基于QPSO优化的功能薄膜物理性能的支持向量回归研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回归分析是数理统计学中应用最广泛的一个分支,传统的回归学习算法都以经典统计数学的渐近理论为依据,统计规律只有在已知样本数无限多时才显露出来。针对经典统计数学这一弱点,Vapnik学派在1995年提出了“统计学习理论”和“支持向量机(Support Vector Machine, SVM)”。支持向量机在少量样本时也可用于分类和回归研究,并且具有很好的泛化能力,已被广泛应用于多个领域的实际问题研究中。粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能理论的新兴演化计算技术。Sun等人从量子力学的角度,通过对粒子收敛行为的研究,基于PSO算法提出了量子粒子群算法(Quantum-behaved Particle Swarm Optimization, QPSO)。由于具有量子行为的粒子满足聚集态的性质完全不同,使粒子能在整个可行的解空间中进行搜索寻求最优解,因而QPSO算法在搜索能力上远远优于所有已开发的PSO算法。
     本论文采用了多种传统和现代的数据回归理论与方法,针对功能薄膜等材料的实验数据进行回归计算研究。重点是结合QPSO优化算法和支持向量回归(Support Vector Regression, SVR)方法对全介质光学膜、质子交换膜燃料电池、Bi系超导材料和Co_3O_4纳米粒子等功能材料的性能参数及实验结果进行回归预测,并比较这些算法的性能和误差。同时还在已建立的SVR模型基础了进行了因素分析、工艺参数优化和灵敏度分析等。
     本文研究的主要内容有:
     ①简要说明了功能薄膜材料的研究现状和实际问题。介绍了几种常用的传统和现代回归方法及其原理,包括多元线性回归、偏最小二乘回归、概率神经网络和极限学习机,分析了它们的优缺点。然后阐述了统计学习理论的基本思想,并对支持向量回归原理进行了详细的叙述。
     ②介绍了PSO算法的基本原理及其改进与发展,简述了QPSO算法的基本原理。此外,还简要给出了多种常用的参数优化算法的原理,如遗传算法、差分进化算法、分散搜索算法、网格搜索算法、模拟退火算法和蚁群算法等。
     ③根据全介质光学膜、质子交换膜燃料电池、Bi系超导材料和Co_3O_4纳米粒子等多组实验数据,应用QPSO-SVR等多种回归方法对它们进行建模和预测,并对比了模型的预测结果和泛化性能。
     ④在已建立的QPSO-SVR模型的基础上,对质子交换膜燃料电池、Bi系超导材料和Co_3O_4纳米粒子等实验进行了因素分析,提出了优化的工艺参数。
     由研究结果可以看出,基于QPSO优化的SVR模型的预测精度优于多元线性回归、神经网络等回归方法,且泛化能力也比其它方法要强。这表明SVR是一种行之有效的数据处理分析方法,有望在研究和开发新型功能薄膜材料等方面发挥其重要的作用。
Regression analysis is one of the most widely used branch in the mathematical statistics. The traditional regression algorithms are all based on the asymptotic theory of classical statistical mathematics, where the statistical rule is exposed only when the number of samples approximating infinite. For that weakness, Vapnik and co-workers proposed the statistical learning theory (SLT) and support vector machine (SVM) in 1995. Even in the case of small-sample database, SVM could still be adopted in classification and regression analysis with preferable generalizing performance, so that it has been extensively applied to tackle many real-world problems in various fields. Particle swarm optimization (PSO) is a novel evolutionary computing approach based on swarm intelligence theory. From the view of quantum mechanics, Sun et al. proposed the quantum-behaved particle swarm optimization (QPSO) via the research on particle convergence behaviour. Because the quantum-behaved particles meet completely different aggregation property, the optimal solution could be searched out in the whole solution space, so that QPSO algorithm is superior to all the kinds of previous proposed PSO algorithms.
     In this thesis, many traditional and modern regression approaches are employed for regression analysis based on the experimental datasets of functional thin film materials. It is focused on the application of SVR method combined with QPSO for physical properties prediction on some functional materials including nitrogen-oxygen compound dielectric thin film, proton exchange membrane fuel cell, Bi-system superconductivity material and Co_3O_4 nanoparticles. Meanwhile, the multifactor analysis, process parameter optimization and sensitivity analysis is carried out based on the established QPSO-SVR models.
