超磁致伸缩纳米多层膜制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩效应是指铁磁材料在外磁场的作用下,铁磁材料的长度或体积发生变化的现象,而超磁致伸缩效应的发现和进展更是在应用领域显示了重要价值。由于超磁致伸缩材料具有非常强的磁致伸缩效应、很高的机电耦合系数、较快的响应速度以及非接触式驱动等优点而倍受关注,已被广泛应用于声纳、大功率超声器、精密机械以及功能/结构材料等领域。
     本文从制备精确组分为Tb_(0.27)Dy_(0.73)Fe_2(Terfenol-D)薄膜和具有低场高灵敏度超磁致伸缩性能薄膜出发,制备了具有精确组分为Tb_(0.27)Dy_(0.73)Fe_2的[Tb/Fe/Dy]_n纳米多层膜和加入软磁层的[SL/Tb/Fe/Dy]_n纳米多层膜。并研究了该纳米多层膜的结构、磁性能和超磁致伸缩性能以及磁化过程对超磁致伸缩性能的影响。其主要结果如下:
     1.通过使用单质分离Tb、Fe、Dy靶材制备具有精确组分为Tb_(0.27)Dy_(0.73)Fe_2的[Tb/Fe/Dy]_n纳米多层膜,其性能如下:
     (1)通过X射线能谱仪(EDX)与电感耦合等离子体发射光谱仪(ICP-AES)测试表明两种不同条件下(室温条件和衬底温度300℃条件)制备的[Tb(2nm)/Fe(4nm)/Dy(3nm)]_n纳米多层膜的精确组分为Tb_(0.27)Dy_(0.73)Fe_2。
     (2) SEM形貌表明制备态下两种不同条件制备的[Tb/Fe/Dy]_n纳米多层膜都具有垂直多层膜平面的微观柱状结构。
     (3)对于室温条件下制备的[Tb/Fe/Dy]_n纳米多层膜有:
     a.[Tb/Fe/Dy]_n纳米多层膜在制备态和300℃温度退火处理后,仍旧为非晶态,纳米多层膜样品在退火温度高于400℃时开始有对应于立方Laves相的R-Fe_2的纳米晶出现,随着退火温度的升高,纳米晶粒逐步变大,并且有更多的Laves相晶体析出。
     b.M(o|¨)ssbauer谱和磁滞回线表明纳米多层膜样品的磁矩空间分布随着退火温度的升高而发生显著地变化。在制备态和退火温度为400℃时,纳米多层膜的磁矩空间取向为垂直面向分布,而在退火温度为300℃、500℃和600℃时,纳米多层膜磁矩的空间取向以面向分布为主。
     c.超磁致伸缩性能随着退火温度的升高,即纳米多层膜样品磁矩空间取向变化而变化。制备态和400℃退火处理后样品磁矩以垂直面向分布为主,超磁致伸缩难以达到饱和,样品超磁致伸缩性能随磁场的增大而近似线性增大:而300℃、500℃和600℃退火处理的纳米多层膜样品磁矩以面向分布为主,超磁致伸缩容易达到饱和。样品超磁致伸缩性能随外磁场的增大首先迅速增大,在磁场为0.32T下达到饱和。且在较低的磁场驱动下,远大于磁矩空间取向为垂直面向分布时的超磁致伸缩性能。
     (4)对于衬底加热300℃制备的[Tb/Fe/Dy]_n纳米多层膜有:
     a.衬底加热制备的纳米多层膜样品在制备态下就有立方Laves相的R-Fe_2的纳米晶析出。随着退火温度的升高,纳米晶粒尺寸逐步变大。
     b.磁滞回线表明,衬底加热制备的纳米多层膜样品在退火处理温度低于400℃时,磁矩的空间取向以垂直面向分布为主。在退火温度为500℃和600℃时,磁矩的空间取向以面向分布为主。
     c.衬底加热的纳米多层膜样品的超磁致伸缩性能也随着磁矩的空间取向而发生变化。
     (5)衬底加热条件下制备的纳米多层膜比室温条件下制备的纳米多层膜具有更优越的超磁致伸缩性能和低场下的超磁致伸缩灵敏度。
     (6)磁化过程与超磁致伸缩性能的关系也证明了超磁致伸缩性能与磁矩的空间取向密切相关。
     2.加入软磁层的[SL/Tb/Fe/Dy]_n纳米多层膜的性能如下:
     (1)对于室温条件下制备的[Fe/Tb/Fe/Dy]_n纳米多层膜样品,纳米多层膜样品在制备态和300℃退火处理,仍旧处于非晶态;在退火温度为400℃时,开始出现R-Fe_2相和α-Fe相的纳米晶;随着退火温度的逐步升高,晶粒逐渐长大,在600℃退火处理后,纳米多层膜样品基本完全晶化。磁滞回线表明,由于软磁层的加入,使得纳米多层膜样品的磁性能有了显著提高,磁矩分布以面向分布为主,矫顽力变小而饱和磁化强度增大。软磁层Fe的加入使得超磁致伸缩性能也有大幅度的提高,饱和磁场降低为0.25T,并且比[Tb/Fe/Dy]_n纳米多层膜具有更好低场灵敏度。
     (2)对于室温条件下制备的[FINEMET/Tb/Fe/Dy]_n纳米多层膜样品,由于FINEMET合金薄膜比Fe薄膜具有更大的饱和磁化强度和更小的矫顽力,因而超磁致伸缩性能较加入Fe薄膜的纳米多层膜有显著的提高,且饱和磁化强度减小为0.19T。
     (3)衬底温度300℃制备的纳米多层膜样品在制备态下就有α-Fe相和R-Fe_2相的纳米晶出现。300℃退火处理,并没有改变纳米多层膜样品的结构。随着退火温度的升高,晶粒的逐步变大,并且有更多的α-Fe相和R-Fe_2相的纳米晶析出。磁滞回线表明,纳米多层膜样品的矫顽力随着退火温度的升高而变小,而饱和磁化强度随退火温度的升高而增大。超磁致伸缩性能随退火温度的升高而变大。
The magnetostriction effect can be described most generally as the deformation of a body in response to a change in an external magnetic field.The discovery of giant magnetostriction(GMS) and the progress in this field have demonstrated its important value in applications.
