基于机器人机构学的F_0F_1ATP合成酶马达能量储存研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物纳米机器人是科学研究的前沿领域,分子马达作为动力装置在生物纳米机器人中具有重要的作用。F0F1ATP合成酶马达是天然存在的分子马达,当把ADP和Pi合成ATP分子时,电势能将首先转化为机械能,然后又转化为化学能储存在ATP分子中;当ATP分子被分解为ADP和Pj时,能量又能按照相反的方向进行转化。因其具有在能量转化和传递效率上接近100%的特性,引起了学者的关注,成为生物纳米机器人研究中的一个热点。
     基于F0F1ATP合成酶是一种特殊的蛋白质,是由氨基酸通过肽键连接而成的多肽链,多肽链在结构上类似于若干构件通过转动副连接而成的超冗余度机器人的事实,本学位论文首次运用机器人机构学原理从氢键的能量变化来研究F0F1ATP合成酶马达能量储存这一重要问题。论文的主要工作如下:
     首先,使用机器人机构学原理,基于蛋白质多肽链的性质和各原子的位置关系首次建立了考虑肽键扭转的蛋白质多肽链的机器人机构学模型。
     其次,利用考虑肽键扭转的蛋白质多肽链的机器人机构学模型对蛋白质二级结构中最常见的α螺旋、β折叠和β回折等进行了仿真计算。结果表明此模型能够准确的表达蛋白质二级结构的空间构象,由此证明了所建立模型的正确性。
     再次,基于多肽链的机器人机构学模型,提出了一种简单、快捷的的氢键静电能的计算方法。
     最后,应用多肽链的机器人机构学模型,深入到原子水平,研究了F0F1ATP合成酶马达的能量储存机制。从氢键静电能变化的角度分析Neukirch提出的γ和b子组串联储能模型和K.Kinosita小组提出的γ单子组储能模型。分析结果表明Neukirch模型较合理,K.Kinosita小组模型不合理。
     借助于MATLAB软件完成了本论文的建模、仿真和计算工作。
Bio-nano-robot is one of the scientific research frontiers nowadays. The molecular motor as power section plays an important role in bio-nano-robot. The F0F1ATP synthase motor as one of molecular motor widely and naturally exists inside the living creatures. When ADP and Pi synthesize into ATP molecules, the F0F1ATP synthase firstly transforms electric potential energy into mechanical energy, then transforms mechanical energy into chemical energy and storages it into the ATP molecules; and when ATP molecules discompose into ADP and Pi, the energy will be transformed in the opposite way. F0F1ATP synthase motor has drawn more and more attention of researchers and become a hot spot in bio-nano-robot research because its energy transformation efficiency can approximately reach to 100%.
     F0F1ATP synthase is a special kind of protein which is composed by polypeptide chains of amino acid connected by peptide bonds. Based on the fact that, the polypeptide chain is similar to a hyper-redundant robot whose linkages are connected with revolute pairs the key issue of the energy storage in F0F1ATP synthase moter has been studied from the energy change of hydrogen bond by applying the robotic mechanism theory for the first time in this thesis as follows.
     Firstly, by applying the theory of robotic mechanisms, the robotic mechanism model of protein polypeptide chain considering peptide bond twist is established, based on the properties of the protein polypeptide chain and the atoms'positions.
     Secondly, the a-helix、β-sheet and (3-turn, which are the most common in the protein secondary structure, are simulated by utilizing the above mentioned model of the protein polypeptide chain. And the simulation results show that, the space conformation of protein secondary structure can be accurately manifested by this model and then the validity of the model is proved.
     Thirdly, a simple and quick method for calculating hydrogen bonding electrostatic is proposed based on the robotic mechanism model of the protein polypeptide chain.
     Finally, the energy storage mechanism of F0F1ATP synthase motor is studied from the atomic level by using the model presented. Neukirch's y and b module in series and K.Kinosita group'only y module stored energy model are analysed from the standpoint of change of hydrogen bond electrostatic, and according to the result, the former is reasonable and the latter is unreasonable.