     The main contents of this thesis are as follows:
     1. The current status and problems on the functional thin film material research were generally introduced. The regression principles of popular regression methods such as multivariable linear regression (MLR), partial least square regression (PLS), probabilistic neural network (PNN) and extreme learning machine (ELM), were reviewed briefly. The principle of SLT and SVR algorithm were described in detail.
     2. The principle, algorithm and development of PSO were introduced, especially for QPSO method. Moreover, some optimization methods, including genetic algorithm (GA), differential evolution (DE), scatter search (SS), grid search algorithm (GSA), simulated annealing (SA) and ant conoly optimization (ACO) were reviewed. The advantages and disadvantages of these algorithms were also summarized.
     3. Based on the experimental datasets of nitrogen-oxygen compound dielectric thin film, proton exchange membrane fuel cell, Bi-system superconductivity material and Co_3O_4 nanoparticles, QPSO-SVR and other regression approaches were employed to model and predict the physical properties, as well as their predicted results and generalizing performance were compared.
     4. Based on the established QPSO-SVR models, the multi-factor analyses on the proton exchange membrane fuel cell, Bi-system superconductivity material and Co_3O_4 nanoparticles were conducted and the optimal process conditions were proposed.
     The studies of above demonstrated that the prediction precison of QPSO-SVR was superior to those of other regression methods including multivarivate linear regression, neural network and so on, and its generalization ability surpasses those of them. The results suggest that SVR is an effective and powerful technique, and it may be further developed to be a potential application tool in research and development of novel functional thin film materials.
引文
[1]温树林.现代功能材料导论[M].北京:科学出版社, 1983.
    [2]田尉.功能材料[M].北京:北京航天航空大学出版社, 1995.
    [3] J.G. Bednorz, K.A. Muller. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Physica B: Condensed Matter, 1986, 64: 189-193.
    [4]庄大明,张弓,刘家浚.功能薄膜的研究现状与应用前景[J].中国表面工程, 2001, 4: 1-10.
    [5]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社, 1999. 04.
    [6] G.B. Huang, Q.Y. Zhu, C.K. Siew. Extreme learning machine: a new learning scheme of feedforward neural networks [J]. 2004 Proceedings of IEEE International Joint Conference on Neural Networks, 2004. 02: 25-29.
    [7] V. Vapnik. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
    [8] Z. Yuan. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence [J]. BMC Bioinformatics, 6: 248.
    [9] J.D. Martin-Guerrero, G. Camps-Valls, E. Soria-Olivas, et al. Dosage individualization of erythropoietin using a profile-dependent support vector regression [J]. IEEE Transactions on Biomedical Engineering, 2003, 50 (10): 1136-1142.
    [10] S.H. Chiu, C.C. Chen, T.H. Lin. Using support vector regression to model the correlation between the clinical metastases time and gene expression profile for breast cancer [J]. Artificial Intelligence in Medicine, 2008, 44(3): 221-231.
    [11] J.N. Song, K. Burrage. Predicting residue-wise contact orders in proteins by support vector regression [J]. BMC Bioinformatics, 2006, 7: 425.
    [12] Z.L. Wu, C.H. Li, J.K.Y. Ng, et al. Location estimation via support vector regression [J]. IEEE Transactions on Mobile Computing, 2007, 6(3): 311-321.
    [13] Y.J. Lee, W.F. Hsieh, C.M. Huang. Epsilon-SSVR: A smooth support vector machine for epsilon-insensitive regression [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(5): 678-685.
    [14] C.L. Wu, K.W. Chau, Y.S. Li. River stage prediction based on a distributed support vector regression [J]. Journal of Hydrology, 2008, 358(1-2): 96-111.
    [15] P.S. Yu, S.T. Chen, I.F. Chang. Support vector regression for real-time flood stage forecasting [J]. Journal of Hydrology, 2006, 328(3-4): 704-716.