     The Terfenol-D GMS thin films have high electronic resistivity,high magnetic permeability,low magnetic hysteresis,and weak magnetocrystalline anisotropy.The GMS films with low field sensitivity are useful to the new type electro-mechanical transformation system.In this work,we developed a simple way to prepare [Th/Fe/Dy]_n nano-multilayer film with precise composition of Tb_(0.27)Dy_(0.73)Fe_2 and insert soft layer[SL/Tb/Fe/Dy]_n nano-multilayer film with low field GMS sensitivity. Meanwhile,the structure,magnetic properties and giant magnetostriction of the nano-multilayer films are studied.And the main contents and results are as follows:
     1.Pure element targets Tb,Dy and Fe were used to deposit with precise composition[Th/Fe/Dy]_n nano-multilayer films.
     (1) The compositions of[Tb(2nm)/Fe(4nm)/Dy(3nm)]_n nano-multilayer film was analyzed by energy dispersive analysis system of X-ray(EDX) and inductively coupled plasma atomic emission spectroscopy(ICP-AES).The analyzed composition of nano-multilayer film was(Tb_(0.27)Dy_(0.73)) Fe_2.
     (2) SEM measurement shows that the morphology and microstructure of those two as deposited nano-multilayer films have columnar structures consisting of grains oriented perpendicularly to the film plane.
     (3) The[Tb/Fe/Dy]_n nano-multilayer films were deposited at room temperature.
     a.The as deposited nano-multilayer film and nano-multilayer films annealed at temperature 300℃are still in amorphous state.At the annealing temperature of 400℃,the R-Fe_2 grains begin to be segregated from the amorphous matrix.
     b.The M(o|¨)ssbauer spectrum and the magnetic hysteresis loops show that the magnetic moments distributed orientation of nano-multilayer films are changed by the annealing temperature.In as deposited state and annealed temperature of 400℃,magnetic moments distributed orientation of nano-multilayer films is perpendicular to the film plane;yet at annealing temperature of 300℃、500℃and 600℃,magnetic moments distributed orientation of nano-multilayer films is in random.
     c.Because nano-multilayer films(in as deposited state and annealing temperature at 400℃) have perpendicular anisotropy,i.e.,the magnetic domains distributed orientation is perpendicular to the film plane.When the external field is parallel to the film plane,the magnetic field can not magnetize the magnetic moments freely,so the GMS increases almost linearly in the applied field.When the magnetic domains distributed orientation of nano-multilayer films(annealed temperature of 300℃、500℃and 600℃) is in random,the GMS of these nano-multilayer films increases rapidly at first and then almost saturates at the external filed of 0.32T.
