外源壳聚糖、水杨酸和多胺对苹果幼苗的生长及抗旱性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以1年生“红富士”苹果幼苗为试验材料,采用盆栽控水的方法,研究了水分胁迫条件下外源壳聚糖(CTS)、水杨酸(SA)和多胺(精胺,Spm)对苹果幼苗生长及抗旱性的效应。通过对生长以及光合速率、有机渗透调节物含量、保护酶活性、叶片质膜相对透性以及膜脂过氧化产物丙二醛(MDA)的含量等指标的测定分析,确定了外源CTS、SA和Spm的适宜施用浓度,比较三种外源物质在适宜浓度下对苹果幼苗抗旱性的影响,探讨了CTS、SA和Spm提高苹果幼苗抗旱性的可能机制。主要研究结果如下:
     1、干旱条件下外源CTS、SA和Spm能维持苹果幼苗的正常代谢水平,促进生长,提高抗旱性。在中度干旱条件下苹果幼苗的叶绿素含量及光合速率降低,幼苗的株高生长和茎增粗均受到明显抑制,与正常水分对照相比株高净增长量降低了26.68%,茎粗净增长量降低了27.59%。外源CTS、SA和Spm均能提高叶绿素含量,维持光合能力,促进生长,其效果达到接近或超过正常水平。
     2、干旱条件下外源CTS、SA和Spm能维持或提高保护酶(SOD、CAT)活性,降低MDA含量和质膜相对透性,防止或降低细胞膜脂过氧化程度。同时促进可溶性糖和游离脯氨酸等有机渗透调节物质的积累,增强渗透调节能力,维持正常代谢水平,提高抗旱性。
     3、CTS、SA和Spm对苹果幼苗生长及抗旱性的效应与浓度有关,一定范围内随CTS浓度增加其效应增强,适宜浓度为100mg/L,再增大浓度其作用效果不再增大。而SA和Spm对苹果幼苗生长及抗旱性的效应随其浓度由低到高呈现出先升后降的趋势,他们的最适浓度分别为0.1mmol/L和10μmol/L,但SA在降低膜透性和膜脂过氧化方面效果不明显。由此表明,适宜浓度的CTS、SA和Spm能够提高苹果幼苗在水分胁迫条件下生长及抗旱性,低浓度的SA和Spm抗旱效果不显著,浓度过高可能又存在抑制作用,而CTS浓度增大到一定程度抗旱效果不再增大。
     4、干旱条件下CTS、SA和Spm在促进苹果幼苗生长及提高抗旱性的效应上三者之间存在着一定的差异,但差异不显著。CTS和SA在复水之前比较好,而Spm在复水后再胁迫效果较好。
In this study, apple seedlings of a year-old Red Fuji were used as experimental material, the effects of exogenous Chitosan(CTS), Salicylic acid(SA) and Polyamines (Spermine, Spm) on growth and drought resistance of apple seedlings were studied by the pot-culture of water control. Changes of seedlings growth, photosynthetic rate, content of osmotic adjustment substances, activities of protective enzymes, relative permeability of plasma membrane and content of Malondialdehyde (MDA) were determined respectively under moderate water stress in order to ascertain the optimum concentration of CTS, SA and Spm on enhancing drought resistance of apple seedlings, compare the effects of the three exogenous matters on enhancing drought of apple seedlings, and discuss the mechanism of CTS, SA and Spm to enhance the drought resistance of apple seedlings. The results were as follows:
     1. Under water stress, treatmeat with exogenous CTS, SA and Spm on apple seedlings could maintain normal metabolism, promote plant growth and enhance drought resistace of the apple seedings. Under moderate drought conditions, content of chlorophyll and photosynthetic rate of apple seedlings were decreased, the growth of plant height and increase of stem-diameter were significantly inhibited. Comparing with the control of normal water,net increase of stem height and stem diameter were decreased respectively about 26.68% and 27.59%. Exogenous CTS, SA and Spm were able to increase content of chlorophyll, maintain photosynthetic rate and promote growth rate of seedlings, its effects were close to or above the normal.
     2. Exogenous CTS, SA and Spm could maintain or increase the activities of protective enzymes(SOD,CAT), decrease content of MDA and relative permeability of plasma membrane, prevent or decrease peroxidative degree of plasma membrane.At the same time , accumulations of organic osmotic substances that soluble sugar and free praline were increased, osmotic adjustment ability was enhanced, normal metabolism of apple seedlings was maintained, and drought resistance was increased.