    [16] G. Camps-Valls, E. Soria-Olivas, J.J Perez-Ruixo, et al. Cyclosporine concentration prediction using clustering and support vector regression methods [J]. Electronics Letters, 2002, 38(12):568-570.
    [17] W. Melssen, B. Ustun, L. Buydens. SOMPLS: A supervised self-organising map-partial least squares algorithm for multivariate regression problems [J]. Chemometrics and Intelligent Laboratory Systems, 2007, 86(1): 102-120.
    [18] S. Nandi, Y. Badhe, J. Lonari, et al. Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst [J]. Chemical Eneineering Journal, 2004, 97(2-3): 115-129.
    [19] T. H. Gu, W.C. Lu, X.H. Bao, et al. Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors [J]. Solid State Sciences, 2006, 8(2): 129-136.
    [20] L. Monostori, B.C. Csaji. Stochastic dynamic production control by neurodynamic programming [J]. Cirp Annals-Manufacturing Technology, 2006, 55(1): 473-478.
    [21] H.Y. Wang, Z.C. Mi, Y.X. Ye, et al. An approach of content-based recommend with support vector regression applied to e-business [C]. Sixth Wuhan International Conference on E-Business, Management Challenges in a Global World, 2007, (1-4):1617-1623.
    [22] J. Kennedy, R.C. Eberhart. Particle Swarm Optimization [J]. Proc. IEEE International Conference on Neural Networks(Perth, Australia), IEEE Service Center, Piscataway, NJ, 1995, IV:1942-1948.
    [23]王凌,刘波. Particle Swarm Optimization and Scheduling Algorithms [M].北京:清华大学出版社, 2008.
    [24] J. Sun, B. Feng, W.B. Xu. Particle swarm optimization with particles having quantum behavior [J]. Proceedings of the IEEE CEC, 2004: 325-331.
    [25] J. Sun, W.B. Xu, B. Feng. A global search strategy of quantum-behaved particle swarm optimization [J]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 2004. 12: 111-116.
    [26]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社, 1999. 04.
    [27]张恒喜,郭基联,朱家元,虞健飞.小样本多元数据分析方法及应用[M].第一版.西安:西北工业大学出版社, 2002. 09: 10-15.
    [28] H. Abdi. Partial Least Squares (PLS) Regression [M] in M. Lewis-Beck, A. Bryman, T. Futing (Eds.). Encyclopedia of Social Sciences Research Methods. 2003. ThousandOaks(CA): Sage.
    [29] M. Eksioglu, J.E. Fernandez, J.M. Twomey. Predicting peak pinch strength: Artificial neural networks vs regression [J]. International Journal of Industrial Ergonomics, 1996, 18(5-6): 431-441.
    [30] Y. Li, Alexander H?uβler. Artificial evolution of neural networks and its application to feedbackcontrol [J]. Artificial Intelligence in Engineering, 1996, 10(2):143-152.
    [31] D.F. Specht. Probabilistic neural networks [J]. Neural Networks, 1990, 03: 109-118.
    [32]成奇明,张树京.概率神经网络回归、判别与聚类[J].北方交通大学学报, 1993, 17(4): 369-371.
    [33] T. Niwa. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures [J]. Journal of Chemical Information Computing Science, 2003, 43: 113-119.
    [34] P.D. Mosier, P.C. Jurs. QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks [J]. Journal of Chemical Information Computing Science, 2002, 42: 1460-1470.
    [35] G.B. Huang, Q.Y. Zhu, C.K. Siew. Extreme learning machine: theory and applications [J]. Neurocomputation, 2006, 70: 489-501.
    [36] V. N. Vapnik,张学工译.统计学习理论的本质[M].北京:清华大学出版社, 2000.
    [37] V. Vapnik. An overview of statistical learning theory [J].IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
    [38] V. Vapnik, E. Le Levin, Y. Cun. Measuring the VC-dimension of a learning machine [J]. Neural Computation, 1994, 6: 851-876.
    [39] C. Comes, V. Vapnik. Support vector networks [J]. Machine Learning, 1995, 20: 273-297.
    [40] Z. Lu, J. Sun. Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification [J]. Applied Soft Computing, 2009, 9(1): 94-99.