     (4) The[Tb/Fe/Dy]_n nano-multilayer films were deposited at 300℃substrate temperature.
     a.The R-Fe_2 nano-grains begin to be segregated from the amorphous matrix in as deposited nano-multilayer film.
     b.When the annealed temperature lower than 400℃,the magnetic domains distributed orientation is perpendicular to the film plane;when the annealed temperature higher than 500℃,the magnetic domains distributed orientation is parallel to the film plane.
     c.The GMS of the nano-multilayer films is also determined by the magnetic moments distributed orientation.
     (5) The GMS value in nano-multilayer films deposited at 300℃substrate temperature was higher than those nano-multilayer films deposited at room temperature.
     (6) The huge influence of the magnetic anisotropy on the field dependence of the magnetostriction is considered by different types of magnetization processes.
     2.The insert soft layer[SL/Tb/Fe/Dy]_n nano-multilayer films combine the giant magnetostrictive materials([Tb/Fe/Dy]_n) and materials with large magnetic polarizations(Fe and FINEMET).
     (1) Because of the interaction between the soft layer and the GMS layer,the [SL/Tb/Fe/Dy]_n nano-multilayer film has low saturation magnetization, high GMS performance and lower coercivity,and the magnetic domains distributed orientation is parallel to the film plane.
     (2) The[Fe/Tb/Fe/Dy]_n nano-multilayer films in as deposited state and annealed at temperature 300℃are still in amorphous state.At the annealing temperature of 400℃,theα-Fe and R-Fe_2 grains begin to be segregated from the amorphous matrix.Because of the interaction between the soft layer Fe and the GMS layer,the magnetic moments distributed orientation of all[Fe/Tb/Fe/Dy]n nano-multilayer films are paralleled to the film plane;and all[Fe/Tb/Fe/Dy]_n nano-multilayer films have lower coercive force,higher saturated magnetic magnetization intensity and better low field GMS performance.
     (3) Because the soft magnetic properties of FINEMET layer are much than those of Fe layer,the GMS performance of[FINEMET/Tb/Fe/Dy]_n nano-multilayer films are higher than that of[Fe/Tb/Fe/Dy]_n nano-multilayer films.
     (4) The[Fe/Tb/Fe/Dy]_n nano-multilayer films were deposited at 300℃substrate temperature.Theα-Fe and R-Fe_2 grains begin to be segregated from the amorphous matrix at the as deposited nano-multilayer film.The magnetic hysteresis loops show that the coercive force decreases and the saturated magnetization intensity increases by increasing annealing temperature.
引文
[1]Bryzek J.Sensor and Actuators A.1996,56:1.
    [2]W.Lang.Sensor and Actuators A.1999,72:1.
    [3]张兴,郝一龙,李志宏等,电子科技导报.1999,4:2.
    [4]刘光辉,亢春梅.传感器技术.2001,1:52.
    [5]徐小云,颜国正,丁国清.溅射技术.2002,21(8):1.
    [6]龙毅,张正义,李守卫.新功能磁性材料及其应用.机械工业出版社,1997.
    [7]王跃林,苏以撒,王文.电子学报.1995,23(10):37.
    [8]贾振元,王福吉,郭东明.机械工程学报.2003,39(11):61.
    [9]陶宝祺主编.智能材料结构.国防工业出版社,1997.
    [10]李文卓,赵万生,詹涵菁等.压电与声光.2001,23(4):259.
    [11]胡正军,王莉,徐东等.微细加工技术.2001,4:44.
    [12]Uchida H.Wada M.Koike K.et al.J.Alloys and Compounds.1994,211-212:576.