     3. The effects of CTS, SA and Spm on growth and drought resistance of apple seedlings have relation to the concentration, the effect would enhance when the concentration of CTS increase within a certain rang, the best concentratin was 100mg/L. If the concentration continued to increase it’s effects would not enhance. And the effects were increased firstly and then decreased with the SA and Spm concentration from low to high, the best concentration of SA and Spm respectively were 0.1mmol/L and 10μmol/L, but the effect of SA on decreasing relative permeability of plasma membrane and membrane lipid peroxidation of apple seedlings was not significant. The results showed that the optimum concentration of CTS, SA and Spm could enhance growth and drought resistance of apple seedlings under water stress, but there was no significant when treated with the low concentration SA and Spm on apple seedlings, and the high concentration had inhibition, when the concentration of CTS was up to a value, it’s effects would not enhance.
     4. Under water stress, there were some differences in the effects of the optimum concentration of CTS, SA and Spm on enhancing growth and drought resistance of apple seedlings, but no significant. The effects of CTS and SA on drought resistance were better before rewatering of water stress, but the better effect of Spm was in the after rewatering of water stress and then stress again.
引文
[1] 张秀海, 黄丛林, 沈元月等. 植物抗早基因工程研究进展[J]. 生物技术通报, 2001, (4): 21.
    [2] 陈善福, 舒庆尧. 植物耐早胁迫的生物学机理及其基因工程研究进展[J]. 植物学通报,1999, 16(5): 100-102.
    [3] 陆秋农编著. 苹果栽培[M].北京: 农业出版社, 1992, 5. 1.
    [4] 龙兴桂主编. 现代中国果树栽培·落叶果树卷[M]. 北京: 中国林业出版社, 2000, 9 .181.
    [5] 李德红, 潘瑞炽. 水杨酸在植物体内的作用[J]. 植物生理学通讯, 1995, 1(2): 144-149.
    [6] Raskin I. Role of salicylic acid in plant[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1992 43: 439-463.
    [7] Jones A M. Surprising signal in plant cell[J]. Science, 1994,263:183-184.
    [8] Malamy J, Carr J P, Klessig D F, et al.Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science, 1990, 250:1002-1004.
    [9] Klessig D F, Malamy J. The salicylic acid signal in plants[J]. Plant Mol Biol, 1994,26: 1439-1458.
    [10] Raskin I. Salicylate ,a new plant hormone[J]. Plant physiol, 1992, 99: 799-803.
    [11] 杨洪强, 接玉玲. 多胺与果树生长发育的关系[J]. 山东农业大学学报, 1996 , 27 (4): 514-520
    [12] 潘瑞炽. 多胺是植物生长发育的调竹物[J]. 植物生理学通讯, 1985, 6: 63-68.
    [13] 孙文全. 苹果幼苗侧根形成与内源多胺关系的通径分析[J]. 植物生理学报, 1989, 15(4): 388-392.
    [14] 曾攘.果树生理学[M]. 北京: 中国农业出版社, 1992.
    [15] 李太盛. 多胺与植物激素(综述)[J]. 亚热带植物通讯.1999, 28 (2): 66-69.
    [16] 孙文全. 多胺代谢与园艺植物开花的关系-文献述评[J]园艺学报,1989, 16 ( 3): 178-184.
    [17] 杨洪强, 黄天栋. 苹果新根内源多胺周年形成动态研究[J]. 园艺学报, 1994, 2 ( 2): 145-149.
    [18] 刘俊,吉晓佳,刘友良. 检测植物组织中多胺含量的高效液相色谱法[J]. 植物生理学通讯, 2002, 38(6): 596-598.
    [19] 王冀平, 李亚南. 氨基酸分析仪对多胺的分析测定[J]. 科技通讯, 1998, 14 ( 4): 243-245.
    [20] Rosenblum M G, Russell D H. Conjugation of radiolabeled polyamines in the rat[J].Cancer Research, 1977,(1):47-51.
    [21] Saeki Y, Uehara N, Shirakawa S. Sensitive fluorimetric method for the determination of putrescine, spermidine and spermine by high-performance liquid chromatography and its application to human blood[J]. Journal of Chromatography & Biomedical Sciences and Applications 1978 145(2): 221-229.