    [41]于忠党,王龙山,陈向伟.基于支持向量回归的零件直线边缘亚像检测[J].吉林大学学报(工学版), 2006, 36(3): 371-375.
    [42] G. Camps-Valls, L. Bruzzone, J.L. Rojo-Alvarez, F. Melgani. Robust support vector regression for biophysical variable estimation from remotely sensed images [J]. 2006, 3(3): 339-343.
    [43] K.W. Lau, Q.H. Wu. Local prediction of non-linear time series using support vector regression [J]. Pattern Recognition, 2008, 41(5): 1539-1547.
    [44] B. Schǒlkopf, A.J. Smola. Learning with kernels [M]. 1st edition. London: The MIT press, 2002, 25-60.
    [45]杨金芳.支持向量回归在预测控制中的应用研究[D].华北电力大学博士学位论文, 2007.
    [46] Y.K. Li, X.G. Shao, W.S. Cai. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples [J]. Talanta, 2007, 72(1): 217-222.
    [47] S.B. Zhou, X.P. Zhang, G.x. Liu. Node Location EstimationScheme in Wireless Sensor Networks based on Support Vector Regression [C]. 7th World Congress on Intelligent Control and Automation, 2008, 1-23: 6703-6706.
    [48] X.L. Li, B. Hu, R.X. Du. Predicting the parts weight in plastic injection molding using least squares support vector regression [J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2008, 38(6): 827-833.
    [49] B. Sch?lkopf, A. Smola. A tutorial on support vector regression [J]. NeuroCOLT2 Technical Report Series NC2-TR-1998-030, 1998. 10.
    [50]丁鸿弼,阮俊.基于KPCA-SVM的入侵检测模型研究[J].科技创新导报, 2011, 1: 33.
    [51]刘路,王太勇,蒋永翔等.基于超球面支持向量机的刀具磨损状态识别[J].农业机械学报, 2011, 42(1): 218-222.
    [52] Kohavi, Ron. A study of cross-validation and bootstrap for accuracy estimation and model selection [J]. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, 2 (12): 1137-1143.
    [53] J. Chang, Y. Luo, K. Su. GPSM: a Generalized Probabilistic Semantic Model for ambiguity resolution [J]. In Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (Newark, Delaware, June 28-July 02, 1992). Annual Meeting of the ACL. Association for Computational Linguistics, Morristown, NJ, 177-184.
    [54] P.A. Devijver, J. Kittler. Pattern Recognition: A Statistical Approach [M]. London: Prentice-Hall, 1982.
    [55] J. Kennedy. The particle swarm: Social adaptation of knowledge [C]. Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), 1997, 303-308.
    [56] Y.P. Zhou, J.H. Jiang, W.Q. Lin,et al. Boosting support vector regression in QSAR studies of bioactivities of chemical compounds [J]. European Journal of Pharmaceutical Sciences, 2006, 28(4): 344-353.
    [57] M. Clerc, J. Kennedy. The particle swarm: explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolution Computing, 2002, 6: 58-73.
    [58]刘晓峰,陈通. PSO算法的收敛性及参数选择研究[J].计算机工程与应用, 2007, 43(9): 14-17.
    [59] M. Kazuaki, K. Kenzo. Particle swarm optimization with external chaotic noise [C]. ICROS-SICE International Joint Conference 2009, Japan, 2009: 5002-5007.
    [60] Y.H. Shi, R.C. Eberhart. Fuzzy adaptive particle swarm optimization [C]. Proceedings of Congress on Evolutionary Computation, Soul, Seoul Korea: IEEE, 2001:101-106.
    [61] R.C. Eberhart, Y.H. Shi. Comparing inertia weights and constriction factors in particle swarm optimization [J]. Proceedings of the IEEE CEC, 2000: 84-88.
    [62] S. He, Q.H. Wu, J.Y. Wen, et al. A particle swarm optimizer with passive congregation [J].BioSystems, 2004, 78: 135-147.
    [63] M.J. Zhu, H.X Liu, W.W. Sun, et al. Improvement of particle swarm optimization based on neighborhood cognizance and swarm decision [C]. The 3rd IEEE international conference on wireless, communications. Shanghai, China, 2007: 3669-3672.