    [13]Quandt E.J.Alloys and Compounds.1997,258:126.
    [14]Quandt E.Micro Electro Mechanical Systems,1995,MEMS 95,Proceedings.IEEE,29 Jan.2 Fab.1995:273.
    [15]Kim T.W.Doo J.Y.Mechatronics.2003,13:739.
    [16]Cheng S.F.Wun-Fogle M.Restorff J.B.et al.J.Magn.Magn.Mater. 1995,148:344.
    [17]Quandt E.Seemann K.Sensors and Actuators A:Physical.1995,50:105.
    [18]Jeremy B.Muldavin.Gabriel M.et al.IEEE Transactions on Microwave Theory and Techniques,2000,48:1045.
    [19]钟文定.铁磁学(中册).科学出版社,1987.
    [20]近角聪信等编,韩俊德,杨膺善译.磁性体手册(下).冶金工业出版社,1985.
    [21]Clark A.E.Bozorth R.M.Desavage B.F.Phys.Lett.1963,5(2):100.
    [22]Clark A.E.Belson H.America Institute Conference Proceeding.1972,1489.
    [23]Clark A.E.America Institute Conference Proceeding.1973,749.
    [24]Clark A.E.America Institute Conference Proceeding.1974,1015.
    [25]Hathaway K.B.Clark A.E.Magnetostrictive materials.MRS Bulletin,April 1993.
    [26]Forester D.W.Vittoria C.Schelleng J.et al.J.Appl.Phys.1978,49(3):1966.
    [27]Schatz F.Hirscher M.Flik G.et al.Phys.Status Solid(a).1993,137:197.
    [28]Honda T.Hayashi Y.Arai K.I.et al.IEEE Trans.Magn.1993,29:3126.
    [29]Schatz F.Hirscher M.Schnell M.et al.J.Appl.Phys.1994,76(9):5380.
    [30]Miyazaki T.Saito T.Fujino Y.J.Magn.Magn.Mater.1997,171:320.
    [31]Harris R.Plischke M.Zuckermann M.J.Phys.Rev.Lett.1973,31:160.
    [32]E.du Tremolet de Lacheisserie,Mackay.Betz J.et al.J.Alloys and Compounds.1998,275-277:685.
    [33]Quandt E.Ludwig A.Betz J.et al.J.Appl.Phys.1997,81:5420.
    [34]Quandt E.Ludwig A.Mencik J.et al.J.Alloys and Compounds.1997,258:133.
    [35]Prados C.Panagiotopoulus I.Hadjipanayis G.C.IEEE Trans.Magn.1997,33:3712.
    [36]Quandt E.Ludwig A.Lord D.G.et al.J.Appl.Phys.1998,83(11):7267.
    [37]Quandt E.Ludwig A.J.Appl.Phys.1999,85(8):6232.
    [38]Ludwig A.Quandt E.J.Appl.Phys.2000,87(9):4691.
    [39]李成英,袁惠群,周卓.辽宁工学院学报.1999,19(3):14.
    [40]杜挺,张宏平,邝马华.金属功能材料.1997,4:173.
    [4l]王博文,葛景岩.沈阳工业大学学报.1998,20(3):64.
    [42]贺西平,李斌,周寿增.兵器材料科学与工程.1998.21(3):61.
    [43]贾振元,武丹,杨兴等.压电与声光.2000,22(3):157.
    [44]贾振元,杨兴,武丹等.机床与液压.2000,2:3.
    [45]王传礼,丁凡,张凯军.矿冶工程.2003,23(6):72.
    [46]Honda T.Arai K.L.M.Yamaguchi.J.Appl.Phys.1994,76(10):6994.
    [47]Quandt E.Seemann K..In:H.Reichl,A.Heuberger(Ed.),Microsystems Technologies 96,Berlin,1996.
    [48]Uchida H.Matsumura Y.et al.J.Magn.Magn.Mater.2002,239:540.
    [49]Clark A.E.Teter J.P.McMasters O.D.J.Appl.Phys.1988,63(8):3910.
    [50]祝向荣,郭懋端.金属功能材料.1998,5(2):53.