     The above mentioned modeling, simulations and calculations are completed by means of MATLAB.
引文
[1]蒋怀伟,王石刚,徐威,张治洲,贺林.纳米生物机器人研究与进展[J].机器人,2005,6(27):569-574.
    [2]王宏斌,王金发.分子发动机研究进展[J].生物化学与生物物理进展,2000,27(3):265-269.
    [3]张红亮.基于蛋白质和核算的超冗余生物纳米机器人研究[D].成都:西南交通大学硕士学位论文,2009.
    [4]R.Yasuda,H.Noji,K.Kinosita Jr,M.Yoshida.F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps[J].Cell.1998,93:1117-1124.
    [5]荣烈润.纳米机器人浅谈[J].机电一体化,2007,1:6-8.
    [6]Mavroidis C,Yamush M,Dubey A,et al.Protein Based Nano Machines For Space Applications.Phase INIAC Grant Final Report[R].New Jersey:Rutgers University,2002 :5-53.
    [7]曹学军.美国国家纳米技术计划[J].国外科技动态2000,6:18-19.
    [8]美国国家卫生研究院[EB/OL].http://www.nih.gov/.
    [9]中国科学院光电技术研究所.NNI发布2020及未来纳米电子器件发展计划[EB/OL]. http://www.ioe.cas.cn/kxcb/kpdt/201007/t20100727_2910757.html.
    [10]ChoiC Q.EU nanotech network launched[EB/OL].http://www.biomedcentral.com/news /20040823/01/.USA:2004.
    [11]Osaka University.Graduate School Project of Froniter Biosciences[EB/OL].http://ww w.fbs.osaks_u.ac.jp/eng/overview/index.html,2004.
    [12]Ronald D.Vale. The KinesinHomePage has moved-the page at this site is no longer updated [EB/OL].http://www.proweb.org/kinesin.
    [13]Gibbons I. R.. Cilia and flagella of Eukaryotes[J].Cell Biol,1981,91:107-124.
    [14]K.R.G.Martin.et al.Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.Experimental Eye Research,2006,83:255-262.
    [15]Bohm K J,Steinmetzer P,Daniel A,et al.Kinesin driven microtubule motility in the presence of alkaline-earth metal ions:indication for a calcium ion-dependent motility[J].Cell Motility and the Cytoskeleton,1997,37(3):226-231.
    [16]Mehta A D,RockR S,RiefM,et al.Myosin-V is a processive actin-based motor[J]. Nature,1999,400(6744):590-593.
    [17]Hess H,Clemmens J,Qin D.Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces[J].Nano Letters,2001,1(5):235-239.
    [18]Hackney D,Stock M F,Moore J,et al.Modulation of kinesin half-site release and kinetic processivity by a spacer between the head groups[J].Biochemistry,2003,42(41): 12011-12018.
    [19]Dubey A,Sharma G,Mavroidis C,et al.Computational studies of viral protein nano-actuators[J]. Journal of Computational and Theoretical Nanoscience,2004, (1):1-11.
    [20]Bianco P.R.,Kowalcykowski S.C..Translocation step size and mechanism of theRecBC NDA helicase[J].Nature,2000,405:368-372.
    [21]Fritz J.BallerM K,LangH P,et al.Translating biomolecular recognition into nanomechanics[J].Science,2000,288(5464):316-318.
    [22]Yurke B,Mills Jr A P.Using DNA to power nanostructure[J].Genetic Programming and Evolvable Machines,2003,4(2):111-112.
    [23]Mao C D,Sun W Q,Shen Z Y,et al. A nanomehanical device based on the B-Z transition of DNA[J].Nature,1999,397(6715)144-146.
    [24]Hogan J.DNA robot takes its first steps[EB/OL].http://www.newscientist.com/news/ news.jsp?id=ns99994958.USA:2004.