    [64]代军,李国,徐晨.学习-考试型的粒子群优化算法[J].计算机工程与应用, 2009, 45(18): 48-50.
    [65] W. Jiao, G.B. Liu, D. Liu. Elite particle swarm optimization with mutation [C]. The 7th International Conference on System Simulation and Scientific Computing. Beijing, China, 2009: 800-803.
    [66] M. Guang, L.S. Kang, Y.S. Liang, et al. Velocity self-adaption made particle swarm optimization faster [C]. IEEE Swarm Intelligence Symposium. St. Louis MO USA, 2008: 1-6.
    [67]肖健梅,李军军,王锡淮.梯度微粒群优化算法及其收敛性分析[J].控制与决策. 2009, 24(4): 560-564.
    [68] X.L. Wu, M. Zhong. Particle swarm optimization based on power mutation [J]. 2009 ISECS International Colloquium on Computing, Communication, Control and Management. 2009: 464-466.
    [69]池元成,方杰,蔡国飙.基于差分进化和粒子群优化算法的混合优化算法[J].计算机工程与设计, 2009, 30(12): 2963-2980.
    [70] S. Katare, A. Kalos, D. West. A hybrid swarm optimizer for efficient parameter estimation [C]. In: Proceedings. of the IEEE CEC.2004: 309-315.
    [71] T.A.A. Victoire, A.E. Jeyakumar. Hybrid PSO-SQP for economic dispatch with valve-point effect [J]. Electric Power Systems Research, 2004, 71: 51-59.
    [72]林星,冯斌,孙俊.混沌量子粒子群优化算法[J].计算机工程与设计, 2008, 29(10): 2610-2612.
    [73]余健,郭平.基于MATLAB的量子粒子群优化算法及其应用[J].计算机与数字工程, 2007, 35(12): 38-39.
    [74] K.Y. Tam. Genetic algorithm, function optimization,and facility layout design [J]. European Journal of Operational Research, 1992, 63(2): 322-346.
    [75] J. Arifovic. Genetic algorithm learning and the cobweb model [J]. Journal of Economic Dynamics & Control, 1994, 18(1): 3-28.
    [76] C.H. Wu,G.H. Tzeng,R.H. Lin. A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression [J]. Expert Systems with Application. 2009, 36( 3): 4725-4735.
    [77] J.H. Holland. Adaptation in natural and artificial systems [M]. Ann Arbor: University ofMichigan Press, 1975.
    [78] K. Price, R. Storn, J. Lampinen. Differential Evolution-A Practical Approach to Global Optimization [M]. Berlin: Springer, 2005.
    [79] R. Marti, M. Laguna, F. Glover. Principles of scatter search [J]. Eru. J. Oper. Res., 2006, 169: 359-372.
    [80]温蓉胜,吴衍智.峰值网格搜索法[J].河北煤炭建筑工程学院学报, 1993, 1: 6-10.
    [81]王兴玲,李占斌.基于网格搜索的支持向量机核函数的确定[J].中国海洋大学学报, 2005, 35(5): 859-862.
    [82]汪灵枝,周优军.一种有效的全局优化算法-模拟退火算法[J].柳州师专学报, 2005, 20(2): 120-123.
    [83]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2001: 19-21.
    [84]王剑,李平,杨春节.蚁群算法的理论与应用[J].机电工程, 2003, 20(5): 126-129.
    [85]吴诗娟,李旭伟.蚁群算法理论及应用研究[J].硅谷, 2003, (3): 50.
    [86]李玉鉴,谭满清,茅冬生等. ECR Plasma CVD淀积介质膜折射率的神经网络模拟[J].半导体学报, 1999, 20(12): 1109-1114.
    [87]鲁涛,辛煜,吴雪梅. ECR-CVD方法生长a-SNx:H薄膜的研究[J].功能材料与器件学报, 2006, 12(4): 259-263.
    [88]吴振宇,杨银堂,汪家友.用ECR-CVD方法制备SiO2薄膜[J].真空电子技术, 2004, 6: 48-50.
