不同土壤母质黄棕壤剖面细菌的生物多样性及其对钾矿物风化作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物多样性是指土壤微生物群落的结构与组成的差异,一般可包括物种多样性、遗传多样性、生态多样性和功能多样性。研究土壤微生物的多样性,不仅有助于对微生物资源及生物多样性的深入认识,丰富微生物资源库和基因库,揭示微生物多样性与土壤理化因子之间的关系,还可以筛选高效分解钾矿物的细菌,为研究细菌对矿物的风化及在土壤形成过程中的作用提供理论依据和实验材料。
     采用16S rDNA克隆文库构建法及变性梯度凝胶电泳法(DGGE)对小龙山(A)和后汉路(B)两个土壤剖面不同深度样品的细菌生物多样性进行了研究。结果表明,小龙山土壤剖面中细菌菌群归属于13大类群,分别为α-,β-,γ-和δ-Proteobacteria(变形菌门)、Acidobacteria(酸杆菌门)、Actinobacteria(放线菌门)、Chloroflexi(绿弯菌门)、Firmicutes(厚壁菌门)、Verrucomicrobia(疣微菌门)、Bacteroidetes(拟杆菌门)、Gemmatimonadetes、Ktedonobacteria和OP10。其中优势菌群为y-Proteobacteria、 Acidobacteria、Actinobacteria、Firmicutes和Chloroflexi;在后汉路土壤剖面中细菌菌群归属于9大类群,分别为α-,β-,γ-和δ-Proteobacteria、Acidobacteria、Actinobacteria、 Verrucomicrobia、Bacteroidetes和Ktedonobacteria,其中菌群Proteobacteria、 Actinobacteria、Acidobacteria为优势菌群。菌群Actinobacteria、Acidobacteria和y-Peoteobacteria是两个土壤剖面中共有的优势菌群。某些优势菌群随着土壤剖面深度的变化而变化。小龙山土壤剖面中,菌群y-Proteobacteria中的克隆子主要分布于剖面L2中;菌群Acidobacteria中的克隆子数量随着深度的增加而逐渐降低;菌群Actinobacteria中的克隆子主要分布于剖面Ll和L2中,而在L3中克隆子数量则有显著降低;而菌群Chloroflexi和Firmicutes中的克隆子则主要分布于剖面L3中。后汉路土壤剖面中,菌群Acidobacteria和Verrucomicrobia中的克隆子数量随着土壤剖面深度的增加有降低的趋势;菌群Actinobacteria中克隆子则在H2层数量最多;y-Proteobacteria中的克隆子主要分布剖面H3及H4中。DGGE分析结果表明,小龙山土壤剖面中的优势种群为Proteobacteria、Actinobacteria、Bacteroidetes、Acidobacteria、 Firmicutes和Chloroflexi,其中Rhodoplanes、Pseudomonas、Serratia和Arthrobacter为优势菌属。后汉路土壤剖面中的优势种群为γ-Proteobacteria、Bacteroidetes、Actinobactcria和Acidobacteria,其中Pseudomonas、Serratia、Arlhrobacter为优势菌属。
     主成分分析(PCA)表明,土壤pH、有机质、有效性Fe和Al、土壤有效磷以及速效钾能够影响土壤细菌群落结构。典型相关分析(CCA)分析表明,小龙山土壤剖面中菌群y-Proteobacteria易受到土壤中活性铝的影响(r=-0.8,P<0.05);Acidobacteria与土壤中有效磷含量呈显著正相关(r=0.99,P<0.05)。后汉路土壤剖面中y-Proteobacteria与土壤有效磷和速效钾存在明显的正相关(r=0.94,P<0.05;r=0.99,P<0.05)。优势菌属Arthrobacter在土壤矿物风化的进程中可能起了重要的作用。
     采用缺钾培养基通过稀释平板法从上述土壤剖面中分离筛选到36株钾矿物分解细菌,16S rDNA序列分析结果表明,36株细菌隶属于菌群Firmicutes、Proteobacteria和Actinobacteria中的的9个菌属,分别为Bacillus(芽孢杆菌属)、Paenibacillus(类芽孢杆菌属),Dyella、Pantoea(泛菌属)、Burkholderia(伯克霍尔德菌属),Nocardioides(类诺卡氏菌属)、Isoptericola(白蚁菌属)、Microbacterium(微杆菌属)、Arthrobacter节杆菌属)。其中Bacillus、Paenibacillus、Arthrobacter和Burkholderia为两个土壤剖面的共有菌属,表现出较丰富的物种多样性。
     菌株H17与Isoptericola属的亲缘关系最近,与同属的6株模式菌株的16S rRNA基因序列的同源性为97.8%-99.6%。菌株H17细胞壁肽聚糖为L-Lys-D-Asp,细胞壁糖为半乳糖、木糖和甘露糖,脂肪酸主要为anteiso-C15:0和iso-C15:0'主要极性脂为diphosphatidylglycerol、phosphatidylglycerol、phospholipids、phosphatidylinositol、 phosphoglycolipid、glycolipid和lipid,主要萘醌为MK9(H4),未检测到分枝菌酸,其G+C mo1%为72.4%,与6株模式菌株的DNA-DNA杂交同源性为15.2%-45.6%。综合这些结果,我们建议菌株H17为Isoptericola属的一个新种,命名为Isoptericola nanjingensis sp. nov.。
     摇瓶条件下,对来源于供试菌株L11(Bacillus),H5(Burkholderia), H15(Arthrobacter)的矿物分解能力进行了研究。结果表明,培养30d后接菌处理的发酵液中Fe、Si、Al含量分别比接灭活菌对照增加27.5-115、1.5-2.2和13-35倍。扫描电镜(SEM)结果表明,接菌处理的钾长石矿物表面形成腐蚀坑,同时在钾长石表面形成了球形物和较小的颗粒状物质,对照处理的钾长石矿物表面比较平整;能谱(EDX)分析发现,上述球形物和较小的颗粒状物质是Fe和Ca的氧化物,推测是在钾长石矿物表面形成的次生矿物。另外,还研究了菌株Q12对云母(黑云母、白云母和金云母)的风化效应。ICP测定表明,接菌处理的溶液中Fe、Si、Al和K含量分别比对照增加9-173%、9-18%、10-310%和9-29%;SEM分析发现,菌株Q12在云母表面形成生物膜,云母表面形成了絮状、颗粒状和针状的物质,EDX分析表明,这些物质可能是形成的方解石、赤铁矿等次生矿物;X衍射(XRD)结果表明,接菌处理可以使黑云母形成赤铁矿和富镁蒙脱石等次生矿物。另外,透射电镜(TEM)观察发现,在菌株Q12细胞表面可以吸附一些矿物颗粒。
     砂培试验表明,菌株L11和H5能够促进钾矿物的溶解,促进水稻植株的生长并提高水稻植株对钾素的利用。SEM分析表明,菌株能够在矿物表面和水稻植株根际定殖。在矿物表面或根表面形成圆球形、簇状、多面体、针状等物质。结合EDX分析,推测主要形成了方解石、草酸钙石、赤铁矿、磁铁矿等次生矿物。
Soil microbial diversity is the difference related to microbial communities and species, including species diversity, genetic diversity, ecological diversity and functional diversity. Researches on bacterial diversity will further understand microbial resource and biodiversity, enrich pool of microbial resource and gene, clarify the relationship between biodiversity and soil physicochemical factors, obtain efficient strains to weather mineral, and offer the theoretical and experimental basis for mineral weathering and soil formation.