    [25]Liu D S, Balasubramanian S.Angew[J].Chem.Int.Ed.Engl.2003,42:5734-5736.
    [26]Mao Y D,Liu D S,Wang S T,Luo S N,Wang W X,Yang Y L,Ouyang Q,Jiang L.Nucleic Acids Res.,2007,35(5):33.
    [27]钱璐璐等.DNA纳米结构仿中国地图[J].科技通报,2006,51(24):2860-2863.
    [28]Deng Guohong,Xu Qiwang.The bacterial flagellar motor-An excellent molecular motor[J].Progress of bilchem and bilphys,2000,27(6):612-615.
    [29]RichardM B.Bacterial flagella flagellarmotor[EB/OL].http://www.cellcycle bme hu/ oktatas/mikrofiz/extra/flagella pdf,2001.
    [30]DeRosier.The turn of the screw:the bacterial flagellar motor[J].cell.1998,93 (1):17-20.
    [31]Muramoto K, Kawagishi I, Kudo S,et al. High speed rotation and speed stability of the sodium-driven flagellar motor inVibrio alginolyticus[J].J Mol Biol,1995,215(1):50-58.
    [32]Dhariwal A,Sukhatme G S,Requicha A A G.Bacterium-inspired robots for environm entalmonitoring[A].Proceedings of the IEEE international Conference on Robotics and Automation[C].USA:IEEE,2004,1436-1443.
    [33]夏长亮,王蒙利,史婷娜.基于超声波电机模型的鞭毛电机欲行机理与特性研究[J].中国电机工程学报,2005,25(1):92-96.
    [34]舒咬根.生物分子马达的定向输运机制及其ATP水解动力学[D].厦门:厦门大学博士学位论文,2004.
    [35]Walker J E,Ren Lutter,Alain Dupuis,et al.Identification of the subunits of F1F0-ATPase form bovine heart mitochondrial[J].Biochemistry,1991,30:5369-5378.
    [36]Bettina Blttcher,Ingo Bertsche,Rolf Reuter,et al.Direct visualization of conformational changes in EF0F1 by electron microscopy[J].J Mol Biol,2000,296:449-457.
    [37]Suzuki T.et al.Second stalk of ATP synthase:Cross-linking of y subunit in F1 to truncated Fo b subunit prevents ATP hydrolysis[J].Biol Chem,2000,275:37902-37906.
    [38]Stephan Wilkens,Roderick A Capaldi.Electron microscopic evidence of two stalks linking the F1 and Fo parts of the Escherichia coli ATP synthase[J].Biochim Biophys Acta,1998,1365:93-97.
    [39]George Oster, et al.ATP synthase:two motors,two fuels[J].Structure.1999,7(4):67-72.
    [40]Boyer P D.ATP synthase-past and future[J].Biochim.Biophys Acta,1998,1365:3.
    [41]Skou J C.The influence of some cations on an adenosine triphosphatase from peripheral nerves[J].Biochim Biophys Acta,1957,23:394.
    [42]Mitchell P.Coupling of phosphorylation to electron and hydrogen transfer by a chemrosmotic type of mechanism[J].Nature,1961,191:144.
    [43]Boyer,P.D.The binding change mechanism for ATP synthase-someprobabilities and possibilities[J].Biochimica.Biophysica Acta,1993,1140,215-220.
    [44]Abrahams,J.P.et al.Structure at 2.8 A resolution F1-ATPase from bovine heart mitochondria[J]. Nature,1994,370.621-628.
    [45]Noji,H.,Yasuda,R.,Yoshida,M.,K.Kinosita Jr[J].Direct observation of the rotation of F1-ATPase.Nature,1997,386.299-302.
    [46]Yasuda R.,Noji H.,Yoshida,M.,Kinosita Jr..[J].Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.Nature,2001,410,898-904.