    [89]殷景志,龙北红,邵丽梅等. p-Si薄膜生长的ECR-CVD等离子体系统的结构设计[J].液晶与显示, 2004, 19(3): 199-201.
    [90]许圣华,辛煜,宁兆元等. ECR-CVD制备的非晶SiOXNY薄膜的光致蓝光发射[J].物理学报, 2003, 52(5): 1287-1291.
    [91]吴振宇,杨银堂,汪家友. ECR-SVD制备氟化非晶碳低k介质薄膜[J].功能材料与器件学报, 2006, 12(2): 86-90.
    [92]茅冬生,谭满清. ECR Plasma CVD法淀积介质膜技术在半导体光电器件中的应用[J].半导体学报, 1999, 20(9): 837-840.
    [93] S.D. Ou, L.E.K. Achenie. A hybrid neural network model for PEM fuel cells [J]. Journal of Power Sources, 2005, 140: 319-330.
    [94] C.K. Dyer. Fuel cells and portable electronics [C]. 2004 Symposium on VLSI Circuits Digest of Technical Papers, 2004: 124-127.
    [95] C.K. Dyer. Fuel cells for portable applications [J]. Journal of Power Sources, 2002, 106:31-34.
    [96] M. Ordonez, M.T. Iqbal, J.E. Quaicoe, et al. Modeling and optimization of direct methanol fuel cells using statistical design of experiment methodology [C]. IEEE Tansactions onCCECE/CCGEI, 2006: 1120-1124.
    [97] K. Watanabe. Effect of anion concentration in BiF3 substitution for Bi_2O_3 in the Bi-Pb-Sr-Ca-Cu-O (2223-phase) system superconductor [J]. Superconductor Science & Technology, 1998, 11(9): 843-851.
    [98] X.G. Wang, P.Y. Hu, Z.M. Huang, et al. Effect of F doping in the (Bi, Pb)-Sr-Ca-Cu-O system [J]. Physica C, 1994, 233(3-4): 327-331.
    [99] Z. Tang, S.J. Wang, X.H. Gao, et al. Evidence for charge transfer in Bi-based superconductors studied by positron annihilation [J]. Physics Letter A, 1993, 178(3-4): 320-324.
    [100] D. Larbalestier, A. Gurevich, D.M. Feldmann, et al. High-T-c superconducting materials for electric power applications [J]. Nature, 2001, 414(6861): 368-377.
    [101] Z.X. Zhao, G.J. Cui, R.S. Han. Study on zero resistance at 118 K in (Bi, Pb)-Sr-Ca-Cu-(O, F) superconductor [C]. In: Zhao, Z.X., Cui, G.J., Han, R.S. (ed.) Beijing International Conference on High Temperature Superconductivity, Beijing, 1989, World Scientific, Singapore, 1990: 156-158.
    [102] S.A. Siddiqi, B. Akhtar, A. Maqsood. The influence of sintering and Sb content on the formation of high temperature superconducting phase in Bi(Pb)Sr-Ca-Cu-O system [J]. International Journal of Modern Physics B, 1995, 9(28): 3697-3713.
    [103] J.G. Chigvinadze, J.V. Acrivos, I.G. Akhvlediani, et al. The investigation of EPR paramagnetic probe line width and shape temperature dependence in high-temperature superconductors of Bi–Pb–Sr–Ca–Cu–O system [J]. Physics Letter A, 2009, 373: 874-878.
    [104] X. Chen, H. Zhu. Thermal behavior of Bi-system 2212 and 2223 phases in normal state [J]. Journal of Henan University (Natural Science), 1999, 29: 7-10.
    [105] T. Pan, S.A. Peng. ANN applied to predict accurately Tc of BiPbSrCaCuOF superconductors [J]. Journal of Suzhou Railway Teachers College, 1996, 13: 1-5.
    [106] T. Goto, A. Niimi. Magnetic properties of superconducting Pb-Bi system alloy filaments produced by glass-coated melt spinning [J]. Japanese Journal of Applied Physics, Part 1 (Regular Papers & Short Notes), 1988, 27(2): 209-213.