     16S rRNA gene sequence clone library and denaturing gradient gel electrophoresis (DGGE) were used to analyze bacterial biodiversity of two soil profiles sampled at site A (Longshan) and site B (Houhan Road). The results showed that there were13bacterial communities in site A and the major communities were γ-Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi; while at site B, there were9bacterial communities, and the dominant communities were y-Proteobacteria, Actinobacteria, Acidobacteria. Actinobacteria, Acidobacteria and γ-Peoteobacteria were the same dominant phyla in both profiles. The major bacterial communities varied with soil depth. In profile A, clones of y-Proteobacteria mainly distributed layer-L2, and clones affiliated to Acidobacteria decreased with soil depth. The numbers of clone of Chloroflexi and Firmicutes mainly distributes in layer-L3. In profile B, the proportion of Acidobacteria and Verrucomicrobia decreased with soil depth, and the most abundant Actinobacteria was in profile B-H2, while clones of y-Peoteobacteria mainly distributed in H3and H4. The major communities were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, Firmicutes and Chloroflexi at site A by DGGE, and the dominant genera were Rhodoplanes, Pseudomonas、Serratia and Arthrobacter. While at site B, the major phyla were y-Proteobacteria, Bacteroidetes, Actinobacteria and Acidobacteria, and the dominant genera were Pseudomonas, Serralia and Arthrobacter. Principal component analysis (PCA) suggested soil bacterial biodiversity was affected by soil physical and chemical factors such as soil pH, organic matter, effective Fe and Al, soil rapidly available phosphorus and available potassium. Canonical Correlation Analysis indicated bacteria affiliated to y-Proteobacteria were sensitive to soil available Al (r=-0.8, P<0.05), and bacteria affiliated to Acidobacteria were positive related to effective phosphorus significantly (r=0.99, P<0.05) at site A. At site B, bacteria affiliated to y-Proteobacteria were positive related to effective phosphorus and available potassium significantly (r=0.94, P<0.05; r=0.99, P<0.05). Arthrobacter affiliated to Actinobacteria were reported to have the ability to weather minerals in soil.
     Thirty-six strains were separated from the two soil profiles by dilution plate method using potassium-limited medium.16S rRNA gene sequences revealed that36strains were grouped to9genera affiliated to3phyla, that is Bacillus, Paenibacillus, Dyella, Pantoea, Burkholderia, Nocardioides, Isoptericola, Microbacterium and Arthrobacter. Bacillus, Paenibacillus, Arthrobacter and Burkholderia were the common genera in both profiles, which showed abundant species diversity.
     Strain H17had the highest similarities with Isoptericola spp., and showed97.8%-99.6%sequence similarities with the other strains. The cell-wall peptidoglycan type of strain H17is L-Lys-D-Asp. The whole-cell sugars are galactose, xylose and mannose. The major fatty acids (>10%of total) are anteiso-C15:0and iso-C15:0.The total polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phospholipids, phosphatidylinositol, phosphoglycolipid, one unidentified glycolipid and one unidentified lipid. The menaquinone of strain H17T is MK9(H4). Mycolic acids were not detected. The DNA-DNA relatedness studies showed relatively low rates with the type strains of I. variabilis MX5T (45.6%), I. hypogeus HKI0342T(37.9%), I. jiangsuensis CLGT (33.4%), I. dokdonensis DS-3T (33.4%), I. halotolerans YIM70177T (40.9%) and I.chiayiensis06182M-1T (15.2%). The DNA G+C content of the type strain is72.4mol%. These results indicated that strain H17T represents a novel species of the genus Isoptericola, for which the name Isoptericola nanjingensis sp. nov. is proposed.
     Strains Lll, H5and H15derived from different species were tested to weather potassium feldspar by shaking culture. The concentration of Fe, Si and Al increased27.5-115,1.5-2.2and13-35times than controls, respectively, by inductively coupled plasma optical emission spectrometry (ICP-OES). Scanning electron microscope (SEM) analisis showed that there were many corrosion pits in the surface of potassium feldspar, and spherical and small graininess around the mineral, while there was nothing around controls. These spherical and small graininess were the oxide of Fe and Ca, and were speculated to be secondary minerals. In addition, weathering effects of the strain Q12to micas (biotite, muscovite and phlogopite) were also studied. The concentration of Fe, Si, Al and K increased9-173%,9-18%,10-310%and9-29%compared to the controls according to ICP-AES, respectively. Biofilms were formed in the surface of micas after interactions with strain Q12by SEM. Some cotton-shaped, graininess and acicular materials were found around micas, which were identified to calcite and hematite by X-ray energy dispersive spectrum (EDS). X-ray diffraction (XRD) demonstrated that haematite and Mg-bearing turface were formed after interaction between the strain Q12and biotite. Transmission electron microscope (TEM) revealed small grains were adsorbed by bacterial cells.