    [51]张洪平,杜挺,王龙妹等.金属功能材料.1995(3):107.
    [52]贾宇辉,谭久彬.压电与声光.2000,22(2):127.
    [53]顾仲权,朱金才,彭福军等.振动工程学报.1998,11(4):381.
    [54]苏启太,邱树业.应用科学学报.1998,16(4):486.
    [55]罗标,邱树业.磁性材料及器件.1998,29(5):45.
    [56]Wakiwaka H.Yamada Y.J.Magnetics Society of Japan.2001,25(8):1425.
    [57]Claeyssen F.Lhermet N.Letty R.L.et al.J.Alloys and Compounds.1997,258:61.
    [58]Janocha H.Sensor and Actuators A,2001,91:126.
    [59]Honda T.Hayashi Y.Yamaguchi M.et al.日本应用磁学会志.1994,18(2):477.
    [60]Honda T.Arai K.I.日本应用磁学会志.1996,20(2):537.
    [61]Honda T.Driving K.I.A.日本应用磁学会志.1997,21(4 -2):817.
    [62]Quandt E.Seemann K.Sensors and Actuators A.1995,50(1-2):105.
    [63]Quandt E.Ludwig A.Sensors and Actuators.2000,81:275.
    [64]Tiercelin N.Pemod P.Preobrazhensky V.et al.Sensors and Actuators.2000,81:162.
    [65]马立,朱江.中国仪器仪表.1995,6:22.
    [66]赵克定,徐东光,张日华.机械工程师.1997,1:31.
    [67]王传礼,方平,丁凡.电子机械工程.2002,18(4):1.
    [68]李扩社,徐静,张深根.金属功能材料.2003,10(6):30.
    [69]Chiriac H.Pletea M.Hristoforou E.Sensors and Actuators A.1998,68:414.
    [70]Chiriac H.Pletea M.Hristoforou E.Sensors and Actuators A.2000,81:166.
    [71]Mimura Y.Imamua N.Appl.Phys.Lett.1976,28:746.
    [72]Huang J.Prados C.Evets J.E.et al.Phys.Rev.B.1995,510):297.
    [73]Wu L.Zhan W.Chen I.et al.J.Alloys and Compounds.1994,216(1):85.
    [74]Takagi H.Tsunashima S.Uchiyama S.et al.J.Appl.Phys.1979,50:1642.
    [75]Gall H.L.Youssef J.B.Socha F.et al.J.Appl.Phys.2000,87:5783.
    [76]Gall L.Youssef J.B.Tierelin N.et al.IEEE Trans.Magn.2001,37:2699.
    [77]Zhang W.X.Zhang W.L.Peng B.et al.J.Magn.Magn.Mater.2004,278:9.
    [78]Shima T.Takanash K.Fujimod H.J.Magn.Magn.Mater.2002,239:573.
    [79]Uchida H.Wada M.Ichikawa A.et al,Proceedings Actuator 96,1996:275.
    [80]Jenner A.G.Stone L.A.Snelling H.V.Int.Conf.on Giant Magnetostrictive Material,USA,1996.
    [81]Ausanio G.Barone A.C.Iannotti V.et al.Nanotechnology.2006,17:536.
    [82]Quandt E.Gerlach B.Seemann K.J.Appl.Phys.1994,76:7000.
    [83]谢海涛,刘希从,斯永民等.材料科学与工程.2001,19(3):38.
    [84]Due N.H.Mackay K.Betz J.et al.J.Appl.Phys.1996,79:973.
    [85]Zhang W.X.Zhang W.L.Lin L.W.J.Magn.Magn.Mater.2004,280:143.
    [86]龙毅,张正义,李守卫,机械工业出版社,1997.
    [87]Halstrup B.Betz J.Mackay K.et al.Microsystems Technologies.1996:457.
    [88]Lim S.H.Han S.H.et al.IEEE Trans.Magn.1998,34(4):2042.
    [89]Adrian C.S.Christopher R.L.Sensors and Actuators.1999,72:32.
    [90]谢海涛,斯永敏,马表松等.材料科学与工程.2002,20:396.
    [91]Zhang W.L.Peng B.Jiang H.C.et al.J.Magn.Magn.Mater.2002,247:111.