    [107] K. Ohbayashi, H. Matsushita, K. Yoshida, et al. An XPS study of as-grown superconducting Bi-Sr-Ca-Cu-O thin film with Tc0 of 98K [J]. IEEE Transactions on Applied Superconductivity, 1993, 3(1): 1547-1549.
    [108] S.Q. Liang, L.W. Liao, G.Q. Yin, et al. Optimization of preparing Co_3O_4 nano-particles by homogeneous precipitation [J]. Inorganic Chemicals Industry, 2006, 38(7): 21-24.
    [109] F. Huang, H. Zhan, Y.H. Zhou. Studies of nano-sized Co_3O_4 as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemistry, 2003, 21(10): 1275-1279.
    [110] X.W. Lou, D. Deng, J.Y. Lee, et al. Self-supported formation of needlelike Co_3O_4 nanotubes and their application as lithium-ion battery electrides [J]. Advanced Materials, 2008, 20(2): 258-262.
    [111] Y. Liu, X.G. Zhang. Effect of calcination temperature on the morphology and electrochemical properties of Co_3O_4 for lithium-ion battery [J]. Electrochimca Acta, 2009, 54(17): 4180-4185.
    [112] Y. Wang, H. Xia, L. Lu, et al. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co_3O_4 [J]. ASC Nano, 2010, 4(3): 1425-1432.
    [113] H.R. Park, S.D. Yoon. A study on the synthesis from Li2CO3, NiO and Co_3O_4 and the electrochemical properties of cathode materials LiNi1-yCoyO2 for lithium secondary battery [J]. Solid-State Electronics, 2006, 50(7-8): 1291-1298.
    [114] J. Zheng, J. Liu, D.P. Lv, et al. A facile synthesis of flower-like Co_3O_4 porous spheres for the lithium-ion battery electrode [J]. Journal of Solid State Chemistry, 2010, 183(3): 600-605.
    [115] M.M. Rahman, J.Z. Wang, X.L. Deng, et al. Hydrothermal synthesis of nanostructred Co_3O_4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery [J]. Electrochimica Acta, 2009, 55(2): 504-510.
    [116] R. Tsukamoto, M. Muraoka, Y. Fukushige, et al. Improvement of Co_3O_4 nanoparticle synthesis in apoferritin cavity by outer surface PE gylation [J]. Bulletin of the Chemical Society of Japan, 2008, 81(12): 1669-1674.
    [117] Y. Jiang, Y. Wu, B. Xie, et al. Moderate temperature synthesis of nanocrystalline Co_3O_4 via gel hydrothermal oxidation [J]. Materials Chemistry and Physics, 2002, 74(2): 234-237.
    [118] J.T. Jiu, Y. Ge, X.N. Li, et al. Preparation of Co_3O_4 nanoparticles by a polymer combustion route [J]. Materials Letters, 2002, 54(4): 260-263.
    [119] X.L. Deng, Y. Li, M.Y. Zhu, et al. Synthesis of nano-crystalline Co_3O_4 particles by hydrothermal method under pulsed magnetic field [J]. International Journal of Modern Physics B, 2009, 23(17): 3602-3607.
    [120] S.H. Hong, J.S. Bae, H.J. Ahn. Synthesis of nano-sized Co_3O_4 powder by spray conversion method for anode material of lithium battery [J]. Metals and Materials International, 2008, 14(2): 229-232.
    [121] X.Y. Hou, J. Feng, X.H. Liu, et al. Synthesis and Characterizations of Self-assembled Nano Co_3O_4 by Oxalate-precipitation Method [J]. Chinese Journal of Inorganic Chemistry, 2010, 26(3): 525-528.
    [122] T.D. Nguyen, T.O. Do. General two-phase routes to synthesize colloidal metal oxide nanocrystals: simple synthesis and ordered self-assembly structures [J]. Journal of PhysicalChemistry C, 2009, 113(26): 11204-11214.
    [123] E.L. Salabas, A. Rumplecker, F. Kleitz, et al. Exchange anisotropy in nanocasted Co_3O_4 nanowires [J]. Nano Letters, 2006, 6(12): 2977-2981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700