    [22] 胡景江, 左仲武, 刘彦超等壳聚糖对油松种子萌发及幼苗生理生化特性的影响[J].西北林学院学报, 2003,18(4):21-23.
    [23] 王延峰,宋爱玲,郭力民等不同浓度的壳聚糖处理对玉米种子萌发的影响初报[J].青海师范大学学报(自然科学版), 2002, 1: 63-65.
    [24] 何福相. 以壳聚糖为原料的种子处理剂制造方法[P].CN:1044748,1990-08.
    [25] 严瑞宣. 水溶性高分子[M].北京:化学工业出版社,1989.562.
    [26] Gotthardt,Uwe.J. Plant Physiol.1992,139(6):659-665.
    [27] 平野茂博.化学技术志MOL.1989, (4):27.
    [28] 刘和众等.天然产物研究与开发[J].1996, 8(4):90-92.
    [29] 胡景江, 左仲武, 刘彦超等. 壳聚糖对油松种子萌发及幼苗生理生化特性的影响[J]. 西北林学院学报, 003,18(4):21-23.
    [30] 蒋桂芳, 宋力, 黄俊生等. 农业中壳聚糖的功能与应用研究[J]. 渝西学院学报(自然科学版). 2005, 4(3): 58-60.
    [31] 高魏. 甲壳质及壳聚糖在农业上的应用[J]. 农业与技术.2005,5:84-85.
    [32] 廖春燕, 马国瑞, 洪文英等. 壳聚糖对番茄枯萎病菌的拮抗作用[J].浙江大学学报(农业与生命科学版),2001,27(6):619-623.
    [33] 于汉寿, 张益民, 陈永萱等.水溶性壳聚糖对小麦和油菜几丁质酶的诱导作用[J].江苏农业学报, 1999,15(2):67-70.
    [34] 何燕文, 梁和, 韦剑锋等.采前喷施壳聚糖和高良姜液对龙眼采后耐贮性的影响[J].有机农业与食品科学.2005,21(10):81-84.
    [35] P.R.Austin.Science.1981,(212):749.
    [36] Rao M V,Paliyath G,Ormrod P et al.Influence of salicylic acid on H2O2 production,oxidative stress and H2O2 metabolizating enzymes. Plant Physiol,1997,115:137-149.
    [37] Klessig D F,Malamy J. The salicylic acid signal in plants.Plant Mol Biol,1994,26:1439-1458.
    [38] 原永兵, 曹宗巽. 水杨酸在植物体内的作用[J]. 植物学通报, 1994,11(3):1-9.
    [39] 李德红, 潘瑞炽. 水杨酸在植物体内的作用[J]. 植物生理学通讯,1995,31(2):144-149.
    [40] 吴建国,陆晓民,张晓婷等.水分胁迫下水杨酸对毛豆幼苗生长及其抗渍性的影响[J]. 中国农学报报, 2006, 22(1):153-155.
    [41] 姜中珠, 陈祥伟等.水杨酸对灌木幼苗抗旱性的影响[J]. 水土保持学报, 2004, 18(2): 166-170.
    [42] Apte P V,Laloraya M M.Inhibitory action of phenolic compounds on abscisic acid-induced abscission[J]. J Exp Bot, 1982,33:826-829.
    [43] Chong K,He J X, Wen J Q. Changes intranscript level of chloroplast psb A and pab D genes during water stress in wheat leaves[J].Phsiol Plant,1998,102: 49-54.
    [44] 张春光, 荆红梅.水杨酸. 诱导植物抗性的研究进展[J].生命科学研究, 2001,5(3):295-302.
    [45] 孙丽娜, 曲敏, 任广涛等. 水杨酸对盐胁迫下黄瓜种子萌发和幼苗生长发育的影响[J]. 东北农业大学学报, 2006, 37(4): 449-453.
    [46] 张士功,高吉寅. 水杨酸和阿斯匹林对小麦盐害的缓解作用[J]. 植物生理学报,1999, 25(2): 159-164.
    [47] 李德红, 潘瑞炽. 水杨酸在植物体内的作用[J]. 植物生理学通讯, 1995,31(2):144-149.
    [48] Klessig D F. Nitric oxide and salicylic acid signaling in plant defense[J]. Proc Natl Acad Sci USA, 2000, 97: 8849-8855.
    [49] Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induced thermo- tolerance in mustard seedlings[J]. Plant Physiol,1998,118:1455-1461.