     Sand culture experiment showed the strains L11and H5could accelerate weathering of potassium feldspar, promote the growth of rice plants and increase utilization of potassium by rice plants. SEM indicated strain L11, H5and H15could colonize the surfaces of potassium feldspar and the rhizosphere of rice plants, and spheroidal, cluster-shaped, polyhedron and acicular materials were also found. These materials were speculated to be calcite, calcium oxalate, hematite and magnetite by EDS.
引文
1. Ahad J M, Sherwood L B, Edwards E A, et al. Carbon isotope fractionation during anaerobic biodegradation of toluene:Implications for intrinsic bioremediation [J]. Environmental Science and Technology,2000,34,892-896.
    2. Aisable J M, Jordan S, Barker G M. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica [J]. Geoderma,2008,144,9-20.
    3. Alvey S, Yang C H, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African Soils [J]. Biology and Fertility of Soils,2003,37,73-82.
    4. Amann R L, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995,59,143-169.
    5. Amaral J, Ren T, Knowles R. Atmospheric methane consumption by forest soils and extraction bacteria at different pH value [J]. Applied and Environmental Microbiology,1998,64, 2397-2402.
    6. Anderson D W. The effect of parent material and soil development on nutrient cycling on temperate ecosystems [J]. Biogeochemistry,1988,5,71-97.
    7. Bakalidou A, Kampfer P, Berchtold M, Kuhnigk T, Wenzel M, Konig H. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis [J]. International Journal of Systematic and Evolutionary Microbiology,2002,52, 1185-1192.
    8. Banfield J F, Barker W W, Welch S A, Taunton A. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96, 3404-3411.
    9. Banfield J F, Zhang H. Nanoparticles in the environment. Reviews in Mineralogy and Geochemistry,2001,44,1-58.
    10. Bano N, M J. Isolation and characterization of phorate degrading soil bacteria of environmental and agronomic significance [J]. Letters in Applied Microbiology,2003,36,349-353.
    11. Bardgett R D, Leemans D K, Cook R, et al. Seasonality of the soil biota of grazed and ungrazed hill grasslands [J]. Soil Biology and Biochemistry,1997,29,1285-1294.
    12. Barker W W, Welch S A, Chu S. Experimental observations of the effects of bacteria on alumina silicate weathering [J]. American Mineralogist,1998,83,1551-1563.
    13. Bazylinski D A, Frankel R B. Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria [M]. In:Lovley D R ed. Environmental Microbe-Mineral Interactions Washington, DC:ASM press,109-144.
    14. Bazylinski D A, Frankel R B. Biologically Controlled Mineralization in Prokaryotes [J]. Reviews in Mineralogy and Geochemistry,2003,54,217-247.
    15. Bennett P C, Hiebert F K, Choi W J. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater [J]. Chemical Geology,1996,132,45-53.
    16. Berner R A, Holdren G R, Mechanism of feldspar weathering: Some observational evidence [J]. Geology,1979,5,369-372.
    17. Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf [J]. Geochim et Cosmichemistry Acta,1995,59,3707-3715.
    18. Blake R E, Walter L M. Kinetics of feldspar and quartz dissolution at 70-80℃ and near-neutral pH:Effects of organic acids and NaCl [J]. Geochimica Cosmochimica Acta,1999,63, 2043-2059.
    19. Blaser T C, Firestone M K. Linking microbial community composition and soil process in a California annual grassland and mixed-conifer forest [J]. Biogeochemistry,2005,73,395-415.
    20. Boivin-Jahns V. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment [J]. Applied and Environmental Microbiology,1995,61,3400-3406.
    21. Boreham C J, Hope, Hartung J M, et al. Understanding source, distribution and preservation of Australian natural gas:A geochemical perspective [J]. Australian Petroleum Production and Exploration Association Journal,2001,41 (1),523-547.
    22. Boukhalfa H, Crumbliss A L. Chemical axpersts siderophore mediated iron transport [J]. Biometals,2002,15 (4),325-339.
    23. Bowman J P, McCuaig R D. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment [J]. Applied and Environmental Microbiology,2003,69,2463-2483.
    24. Brantley S L, Stiltings L L. Feldspar dissolution at 25℃ and low pH [J]. America Journal of Science,1996,296,101-127.
    25. Brodie E, Edwards S, Clipson N. Bacteria community dynamics across a floristic gradient in a temperate upland grassland ecosystem [J]. Microbial Ecology,2002,44,260-270.
    26. Buhring S I, Elvert M, Witte U. The microbial community structure of different permeable sandy sediments characterized by the inverstigation of bacterial fatty acids and fluorescence in situ hybridization [J]. Environmental Microbiology,2005,7(2),281-293.
    27. Burford E P, Fomina M, Gadd G M. Fungal involvement in bioweathering and biotransformation of rocks and minerals [J]. Mineralogical Magazine,2003,67(6),1127-1155.
    28. Buss H L, Luttge A, Brantley S L. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution [J]. Chemical Geology,2007,240,326-340.
    29. Calvaruso C, Turpault M P, Frey-Klett P. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees:a budgeting analysis [J]. Applied and Environmental Microbiology,2006,72,1256-1266.
    30. Casellas M, Grifoll M, Bayona J M, et al. New metabolotes in the degradation of fluorene by Arthrobacter sp. strain F101 [J]. Applied and Environmental Microbiology,1997,63,819-826.
    31. Chan O C, Wolf M, Hepperle D, et al. Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake [J]. FEMS Microbiology Ecology,2002,42,119-129.
    32. Chapelle F H. Ground water microbiology and geochemistry [M].1993, Wiley, New York.
    33. Chardon E S, Livens F R, Vaughan D J. Reactions of feldspar surfaces with aqueous solutions [J]. Earth-Science Review,2006,28,1-26.
    34. Chen J, Blume H P, Beyer L. Weathering of rocks induced by lichen colonization-a review [J]. Catena,2000,39,121-46.
    35. Chiarini L, Bevivino A, Dalmastri C, et al. Influence of plant development, cultivar and soil type on microbial colonization of maize root [J]. Applied Soil Ecology,1998,8,11-18.
