenough. Actuation and transduction by giant magnetostrictive alloys. Mechatronics,2000,10: 457—466.
    [86] 唐蓉城,陆玉主编。机械设计(机械类)。机械工业出版社,1993,5。
    [87] 黄礼镇。电磁场原理。人民教育出版社,1981。
    [88] 林其壬,赵佑民。磁路设计原理。北京:机械工业出版社,1987。
    [89] 雷银照。轴对称线圈磁场计算。中国计量出版社,1991。
    [90] A.M.切巴鲁赫等。仪表电感元件设计。北京:机械工业出版社,1987。
    [91] 杨世铭。传热学(第二版)。北京:高等教育出版社,1987。
    [92] 严自力,王宏升。相变温控材料[J]。中国个体防护装备,2001,1:P23—24。
    [93] 梁久来,何玉贤。温控储热相变材料及在医药工业中的应用。长春中医学院学报,1996,12(58),P6 2。
    [94] 孙永人.相变温控实验及在航天器上应用.国外导弹与航天运载器,1991,(8):P62—66.
    [95] Takahiro Urai,Takahiro Sugiyama. Proc. of the second JHPS international symposium on Fluid Pow er.1993:131—135.
    [96] 夏春林,丁凡,陶国良,路甬祥。超磁致伸缩电—机械转换器热变形补偿实验研究。中国机械工程,1999,10(5): 368—370。
    [97] A.E. Clark, J. P. Teter. Magnetostriction "jumps" in Twinned Tb0.3Dy0. 7Fel. 9. J. Appl. Phys., 63(8), 15 April 1988.
    [98] M. Anjanappa, J. Bi.. Mgnetostrictive Mini-Actuator for Smart Structure Applications. Smar t Mater. Struct., 3, 1994.
    
    
    [99] Frank Claeyssen, Nicolas Lhermet, Gilles Grosso. Giant Magnetostrictive Alloy Actuator. Int. J. of Applied Electromagnetics Materials, 5,1994.
    [100] 祝向荣,郭懋端.大磁致伸缩执行器.金属功能材料,1998(2),53-55。
    [101] 欧阳光耀,施引。磁致伸缩材料及其作动器设计。海军工程学院学报,1998(1),44-47.
    [102] 贾宇辉,谭久彬,张杰。超磁致伸缩微位移致动器的研究[J]。微细加工技术,2000,2:70-74。
    [103] 周利生,曹荣,秦维玉,唐良雨。稀土纵向式换能器。声学与电子工程,1995.3:18-21。
    [104] Earl Callen, Herbert B. Callen. Magnetostriction, Forced Magnetostriction, and Anomalous Thermal Expansion in Ferromagnets. Physical Rewiew, Vol. 139, A455, July 1965.
    [105] K. Prajapati, R.D. Greenough, A. G. Jenner. Device Oriented Magnetoelastic Properties of Tb_xDy_(1-x)Fe_(1.95)(x=0.27,0.3)at Elevated Temperatures. J. Appl. Phys.,1994,76(10).
    [106] 戚宗军。泵-管-嘴柴油电喷系统的研究与实验。浙江大学,硕士学位论文,2000.
    [107] 吕福在。用于柴油机电喷系统的超磁致伸缩高速强力电磁阀和电控系统的研究。浙江大学,博士学位论文,2000。
    [108] 郝国法,甘朝晖,梁相华。一种基于PWM的稳压电源装置设计方法[J]。武汉科技大学学报(自然科学版),2002,25(3):295-297.
    [109] 王孝林,王加奇,吴鲲,李俊波,韩明海。电阻应变式传感器检测用的电源——高稳定直流稳压电源[J].衡器,2000,29(6):22-27。
    [110] 熊飞丽,王光明,刘国福。多功能智能函数信号发生器的设计[J]。测控技术,2003,22(4):9-12。
    [111] 常新华,林春勋等。高频信号发生器原理、维修与鉴定[M]。北京:电子工业出版社,1996。
    [112] 庞滔,郭大春,庞楠编。超精密加工技术[M]。北京:国防工业出版社,2000.8.
    [113] 吕福在,项占琴。高精度非圆截面加工机构设计及其控制方法研究。机械科学与技术,2000,19(5):765-766,769.
    [114] 刘建琴,张策,王玉新,韩玥。微进给机构综述。机械传动,1999,23(1):47-50.
    [115] 王锦标,方崇智编著。过程计算机控制。清华大学出版社,1992,2。
    [116] 张文修,梁广锡.模糊控制与系统.西安交通大学出版社,1998,3。
    [117] 王磊,王为民著。模糊控制理论及应用。北京:国防工业出版社,1997,3。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700