    [50] 詹妍妮, 郁松林, 陈培琴等.热锻炼与外源水杨酸对葡萄叶肉细胞膜脂过氧化的影响[J].石河子大学学报(自然科学版),2005,23(5):597-600.
    [51] 郁松林. 水杨酸在葡萄高温胁迫过程中的信号作用及与蛋白质磷酸化关系的研究[D].中国农业大学,2004.
    [52] 舒英杰, 周玉丽, 张子学等.水杨酸对黄瓜萌发种子抗冷性的影响[J]. 种子, 2006,25(5):63-65.
    [53] 张蕊, 吕俊, 米青山等.低温下外源水杨酸对水稻幼苗抗氧化酶系的影响[J]. 西南农业大学学报(自然科学版). 2006,28(1):29-33.
    [54] 康国章, 欧志英, 王正询等.水杨酸诱导提高香蕉幼苗耐寒性的机制研究[J]. 园艺学报, 2003,30(2): 141-146.
    [55] 王利军, 战吉成, 黄卫东.水杨酸与植物抗逆性[J].植物生理学通讯, 2002,38(6): 619-624.
    [56] Tiburcio A F, Campos J L, Figueras X. Recent advances in the understanding of polyamine functions during plant development[J]. 1993,12: 331-340.
    [57] 檀建新,史吉平,李广敏等. 亚精胺对水分胁迫下玉米幼苗内源乙烯和多胺含量的影响[[J].植物生理学通讯,1985,31(2):99-102.
    [58] Turner L B, Stewart G R. The effect of water stress upon polyamine levels in barley(Hordeum vulgareL.) leaves[J]. Journal of Experimental Botany,1986,37(175): 170-177.
    [59] Turner LB, Stewart GR. Factors affecting polyamine accumulation in barley(Hordeum vulgare L.) leaf sections during osmotic stress[J]. Journal of Experimental Botany, 1988,39(200): 311-316.
    [60] 岳艳玲, 李广敏, 商振清.多胺延缓水分胁迫下小麦幼苗衰老机制的探讨[J].华北农学报,1997,12(2):71-75.
    [61] 陈坤明, 张承烈.干早期间小麦叶片多胺含量与作物抗旱性的关系[J]. 植物生理学报, 2000,26(5): 381-386.
    [62] 胡景江, 左仲武等. 外源多胺对油松幼苗生长及抗旱性的影响[J]. 西北林学院学报,2004, 19(4):5-8.
    [63] 谈建康, 安树青. 钠盐胁迫对小麦叶片核酸损伤和多胺积累的影响[J].农业环境科学学报,2004, 23(3): 428-431.
    [64] 於丙军, 吉晓佳, 刘 俊.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化[J].应用生态学报,2004,15(7):1223-1226.
    [65] 赵福庚, 束怀瑞. NaCl处理下大麦根系质膜微囊结合多胺与Na+/H+逆向运输的关系[J].植物生理与分子生物学学报,2002,28(5):333-338.
    [66] 刘俊, 周一峰, 章文华等. 外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响[J].西北植物学报, 2006,26(2):0254-0258.
    [67] Slocum R D,Kaur-Sawhney R,Galston A W.The physiology and biochemistry of polyamines in plant[J]. Arch Biochem Biophys,1984,235(2):283-303.
    [68] Drolet G,Dumbroff EB, Legge RL,et al. Radical scavenging properties of polyamines [J]. Phyto- chemistry, 1986,25(2):367-371.
    [69] 胡位荣, 刘顺枝, 张昭其等. 采后荔枝果实冷害过程中多胺含量的变化[J]. 广西植物, 26(4): 370-374.
    [70] 乔勇进, 冯双庆, 李丽萍等. 多胺处理对黄瓜贮藏冷害及品质的影响[J].吉林农业大学学报, 2005, 27(1): 55-58.
    [71] 周玉萍, 王正询, 田长恩. 多胺与香蕉抗寒性的关系的研究[J]. 广西植物, 2003, 23(4):352-356.
    [72] 林定波, 刘祖祺, 张石城. 多胺对柑桔抗寒力的效应[J]. 园艺学报, 1994, 21(3):222-226.
    [73] Young ND, Galston AW. Putrescine and acid stress[J]. Plant Physiol, 1983, 71:767-771.
    [74] 李如铁, 沈惠娟, 李梅枝. 酸胁迫对几种林木体内脯氨酸及腐胺含量的影响[J]. 南京林业大学学报, 1995,19(3):88-93.