    36. Christensen B E, Characklis W G. Physical and chemical properties in biofilms [M]. W G Characklis and K C Marshall, Eds, Biofilms, Wiley, New York,93-130.
    37. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim B K, Lim Y W. EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences [J]. International Journal of Systematic and Evolutionary Microbiology,2007,57,2259-2261.
    38. Chung H, Park M, Madhaiyan M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea [J]. Soil Biology and Biochemistry,2005, 37(10),1970-1974.
    39. Collins M D, Pirouz T, Goodfellow M, Minnikin D E. Distribution of menaquinones in actinomycetes and corynebacteria [J]. Journal of General Microbiology,1977,100,221-230.
    40. Crawford R H, Floyd M, Li C Y. Degradation of serpentine and muscovite rock minerals and immobilization of cations by soil Penicillium sp. [J]. Phyton Horn,2000,40 (2),315-321.
    41. Crerar D A, Barnes H L. Deposition of deep-sea manganese [J]. Geochimica Cosmochimica Acta, 1974,38,279-300.
    42. Crowley D E, Wang Y C, Reid C P P. Mechanism of iron acquisition from siderophores by microorganism and plants [M]. Dordrecht: Kluwer,1991,213-232.
    43. Da Silva K R, Salles J F, Seldin L, et al. Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenbacillus spp. In the maize rhizosphere [J]. Journal of Microbiological Methods,2003,54,213-231.
    44. Dinishi Jayasinghe B A T, Parkinson D. Actinomycetes as antagonists of litter decomposer fungi [J]. Applied Soil Ecology,2008,38 (2),109-118.
    45. Dobbelaer A S, Croonenborchs A, Thys A, et al. Analysis and relevance of the phytostimulatory effect of genetically modified Azospirillum brasilienxe strains upon wheat inoculation [J]. Plant and Soil,1999,21,155-164.
    46. Dobbelaer A S, Croonenborchs A, Thys A, et al. Responses of agronomically important crops to inoculation with Azospirillum [J]. Australia Journal of Plant Physiology,2001,28,871-879.
    47. Donlan R M. Biofilm:microbial life on surface [J]. Emerging Infectious Diseases,2002,8, 881-890.
    48. Drever J I, Stillings L L. The role of organic acids in mineral weathering Colloids and surfaces [J]. Physicochemical and Engineering Aspects,1997,120,167-181.
    49. Drever J I. The effect of land plants on weathering rates of mineral dissolution by atomic force microscopy (AFM) [J]. Geochimica et Cosmochimica Acta,1994,58,2325-2332.
    50. Ehrlich H L. Geomicrobiology,3rd ed [M]. Marcel Dekker, Inc., New York.
    51. Ehrlich H L. Geomicrobiology:its significance for geology [J]. Earth Science Reviews,1998,45, 45-60.
    52. Ellis R J, Morgan P, Weightman A J, et al. Cultibation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil [J]. Applied and Environmental Microbiology,2003,69,3223-3230.
    53. Emmerling C, Schloter M, Hartmann A, et al. Functional diversity of soil organisms- a review of recent research activities in Germany [J]. Journal of Plant Nutrition and Soil Science,2002,165, 408-420.
    54. Fantroussi S E, Verschuere L, Verstraete W, et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles [J]. Applied and Environmental Microbiology,1999,65, 982-988.
    55. Feng Y, Motta A C, Reeves D W, et al. Soil microbial communities under conventional-till and no-till continuous cotton systems [J]. Applied and Environmental Microbiology,2003,35, 1693-1703.
    56. Feris K, Ramsey P, Frazar C, et al. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient [J]. Applied and Environmental Microbiology,2003, 69,5563-5573.
    57. Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103, 626-631.
    58. Fierer N, Schimel J P, Holden P A. Variation in microbial community composition through two soil depth profiles [J]. Soil Biology and Biochemistry,2003,35,167-176.
    59. Fortin D, Farris F G, Beveridge T J. Surface mediated mineral development by bacteria [A]. Geomicrobiology:Interactions between microbes and minerals [M]. Washington DC: Mineralogical Society of America,1997,161-180.
    60. Franzluebbers A J. Soil organic matter stratification ratio as an indicator of soil quality [J]. Soil and Tillage Research,2002,66,95-106.
    61. Frostegard A, Baath E. The use of phospholipids fatty acid analysis to estimate bacterial and fungal biomass in soil [J]. Biology and Fertility of Soils,1996,22,59-65.
    62. Fry N K, Fredrickson J K, Fishbain S, et al. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers [J]. Applied and Environmental Microbiology,1997,63,1498-1504.
    63. Fumio I, Ken T, Hisako H. Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine [J]. Extremphiles,2003,7,307-317.
    64. Furrer G, Stumm W. The coordination chemistry of weathering: I. Dissolution kinetics of d-Al2O3 and BeO [J]. Geochimica CosmochimicaActa,1986,50,1847-1860.
    65. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities using patterns of potential C source utilization [J]. Soil biology and Biochemistry, 1991,28,213-221.
    66. Gelsomino A, Keijzer-Wolters A, Cacco G, et al. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis [J]. Journal of Microbiological Methods,1999,38,1-15.
    67. Gillan D C, Danis B, Pernet P, et al. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment [J]. Applied and Environmental Microbiology,2005,71,679-690.
    68. Gleeson D B, Kennedy N M, Clipson N, et al. Characterization of bacterial community structure on a weathered pegmatitic granite [J]. Microbial Ecology,2006,51,526-534.
    69. Glick B R, Jacobson C B, Schwarze M M K, et al. Aminocy-clopropane-l-carboxylic acid deaminase mutants of the growth promoting rhizobacterium Pseudomonas putida GB12-2 do not stimulate canola root elongation [J]. Canadian Journal of Microbiology,1994,40,911-915.
    70. Glowa K R, Arocena J M, Massicotte H B. Extraction of potassium and/or magnesium from selected soil minerals by plioderma [J]. Geomicrobiology Journal,2003,20,99-111.
    71. Gordon R E, Barnett D A, Handerhan J E, Pand C H N. Nocardia coeliaca, Nocardia autolrophica, and the nocardin strain [J]. International Journal of Systematic Bacteriology,1974, 24,54-63.