    [92]Zhang W.L.Jiang H.C.Zhang J.P.et al.J.Magn.Magn.Mater.2004,284:128.
    [93]Zhang W.L.Jiang H.C.Peng B.Material science forum.2005,475-479:3741.
    [1]钟文定.铁磁学(中册).科学出版社,1987.
    [2]近角聪信等编,韩俊德,杨膺善译.磁性体手册(下).冶金工业出版社,1985.
    [3]王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社,2003.
    [4]杨大智.智能材料与智能系统.天津大学出版社,2000.
    [5]Lee E.W.Reports on Prog.in Phys.1955,18:184.
    [6]Kittel R.R.Rev.Mod.Phys.1949,21:541.
    [7]Jiles D.C.Thoelke J.B.J.Magn.Magn.Mater.1994,134:143.
    [8]宛德福,罗世华.磁性物理.电子工业出版社,1987.
    [9]Quandt E.J.Alloys and Compounds.1997,258:126.
    [10]Quandt E.Micro Electro Mechanical Systems,1995,MEMS'95,Proceedings.IEEE,29 Jan.2 Feb,1995:273.
    [11]Clark A.E.Crowder D.N.IEEE Trans.Magn.1985,21:1945.
    [12]Miyazaki T.Saito T.Fujino Y.J.Magn.Magn.Mater.1997,171:320.
    [13]Gall H.L.Yourself J.B.Tiercelin N.et al.IEEE Trans.Magn.2000,36:3223.
    [14]Quandt E.Ludwig A.Betz J.et al.J.Appl.Phys.1997,81:5420.
    [15]毕荣,杨琨超.电子材料科研开发、生产加工技术与质量检测标准实用手册.金版电子出版公司,2003.
    [1]Joule J.P.Annals of Electricity Magnetism and Chemistry.1942,8:219.
    [2]Legvold S.Alstad J.Rhyne J.Physics Review Letters.1963,10:509.
    [3]Clark A.E.DeSavage B.F.Callen E.R.J.Appl.Phys.1964,35:1028.
    [4]Clark A.E.DeSavage B.F.Bozorth R.Physics Review.1965,138:216.
    [5]Clark A.E.Magnetostrictive rare earth-Fe2 Compounds.In:Wohafarth E.P.Ferromagnteic Materials.Amsterdam:North-holland Publishing Company,1980.
    [6]Clark A.E and Savage H.T.IEEE Transactions on Sonics and Ultrasonics.1975,22:50.
    [7]Abell J.S.Butler D.Greenough R.D.et al.J.Magn.Magn.Mater.1986,62:6.
    [8]Clark A.E.Teter J.P.and McMasters O.D.J.Appl.Phys.1988,63:3910.
    [9]Bi Y.J.Abell J.S.J.Crystal Growth.1997,172:440.
    [10]Duenas T.A.Carman G.P.J.Appl.Phys.2000,87:4696.
    [11]Guo Z.J.Busbridge S.C.Piercy A.R.et al.Appl.Phys.Lett.2001,78:3490.
    [12]Lim S.H.Noh T.H.Kang I.K.et al.J.Appl.Phys.1994,76:7021.
    [13]Quandt E.J.Appl.Phys.1994,75:5653.
    [14]Ludwig A.Quandt E.J.Appl.Phys.2000,87:4691.
    [15]Quandt E.Gerlach B.and Seemann K.J.Appl.Phys.1994,76:7000.
    [16]Mitsuhiro W.Hirohisa U.and Hideo K.J.Alloys and Compounds.1997,258:169.
    [17]Jiang X.Y.Xu H.B.Jiang C.B.et al.J.Alloys and Compounds.2000,311:86.
    [18]Soeliotis A.and Hiarchos D.Sensors and Actuators A.2003,106:298.
    [19]de la Fuente C.Amaudas J.I.Benito L.et al.J.Phys.:Condens.Matter.2004,16:2959.
    [20]Grundy P.J.Lord D.G.and Williams P.I.J.Appl.Phys.1994,76:7003.
    [21]Jenner A.G.Stone L.A.and Snelling H.V.J.Alloys Compounds.1997,258:138.