    [75] 谢寅峰, 沈惠娟, 李梅枝. 酸胁迫对林木内源多胺及活性氧代谢的影响[J]. 林业科学,1999, 35(1): 117-121.
    [76] Helga K, Sigrid L. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress?[J] Plant Physiol Biochem, 2002,40: 51-59.
    [77] 林文雄, 吴杏春, 梁康迳等. UV-B辐射增强对水稻多胺代谢及内源激素含量的影响[J]. 应用生态学报, 2002, 13(7):807-813.
    [78] 郭玉春, 林文雄, 吴杏春等. UV-B辐射增强对水稻多胺含量及其相关酶活性的影响[J]. 中国生态农业学报,2003,11(2):14-17.
    [79] 王学, 施国新, 马广岳等. 外源亚精胺对荇菜抗Hg2+ 胁迫能力的影响[J]. 植物生理与分子生物学学报, 2004,30(1):69-74.
    [80] 王学, 施国新, 徐勤松等. 外源亚精胺缓解荇菜Cr6+ 毒害的生理研究[J]. 环境科学学报, 2003, 23(5): 689-693.
    [81] 邱澄宇. 壳聚糖几种降解方法的比较研究[J]. 食品科学, 2004. Vol.25.No.增刊: 51-53.
    [82] 夏文水, 陈洁. 甲壳素的特性及制备[J]. 无锡轻工业学院学报, 1994, 30(4):20-24.
    [83] 师素云, 薛启汉, 陈游等.羧甲基壳聚糖对玉米的生理调节功能初探[J]. 中国农业大学学报, 1997, 2(5): 1-6.
    [84] 赵惠芝. 壳聚糖对向日葵种子萌发及幼苗生理特性的影响[J]. 河北农业技术师范学院学报, 1999, (6 ):37-39.
    [85] 胡景江, 左仲武, 刘彦超. 壳聚糖对油松种子萌发及幼苗生理生化特性的影响[J]. 西北林学院学报, 2003, 18(4): 21-24.
    [86] Hirano S. hitinase activity of some seeds during their germination process, and its induction by treating with chitosan and derivatives[A].In: Skjark Brack G, et al.eds. Proceedings, 4th lnternational Conference on Chitin and Chitoean[C].USA,1988, 743-774.
    [87] 于汉寿. 水溶性壳聚糖对水稻恶苗病和油菜菌核病的作用[J]. 江苏农业科学, 1998, 5: 38-40.
    [88] 李茂富, 李绍鹏, 赵伟峰. 壳聚糖提高香蕉幼苗抗冷性的效应[J]. 植物生理学通讯, 2005, 41(4): 464-466.
    [89] 覃彩芹, 肖玲, 杜予民等. 过氧化氢氧化降解壳聚糖的可控性研究[J]. 武汉大学学报, 2000, 46(2): 195-198.
    [90] 张未. 低分子量壳聚糖的制备及其最优回收方法的初步研究[J]. 中山大学研究生学刊(自然科学、医学版)2005, 6(2): 33-36.
    [91] Cuero G., N-Carboxymethylchitosan : uptake and effect on chlorophyll production, water potential and liomass in tomato plants[J]. Food Biotechnology, 1991, 5: 95-103.
    [92] Freepons D. Enhancing food production with chitosan seed-coating technology[J].In:Donald Freepons(ed). Application of chitin and chitosan. Lancastyer: Technomic Publishing Company inc, 1997, 129-139.
    [93] 林忠平,吴玉珍.植物病害和损伤的信号传递及相关基因的表达[J]. 植物学通报,1995, 12(1): 9-14.
    [94] 何奇镜, 佟培生. 不同土壤玉米少耕法试验报告[J]. 吉林农业科学, 1998, 23(4):10-12.
    [95] 李德成等. 免耕制度下耕作土壤结构演化的图像分析[J] 土壤学报, 2002, (2): 214-219.
    [96] 巨晓棠等. 氮肥利用率的要义及其提高的技术措施[J] 科技导报. 2003,(4): 51.
    [97] 何奇镜, 佟培生. 玉米少中耕试验报告[J]. 吉林农业科学, 1999, 24(2): 8-12.
    [98] 孙歆, 郭云梅, 雷韬等. 水杨酸对水分胁迫下菜豆若干生理指标的影响[J]. 四川大学学报(自然科学版), 2005, 42(3): 575-579.