    72. Gray J R, Lacrampe-couulome G, Gandhi D, et al. Carbon and hydrogen isotopic fractionatin during biodegradation of methyl ter-butyl ether [J]. Environmental Science and Technology,2002, 36,1931-1938.
    73. Griffiths R I, Whiteley A S, O'Donnell, et al. Influence of depth and sampling time on bacterial community structure in an upland grassland soil [J]. FEMS Microbiol Ecology,2003,43,35-43.
    74. Groth I, Schumann P, Schutze B, Gonzalez J M, Laiz L, Saiz-Jimenez C, Stackebrandt E. Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Dornitilla [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55,1715-1719.
    75. Guckert J B, Hood M A, White D C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:increase in trans/cis ration and proportions of cyclopropyl fatty acids [J]. Applied and Environmental Mirobiology,1986,52,794-801.
    76. Guezennec J, Ortega-Morales O, Raguenes G, et al. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents [J]. FEMS Microbiology Ecology,1998,26,89-99.
    77. Hiebert F K, Bennett P C. Microbial control of silicate weathering in organic-rich ground water [J]. Science,1992,258,278-281.
    78. Hinsinger P, Elsass F, Jaillard B, et al. Root-induced irreversible transformation of trioctahedral mica in the rhizophere of rape [J]. Journal of Soil Science,1993,44,535-545.
    79. Hoffland E, Giesler R, Jongmans T, van Breemen N. Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence [J]. Ecosystems,2002,5,11-22.
    80. Holland H D, Lazar B, McCaffrey M. Evolution of the atmosphere and oceans [J]. Nature,1986, 320,27-33.
    81. Hunkeler D, Andersen N, Aravena R, et al. Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene [J]. Environmental Science and Technology,2001,35 (17), 3462-3467.
    82. Hutchens E, Valsami-Jones E, Mceldowney S, et al. The role of heterotrophic bacteria in feldspar dissolution-An experimental approach [J]. Mineralogical magazine,2003,67 (6),1157-1170.
    83. Jacobson A D, Wu L L. Microbial dissolution of calcite at T=28℃ and ambient pCO2 [J]. Geochimicaet Cosmochimica Acta,2009,73,2314-2331.
    84. James A T, Burns B J. Microbial alteration of subsurface natural gas accumulations [J]. AAPG Bulletin,1984,68,957-960.
    85. Jone B. Processess associated with microbial biofilms in the twilight zone of caves:examples from the Cayman Islands [J]. Journal of Sediment Research,1995,65,293-315.
    86. Jongmans A G, van Breemen N, Lundstrom U, et al. Rock-eating fungi [J]. Nature,389,682-683.
    87. Kaiser O, Puhler A, Selbitschka W. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches [J]. Microbial Ecology,2001,42,136-149.
    88. Kashefi K, Lovley D R. Reduction of Fe(III), Mn(IV), and toxic metals at 100℃ by Pyrobaculum islandicum [J]. Applied and Environmental Microbiology,2000,66,1050-1056.
    89. Kennedy A C. Bacterial diversity in agroecosystems [J]. Agriculture Ecosystems and Environment,1999,74,65-76.
    90. Kevin H, Joselito M A, Jan B, et al. The influence of aspect on the biological weathering of granites:observations from the Kunlun Mountains, China [J]. Geomorphology,2005,67, 171-188.
    91. Kim J, Dong H, Seabaugh J, et al. Role of microbes in the smectite-to-illite [J]. Science,2004, 303,830-832.
    92. Knauss K G, Copenhaver S A. The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70℃ [J]. Applied Geochemistry,1995,10,17-33.
    93. Kobabe S, Wagner D, Pfeiffer E M. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization [J]. FEMS Microbiology Ecology,2004, 50(1),13-23.
    94. Kowalchuk G A, Buma D S, Boer W D, et al. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms [J]. Antonie Van Leeuwenhoek,2002, 81,509-520.
    95. Kozdrkoj J, Elsas J D. Structure diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling [J]. Applied Soil Ecology,2001,17 (1),31-42.
    96. Labrenz M, Gilbert B, Welch S A, et al. Formation of sphalerite (ZnS) deposites in natural biofilms of sulfate-reducing bacteria [J]. Science,2000,290,1744-1747.
    97. Lanyi B. Classical and rapid identification methods for medically omportant bacteria [J]. Methods in Microbiology,1987,19,1-67.
    98. Lasaga A C, Soler J M, Ganor J, et al. Chemical weathering and global chemical cycles [J]. Geochimica et Cosmochimica Acta,1994,58,2361-2386.
    99. Lauber C L, Strickland M S, Bradford M A, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biology and Biochemistry,2008,40,2407-2415.
    100. Leys N M E J, Ryngae A, Bastiaens L, et al. Occurrence and phylogenetic diversity of sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons [J]. Applied and Environmental Microbiology,2004,70 (4),1944-1955.
    101. Li Y, Vali H, Sears S K, et al. Iron reduction and alteration of nontronite Nau-2 by a sulfate-reducing bacterium [J]. Geochimica Cosmochimica Acta,2004,68,3251-3260.
    102. Liermann L J, Barnes A S, Kalinowski, et al. Microenvironment of pH in biofilms grown on dissolving silicate surfaces [J]. Chemical Geology,2000,171,1-16.
    103. Likens G E, Driscoll C T, Buso D C, et al. The biogeochemistry of potassium at Hubbard Brook [J]. Biogeochemistry,1994,25,61-125.
    104. Lin Q M, Zhao X R, Sun Y X, et al. Community characters of soil phospobacteria in four ecosystems [J]. Soil and Environmental Science,2000,9,34-37.
    105. Lovely D R, Chapelle F H. Deep subsurface microbial process [J]. Reviews of Geophysics and Space Physics,1995,33,365-381.
    106. Luca C, Daniele A, Marisa M, et al. An application of PCR-DGGE analysis to profile the yeast population in raw milk [J]. International Dairy Journal,2002,12,407-411.
    107. Lupwayi N Z, Arshad M A, Rice W A, et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management [J]. Applied Soil Ecology,2001,16,251-261.