    [47]Wang,H.and Oster,G.Energy transduction in the F1 motor of ATP synthase[J].Nature, 1998,396,951-957.
    [48]Peter Dimroth, Hongyun Wang, Michael Grabe, and George Oster.Energy transduction in the sodium F-ATPase of Propionigenium modestum[J].Biophysics,1999,96: 4924-4929.
    [49]Nadanaciva,S.et al. New probes of the F1-ATPase catalytic transition state reveal that two the three catalytic sites can assume atransition state conformation simultaneously [J].Biochemistry,2000,39,9583-9590.
    [50]Sebastien Neukirch,Alain Goriely,Andrew C.Hausrath.Elastic coiled-coils act as energy buffers in the ATPsynthase[J].Internatioal Journal of Non-Linear Mechanics,2008,43: 1064-1073.
    [51]陆震.冗余自由度机器人及其应用[M].机械工业出版社,2007.
    [52]Whitney E.Resolved motion rate control of manipulators and human prostheses[J]. IEEE Transaction on man maehine system,1969,10(2):47-53.
    [53]Liegeos A.Automatic supervisory control of the configuration and behavior of multibody mechanism[J].IEEE Trans.on SMC,1977,7(12):868-887.
    [54]Hollerbach J M and Suh K C.Redundancy resolution of manipu-lator through torque optimization [J]. IEEE Journal of Robotics and Automation 1987,3(4):308-316.
    [55]Kazerounian K and Nedungadi A. An alternative method for minimization of the driving forces in redundant manipulators [C].Proceedings of IEEE International Conference on Robotics and Automation,1987,1701-1706.
    [56]Jongboon Park, W K Chung,Y Youm.Behaviors of extended Ja-cobian method for kinematic resolutions of redundancy[J].IEEE,1994,89-95.
    [57]Tan Fung Chan,Rajiv V Dubey.A weighted least-Norm solution based scheme for avoiding joint limits for redundant joint manipulators[J].IEEE Transactions on Robotics and Automation,1995,11(2):286-292.
    [58]Nakamura Y and Hanafusa H.Optimal redundancy control of robot manipulators[J].Int Journal of Robotics Research,1987,6(1):32-42.
    [59]Su K C and Hollervbach J M,Local versus global torque optimization of redundant manipulator[C].Proc IEEE Int Conf on Robotics and Automation.1987,619-624.
    [60]Kazerounian K,Wang Z Y.Global versus local optimization in redundancy resolution of robotic manipulators[J].Int Journalof Robotics Research,1988,7(5):3-12.
    [61]Pueh L H.Motion with minimal joint torques for redundantt manipulators[J].ASME Trans Journal of Mechanical Design,1993,115:599-603.
    [62]Homayoun Seraji.Configuration control of redundant manipulators:Theory and Implementation[J].IEEE Transactions on Robotics and Automation,1989,5(4):472-490.
    [63]Lee and Heow Pueh.Motions with minimal joint torques for redundant manipulators[J]. ASME Journal of Mechanical Design,1993,115:599-603.
    [64]Kim S W, Park K B and Lee J J.Redundancy resolution of robotic manipulators using optimal kinematic control[C].Proc IEEE Int Conf on Robotics and Automation,1994, 683-688.
    [65]文巨峰,颜景评,李春梅.冗余度机器人运动规划的动态方法[J].机械设计,2001,8(8)36-38.
    [66]李刚俊.冗余度机器人的运动规划碰撞算法[J].电子科技大学学报,2005,34(6):828-831.
    [67]郭大忠,柳洪义,张威,李丽娜.冗余度机器人运动学和动力学同时优化.东北大学学报,2008,29(7):1008-1011.
    [68]张红亮,李立.基于机器人机构学的蛋白质多肽链逆运动学研究[J].机械设计与制造,2010,3:145-147.
    [69]Roderick A.Capaldi and Robert Aggeler.Mechanism of the FIFO-type ATPsynthase,a biological rotary motor[J].Trends in Blochemical Sciences 27(3):154-160.