    [99] Lrigoyen JJ, Emerich DW. Water stress induced changes inconcentration of praline and total soluble sugars in modulates alfalfa (Medic ago satire) plants [J]. Physiologic Planetarium, 1992, 84: 55-60.
    [100] 汤章城. 植物抗逆性生理生化研究的某些进展[J]. 植物通讯, 1991(2):146-148.
    [101] 王霞霞, 陈年来, 张钰鑫等. 土壤干旱对甜瓜幼苗生理生化特性的影响[J]. 甘肃农业大学学报, 2004, 39(5): 529-533.
    [102] 王利军, 战吉成, 黄卫东. 水杨酸与植物抗逆性[J]. 植物生理学通讯, 2002, 38(6): 619-624.
    [103] 赵可夫, 王韶唐. 作物抗性生理[M]. 北京: 农业出版社, 1990: 60-62.
    [104] 孙歆, 郭云梅, 雷韬等. 水杨酸对水分胁迫下菜豆若干生理指标的影响[J]. 四川大学学报(自然科学版), 2005, 42(3): 575-579.
    [105] Nemeth M, Janda T, Horvath E,et al.Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize[J]Plant Sci,2002,162: 569-574.
    [106] Duner J, Klessig DF, Noad R et al. Nitric oxide and salicylic acid signaling in plant defense[J].Proc Natl Acad Sci USE,2000,97: 8849-8855..
    [107] 岳艳玲, 李广敏, 商振清等. 多胺延缓水分胁迫下小麦幼苗衰老机制的探讨[J]. 华北农学报, 1997, 12(2): 71-75.
    [108] Kaur-sawhney R, Altman A, et al. Dual mechanisms in polyamine-mediated control of ribonuclease activity in oat leaf protoplasts[J]. Plant Physiol,1978,62:158-160.
    [109] Kaur-sawhney R,Shih L M,Cegielska T, et al. Inhibition of protease activity by polyamines relevance for control of leave senescence[J]. FEBS Lett, 1982, 145: 345-349.
    [110] 王汉忠, 赵福庚, 张国珍.多胺延缓植物衰老的机制[J]. 山东农业大学学报,1995,26(2): 227-232.
    [111] Drolet G,Dumbroff E B,Legge R L et al.Radical scavenging properties of polyamines[J]. Phytochemistry, 1986, 25: 367-371.
    [112] Galston A W,Tiburcio A F. Lecture Course on polyamines as modulators of plant development. 1991,257:62-66.
    [113] 黄维玉, 王亚来, 袁林江. 多胺对小麦离体叶片衰老的调节[J]. 植物学报, 1990, 32(2): 125-132.
    [114] Roberts DR, Dumbroff EB,Thompson JE. Exogenous polyamines alter membrance fluidity in bean leaves a basis for potential misinterpretation of their true physiological role[J]. Planta,1986, 167: 395-401.
    [115] Smith.I,R.cromie and Stainsby..Seeing Gel WellsWell. Anal. biochem, 1988, 169: 370-371
    [116] Prasad TK,Anderson MD,Martin BA,et al. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. Plant Cell, 1994, 6: 65-74.
    [117] 魏炜, 赵欣平, 吕辉等. 三种抗氧化酶在小麦抗旱逆境中的作用初探[J]. 四川大学学报(自然科学版), 2003, 40(6): 1172-1175.
    [118] Chen Z,Ricigliano JR, Klessig DF. Purification and characterization of a soluble salicylic acid binding protein from tobacco[J].Proc Natl.Acad Sci.USE. 1993,90: 9533-9537.
    [119] 孙群, 胡景江, 曹翠玲等编. 植物生理学研究技术[M]. 西北农林科技大学出版社,2004,65.
    [120] 高俊风主编. 植物生理学实验指导书[M]. 北京: 高等教育出版社, 2006, 74-75.
    [121] 高俊风主编. 植物生理学实验指导书[M]. 北京: 高等教育出版社, 2006, 198-199.
    [122] 高俊风主编. 植物生理学实验技术[M]. 西安: 世界图书出版公司, 2000, 201~202.
    [123] 陈毓荃主编. 生物化学实验方法和技术[M]. 北京: 中国农业出版社, 2000, 171-173.
    [124] 高俊风主编. 植物生理学实验指导书[M]. 北京: 高等教育出版社, 2006, 196-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700