    108. Ma Y J, Liu C Q. Sr isotope evolution during chemical weathering of granites-impact of relative weathering rates of minerals [J]. Science in China (D),2001,44 (8),726-734.
    109. Maila M P, Cloete T E. The use of biological activities to monitor the removal of fuel contaminats-perspective for monitoring hydrocarbon contamination:a review [J]. International Biodeterioration and Biodegradation,2005,55,1-8.
    110. Maila M P, Randima P, Surridge K, et al. Evaluation of microbial diversity of different soil layers at a contaminated diesel site [J]. International Biodeterioration and Biodegradation,2005,55, 39-44.
    111.Mancini S A, Ulrich A C, Lacrampe-Couloume G, et al. Carbon and hydrogen isotopic fractionation during anaerobic bio-degradation of benzene [J]. Applied and environmental Microbiology,2003,69,191-198.
    112. Marks T S, Smith A R W, Quirk A V. Degradation of 4-chlorobenzoic acid by Arhrobacter sp. [J]. Applied and Environmental Microbiology,1984,48,1020-1025.
    113. Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere [J]. Soil Biology and Biochemistry,2001,33,1437-1445.
    114. Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particle formation [J]. Trend in Microbiology,2003,11,536-541.
    115.Minnikin D E, Hutchinson G, Caldicott A B, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria [J]. Journal of Chromatography,1980,188, 221-233.
    116. Mol G, Vrienda S P, van Gaans P F M. Feldspar weathering as the key to understanding soil acidification monitoring data: a study of acid sandy soils in the Netherlands [J]. Chemical Geology,2003,202,417-441.
    117. Morasch B, Richnow H H, Schink B, et al. Stable hydrogen and carbon isotope fractionation during microbial toluene degraddation:Mechanistic and Environmental aspects [J]. Applied and Environmental Microbiology,2001,67,4842-4849.
    118. Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere [J]. Journal of Experionmental Botany,2005,56,417.
    119. Mullins T D, Britschgi T B, Krest R L, Giovannoni S J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities [J]. Limnology and Oceanography,1995,40,148-158.
    120. Mummey D L, Stahl P D, Buyer J S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation [J]. Applied Soil Ecology,2002,21 (3),251-259.
    121. Muzyer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59,695-700.
    122. Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science2003,54,655-670.
    123. Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria [J]. Environmental Microbiology,2008,10,2966-2978.
    124. Nunan N, Singh B, Reid E, et al. Sheep-urine-induced changes in soil microbial community structure [J]. FEMS Microbiology Ecology,2006,56,310-320.
    125. O'Donnell A G, Seasman M, Macrae A, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils [J]. Plant and Soil,2001,232,135-145.
    126. Oelkers E I, Schott J. Water rock interaction [A]. In:Y. K. Kharaka and O V. Chudacv (eds.), WRI-8, Balkema, Rotterdam, The Netherlands,1995,153.
    127. Pallasser R J. Recognising biodegradation in gas/oil accumulations through the δ13C composition of gas components [J]. Organic Geochemistry,2000,31,1363-1373.
    128. Papatheodorou E M, Argyropoulou M D, Stamou G P. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes [J]. Applied Soil Ecology,2004,25,37-49.
    129. Pederson K, Ekendahl S, Tullborg E L, et al. Evidence of ancient life at 207 m depth in a granitic aquifer [J]. Geology,1997,25 (9),27-30.
    130. Pond K L, Huang Y, Wang Y, et al. Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination [J]. Environmental Science and Technology,2002,36,724-728.
    131. Rainey F A, Ward N, Sly L I, et al. Dependence on the taxon composition of clone libraries for PCR amplified, naturally occurring 16S rDNA, on the primer pair and the cloning system used [J]. Experientia,50,796-797.
    132. Rossman A Y. Fungi as part of the national biological survey [J]. Inoculum,1993,44,1-5.
    133.Rousk J, Brookes P C, Baath E. Contrasting soil pH effects on fungal and bacteria growth suggests functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology,2009,75,1589.
    134. Santelli C M, Edgcomb V P, Bach W, Edwards K J. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration [J]. Environmental Microbiology,2009,11,86-98.
    135. Scherner S. Calculation of isotope effects from first principles [J]. Biochimica et Biophysica Acta, 2000,1458,28-42.
    136. Schleifer K H, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications [J]. Bacteriological Reviews,1972,36,407-77.
    137. Schleifer K H. Analysis of the chemical composition and primary structure of murein [J]. Methods in Microbiology,1985,18,123-156.
    138. Schultze-Lam S, Fortin D, Davis B S. Mineralization of bacterial surfaces [J]. Chemical Geology, 1996,132,171-182.
    139. Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores [J]. Analytical Biochemistry,1987,160,47-56.
    140. Sessitsch A, Weilharter A, Gerzabek M, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment [J]. Applied and Environmental Microbiology, 2001,67,4215-4224.
    141. Sheng X F, Zhao F, He L Y, et al. Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar [J]. Canada Journal of Microbiology,2008,54,1064-1068.
    142. Sheng X F. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus [J]. Soil Biology and Biochemistry,2005,37,1918-1922.
    143. Sigler W V, Turco R F. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology,2002,21,107-118.
    144. Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots [J]. Environmental Microbiology,2008,10,534-541.
    145. Smith J L, Halvorson J J, BoltonJr H. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment [J]. Soil Biology and Biochemistry,2002,34, 1749-1757.
    146. Smits M M, Hoffland E, Jongmans A G, et al. Contribution of mineral tunneling to total feldspar weathering [J]. Geoderma,2005,125,59-69.
    147. Sonenshein A L, Hoch J A, Losick R. Clostridium, Bacillus subtilis and other gram-positive organisms, washing DC [M]:American Society for Microbiology,1993,35-52.
    148. Song W, Ogawa N, Oguchi C T, et al. Effect of Bacillus subtilis on granite weathering:A laboratory experiment [J]. Catena,2007,70,275-281.
    149. SSICA (Soil Sci. Ch. Acad.),1980. Physical and Chemical Analyses of Soils [M]. Shanghai Academic Press, China.
    150. Stackebrandt E, Schumann P, Cui X L. Reclassification of Cellulosimicrobium variabile Bakalidou et al.2002 as Isoptericola variabilis gen. nov., comb. nov. [J]. International Journal of Systematic and Evolutionary Microbiology,2004,54,685-688.