    [22]Ausanio G.Barone A.C.Iannotti V.et al.Nanotechnology.2006,17:536.
    [23]Cochrane R.W.Harris R.Zuckermann M.J.Phys.Rep.1978,48:1
    [24]Chikazumi S.Physics of magnetism.1 st,Wiley,New York,USA,1964.
    [25]Cullity B.D.Introduction to magnetic matcrials.1st,Addison-Wesley,Reading,MA,1972.
    [26]Li X.D.Zhao Z.J.Huang S.M.Pan L.K.Chen Y.W.Yang X.L.Sun Z.Chinese Science Bulletin.(Accepted).
    [27]李晓东,赵振杰,黄素梅,潘丽坤,陈奕卫,杨燮龙,孙卓.科学通报.(已接收)
    [28]McHenry M.E.Willard M.A.Laughlin D.E.Prog.Mater.Sci.44(1999) 291.
    [29]Jouve H.Rebouillat J.P.Meyer R.America Institute Conference Proceeding.1976,29:97.
    [30]Gonser U,ed.Mossbauer spectroscopy.New York:Springer-Verlag.1975.
    [31]Zhao S.F.Bi F.Wan J.G.et al.Nanotechnology.2007,18:5705.
    [32]Wada M.Uchida H.Kaneko H.J.Alloys Compounds.1997,258:38.
    [33]黄永杰.非晶态磁性物理与材料.电子科技大学出版社,1998.
    [34]Takagi H.Tsunashima S.Ucjiyama S.et al.J.Appl.Phys.1979,50:1642.
    [35]Campbell I.A.J.phys.F:metal phys.1972,2:47.
    [1]杨大智.智能材料与智能系统.天津大学出版社,2000.
    [2]Machay K.Betz J.Peuzin J.C.J.Alloys Comp.1998,259(7):685.
    [3]蒋志红,刘相林,金馁更.稀土.1992,11(2):19.
    [4]Shatz F.Hirscher M.Schnell M.J.Appl.Phys.1994,6(9):5380.
    [5]Lim S.H.Choi Y.S.Han S.H.et al.IEEE Trans.Magn.1998,34(4):2042.
    [6]Honda T.Arai K.I.Yamagichi J.J.Appl.Phys.1994,76(10):6994.
    [7]Duc N.H.Mackay K.Betz J.et al.J.Phys.:Condens Matter.2000,12:7957.
    [8]Hayashi Y.Honda T.Arai K.I.IEEE Trans.Magn.1993,29(6):3129.
    [9]Quandt E.Ludwig A.Mencik J.et al.J.Alloys Comp.1997,258(2):133.
    [10]Ren W.J.Zhang Z.D.J.Phys.D:Appl.Phys.2001,34:3024.
    [11]Quandt E.J.Appl.Phys.1994,75(10):5653.
    [12]Cullity B..D.Introduction to magnetic materials.1st,Addison-Wesley,Reading,MA.1972.
    [13]Prados C.Panagiotopoulus I.Hadjipanayis G.C.IEEE Trans.Magn.1997,33:3712.
    [14]Li X.D.Zhao Z.J.Feng T.et al.Surface Review Letters.2008,15:619.
    [15]Jiang H.C.Zhang J.P.Zhang W.L.et al.Chin.Phys.Lett.2004,21:1624.
    [16]Chikazumi S.Physics of magnetism.1st,Wiley,New York,USA.1964.
    [17]Xiao.S.Q.Liu Y.H.et al.Phys.Rev.B.2000,61:5734.
    [18]Li X.D.Yuan W.Z.Zhao Z.J.et al.J.Phys.D:Appl.Phys.2005,38:1351.
    [19]Ratajczak H.and Goscianska I.J.Magn.Magn.Mater.1995,140:711.
    [20]Kataoka N.Shima T.and Fujimori H.J.Appl.Phys.1991,70:6238.
    [21]李晓东.华东师范大学硕士毕业论文.2004.
    [22]M.Vazquez,et al.Appl.Phys.Lett.1994,64:3184.
    [23]Li X.D.Yuan W.Z.Zhao Z.J.et al.J.Magn.Magn.Mater.2004,279:429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700