    [70]张德晖.氨基次膦酸的不对称合成以及α,β-不饱和三氟甲基酮的某些化学性质的研究[D].上海:中国科学院上海有机化学研究所博士学位论文,2009.
    [71]王琳芳,杨克恭等.蛋白质与核酸[M].北京:中国协和医科大学出版社,1998.
    [72]鲁文胜主编.生物化学[M].南京:东南大学出版社,2006.
    [73]阎隆飞,孙之荣主编.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [74]陶慰孙,李惟,姜涌明.蛋白质分子基础(第二版)[M].北京:高等教育出版社,1995
    [75]谢进,万朝燕,杜立杰.机械原理(第二版)[M].北京:高等教育出版社2010.
    [76]Craig,J.J.机器人学引论[M].机械工业出版社,负超2006.
    [77]张海霞.蛋白质二级结构预测方法研究[D].大连:大连理工大学硕士学位论文,2004.
    [78]Pauling L,Mirsky AE.Two hydrogen-bonded spiral configurations of the polypeptide chain[J].J A m Chem Soc,1950,12:5349.
    [79]Pauling L,Corey R B,Branson H R.The structure of protein:two hydrogen-bonded helical configurations of the polypeptide chain[J].Proc Nat Acad Sci US,1951,37: 205-211.
    [80]向义和.蛋白质分子α螺旋结构的发现[J].自然杂志,32(1):46-53.
    [81]河北大学生物信息中心[EB/OL]. http://hpdb.hbu.cn/structure/proteinstructure6.asp.
    [82]张艳.取代法计算多肽中N-H...O=C分子内氢键键能[D].大连:辽宁师范大学博士学位论文,2008.
    [83]张进.氢键的形成及其对物质性质的影响[J].百花园地,2010(4):184-185.
    [84]Stone A J.The Theory of Interm olecular Forces[M]. Oxford:Oxford University,2000.
    [85]Jeziorski B,Moszynski R,Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes[J].Chem Rev, 1994,94:1887-1994.
    [86]Kitaura K, Morokuma K.A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation[J].Int J Quantun Chem,1976, 10:325-400.
    [87]Stevens WJ,Fink WH,Bauschlicher CW Jr.J Chem Phys,1984,80,4378.
    [88]Chen W,Gordon MS. The effective fragment model for solvation:Internal rotation in formamide [J]. Chem Phys,1996,105(24):11081-11090.
    [89]Mo Y., Gao J., Peyerimhoff S. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach [J].Chem Phys,2000, 112(13):5530-5538.
    [90]Remer L C,Jensen J H. Toward a general theory of hydrogen bonding:the short, strong hydrogen bond[J]. Phys Chem,2000,104:9266-9275.
    [91]Kabsch W,Sander C.Dictionary of Protein secondary structure:Pattern Recognition of Hydrogen-bonder and Geometrical Features[J].Biopolymers,1983,22(6):2577-2637.
    [92]J.P.Abrahams,A.G.W.Leslie,R.lutter,J.EWalker.Structure at 2.8-angstrom resolution of F1-ATPase from bovine heart-mitochondria[J].Nature,1994,370(6491):621-628.
    [93]M.Revington,S.D.Dunn,G.S.Shaw.Fold and stability of the b subunit of the F1F0ATP synthase[J].Protein Sci,2002,11(5):1227-1238.
    [94]S.Choe,S.X. Sun.The elasticity of alpha-helices[J].Chem Phys,2005,122:244912.
    [95]Z.L.Ni,H.Dong,JM.Wei.N-terminal deletion of the gamma subunit affects the stabilization and activity of chloroplast ATP synthase[J].Chem Phys,2005,272(6): 1379-1385.
    [96]E.R.Kashket.The proton motive force in bacteria:a critical assessment of methods[J]. Annu.Rev.Microbiol,1985,39:219-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700