    151. Staddon W J, Trevors J T, Duchesne L C, et al. Soil microbial diversity and community structure across a climatic gradient in western Canada [J]. Biodiversity and Conservation,1998,7, 1081-1092.
    152. Staneck J L, Roberts G D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography [J]. Applied and Environmental Microbiology,1974,28,226-231.
    153. Steenwerth K L, Jackson L E, Calderon F J, et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California [J]. Soil Biology and Biochemistry,2003,35,489-500.
    154. Stevens T O, Mckinley J P. Lithoautorophic microbial ecosystems in deep basalt aquifers [J]. Science,1995,270,450-454.
    155. Stone A T. Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces [J]. Review in Mineralogy and Geochemistry,1997,35,309-344.
    156. Sun H Y, Deng S P, Raun W R. Bacterial community structure and diversity in a century-old manure-treated agroecosystem [J]. Applied and Environmental Microbiology,2004,70, 5868-5874.
    157. Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Applied and Environmental Microbiology,1996,62,625-630.
    158. Suzuki Y, Matsubar T, Hoshino M. Breakdow of mineral grains by earthworms and beetle larvae [J]. Geoderma,2003,112,131-142.
    159. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography [J]. Journal of Applied Bacteriology,1983,54,31-36.
    160. Tindall B J. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources [J]. Systematic and Applied Microbiology,1990a,13,128-130.
    161. Tindall B J. Lipid composition of Halobacterium lacusprofundi [J]. FEMS Microbiology Letters, 1990b,66,199-202.
    162. Tiquia S M, Lloyd J, Herms D A, et al. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes [J]. Applied Soil Ecology,2002,21,31-48.
    163. Treves D S, Xia B, Zhou J, et al. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil [J]. Microbial Ecology,2003,45,20-28.
    164. Tseng M, Liao H C, Chiang W P, Yuan G F. Isoptericola chiayiensis sp. nov., isolated from mangrove soil Taiwan [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, as doi:10.1099/ijs.0.022491-0.
    165. Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil [J]. In:G Stotzky, J M Bollag eds. Soil biochemistry. New York:Marcel Dekker,1992,7,229-262.
    166. Ullman W J, Lirchman D L, Welch S A, et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature [J]. Chemical Geology,1996,132,11-17.
    167. Ulrike B, Anna G, Derek M. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass [J]. Palaeoecllogy,2005,219,117-129.
    168. Uroz S, Calvaruso C, Turpault M P, Sarniguet A, Boer W D, Leveau J H J, Frey-Klett P. Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas [J]. Soil Biology and Biochemistry,2009,41,2178-2186.
    169. Vallaeys T, Topp E, Muyzer, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs [J]. FEMS Microbial Ecology,1997,24,279-285.
    170. Wallmann K. Control on Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate [J]. Geochimica et Cosmochimica Acta,2001,65(18),3005-3025.
    171. Wayne L G, Brenner D J, Colwell R R,9 other authors. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics [J]. International Journal of Systematic and Evolutionary Microbiology,1987,37,463-464.
    172. Welch S A, Barker W W, Banfield J F. Microbial extracellular polysaccharide sand plagioclase dissolution [J]. Geochimica et Cosmochimica Acta,1999,63,1405-1419.
    173. White A F, Schulz M S, Vivit D V, et al. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California Ⅰ:interpreting rates and controls based on soil concentration-depth profiles [J]. Geochimica et Cosmochimica Acta,2008,72,36-68.
    174. White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate [J]. Oecologia,1979,40,51-62.
    175. White D C. In microbial in their natural environments [J]. Society General Microbiology symp, 1997,34,37-66.
    176. Whitman W B, Coleman D C, Wiebe W J. Prokaryotes:the unseen majority [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,270,450-454.
    177. Whiton R S, Lau P, Morgan S L, Gilbart J, Fox A. Modifications in the alditor acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring [J]. Journal of Chromatography A,1985,347,109-120.
    178. Wilkinson S G. Gram-negative bacteria [M]. In:Ratledge C, Wilkinson S G, eds. Microbial lipids. London Academic Press,1988,1,299-408.
    179. Wu Y, Li W J, Tian W, Zhang L P, Xu L, Shen Q R, Shen B. Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium [J]. International Journal of Systematic and Evolutionary Microbiology,2010,60,904-908.
    180. Yoon J H, Schumann P, Kang S J, Jung S Y, Oh T K. Isoptericola dokdonensis sp. nov., isolated from soil [J]. International Journal of Systematic and Evolutionary Microbiology,2006,56, 2893-2897.
    181. Zelles L, Bai Q Y. Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS [J]. Soil Biology and Biochemistry,1993,25,495-507.
    182. Zhang G, Dong H, Xu Z, et al. Microbial diversity in Ultra-High-Pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China [J]. Applied and Environmental Microbial,2005,71,3213-3227.
    183. Zhang Y Q, Schumann P, Li W J, Chen G Z, Tian X P, Stackebrandt E, Xu L H, Jiang C L. Isoptericola halololerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55,1867-1870. 184. Zhou J P, Gu Y Q, Zou C S, et al. Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China [J]. The Journal of Microbiology,2007,45,105-112. 185. Zhou J Z, Xia B C, Treves D S, et al. Spatial and resource facters influencing high microbial diversity in soil [J]. Applied and Environmental Microbial,2002,68,326-334. 186. Zhou J, Guo W H, Wang R Q, et al. Microbial community diversity in the profile of an agricultural soil in northern China [J]. Journal of Environmental Sciences,2008,20,981-988.
    187.陈骏,姚素平.地质微生物学及其发展方向[J].高校地质学报,2005,11(2): 154-166.
    188.陈延伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力[J].微生物学报,1960,2(3):104-112.
    189.陈义光,李汇明,李沁元,等.一平浪盐矿古老岩沉积中可培养细菌的系统发育多样性研究[J].微生物学报,2007,47(4):571-577.
    190.谌书.硅酸盐细菌对磷矿物风化机理的探讨[J].安徽农业科学,2008,36(33):14733-14736.
    191.仇刚.高效硅酸盐分解细菌的分离筛选及其与硅酸盐矿物相互作用机制研究[D].南京农业大学硕士学位论文,2008.
    192.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    193.樊景凤,张兰,明红霞,等.北戴河近岸沉积物中微生物16S rDNA的PCR-RFLP分析[J].海洋环境科学,2008,27(5):409-413.
    194.郝春博,张洪勋,白志辉,等.酸性矿山废水区域沉积物中嗜酸菌多样性研究[J].环境科学,2006,27(11):2255-2260.
    195.贺秋芳,李为,朱敏等.细菌在洞穴含铁沉积物形成过程中的作用[J].矿物岩石地球化学通报,2007,26:197-202.
    196.江长胜,杨剑虹.低分子量有机酸对紫色母岩中钾释放的影响[J].植物营养与肥料学报,2002,8(4):441-446.
    197.蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    198.金章东,李英,王苏民.不同构造带硅酸盐化学风化率的制约:气候还是构造[J].地质论评,2005,51(6):672-680.
    199.李凤汀,赫正然,杨则瑗,等.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学报,1997,37(10):79-81.
    200.李福春,李莎,杨用钊,等.原生硅酸盐矿物风化产物的研究进展[J].岩石矿物学杂志,2006,25(5):440-448.
    201.李晶莹,张经.流域盆地的风化作用与全球气候变化[J].地球科学进展,2002,17(3):411-419.
    202.李任伟.沉积物污染和环境沉积学[J].地球科学进展,1998,13(4):398-402.
    203.李莎,李福春,程良娟.生物风化作用研究进展[J].矿产与地质,2006,20(6):577-582.
    204.李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性[J].微生物学报,2008,48(3):323-329.
    205.连宾,陈骏,傅平秋,等.微生物影响硅酸盐矿物风化作用的模拟试验[J].高校地质学报,2005,11(2):181-186.
    206.梁成华,金耀青,朱菲,等.黑云母的释钾能力及其生物有效性研究[J].土壤学报,1994,31(2),220-223.
    207.梁文举,闻大中.土壤生物及其对土壤生态学发展的影响[J].应用生态学报,2001,12(1):137-140.
    208.林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报,2008,45(5):892-900.
    209.林学政,高爱国,陈浩文.北极海洋沉积物中锰细菌的分离与系统发育[J].生态学报,2008,28(12):6364-6370.
    210.陆现彩,陆建军,朱长见等.微生物矿化成因的铁硫酸盐矿物表面特征初探[J].高校地质学报,2005,11(2):194-198.
    211.马恒,李福春,苏宁,等Citrobacter freundii作用下球状碳酸盐矿物的形态演化过程研究[J].高校地质学报,2009,15(3):429-436.
    212.马毅杰,岁家贤,蒋梅茵,等.我国南方铁铝土矿物组成及其风化和演变[J].沉积学报,1999,17:681-686.
    213.彭佩钦,张文菊,董成立,等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49-53.
    214.屈建航,袁红莉,黄怀曾,等.官厅水库沉积物中细菌群落纵向分布特征[J].中国环境(D)地球科学,2005,35(增刊1):233-240.
    215.盛下放,黄为一,曹小英.硅酸盐细菌NBT菌株解钾效能及对钾的吸持作用[J].植物营养与肥料学报,2001,7(4):459-466.
    216.盛下放.硅酸盐细菌在不同生境土壤中的分布[J].土壤,2004,36(1):81-84.
    217.孙波,赵其国,张桃林,等.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    218.孙凤芹,汪保江,李广玉,等.南海南沙海域沉积物中可培养微生物及其多样性分析[J].微生物学报,2008,48(12):1578-1587.
    219.田方,丁延芹,朱辉,等.烟草根际铁载体产生菌G-229-21T的筛选、鉴定及拈抗机理[J].微生物学报,2008,48(5):631-637.
    220.王静,盛下放,曹建芳,等.南京小龙山钾矿区植物根际可培养细菌的遗传多样性分析[J].微生物学报,2009,49(7):867-873.
    221.王平,董飚,李阜槺,等.小麦根圈细菌铁载体的检测[J].微生物学通报,1994,23(6):323-326
    222.王永华,刘文华.矿物学[M].北京:地质出版社,1985:1-100.
    223.王远亮,夏颖,董海良,等.中国大陆科学钻探(CCSD)地下岩心样品中的细菌群落分析[J].岩石学报,2005,21(2):533-539.
    224.肖奕,王汝成,陆现彩,等.低温碱性溶液中微斜长石溶解特性的研究[J].矿物学报,2003,23(4):333-340.
    225.徐丽华,李文均,刘志恒,姜成林.放线菌系统学——原理、方法及实践[M].北京:科学出版社,2007.
    226.许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    227.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-26.
    228.姚建,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,6:1021-1027.
    229.叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策[J].微生物学报,2005,45(3):181-185.
    230.俞慎,何振立,张荣光,等.红壤茶树根层土壤基础呼吸作用和酶活性[J].应用生态学报,2003,14(2):179-183.
    231.湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494.
    232.张胜,张翠云,张云,等.地质微生物地球化学作用的意义与展望[J].地质通报,2005,24(10-11):1027-1031.
    233.张昀.新地球观[J].地球科学进展,1992,7(1):57-64.
    234.张在海,胡岳华,邱冠周,等.从细菌学角度探讨硫化物的细菌浸出[J].矿冶工程,2000,20(2):15-18.
    235.章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    236.赵飞,黄智,何琳燕,等.不同风化程度钾长石表面矿物分解细菌的筛选及遗传多样性[J].微生物学报,2010,50(5):647-653.
    237.赵兴青,杨柳燕,尹大强,等.不同空间位点沉积物理化性质与微生物多样性垂直分布规律[J].环境科学,2008,29(12):3537-3545.
    238.钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456-465.
    239.周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
    240.朱十兴.华北地台中、上元古界生物地层序列[M].北京:地质出版社,1994.
    241.朱显谟.陕西太白山岩生植物和原始成土过程[J].土壤学报,1963,11(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700