高精密外圆磨削系统动态优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外圆磨削过程中,由于不稳定磨削产生的振动,导致加工工件尺寸精度、形位精度、表面粗糙度和表面波纹度现象的恶化。基于与XX机床厂合作课题“MGB1412×250型高精度外圆磨床动态优化”的研究,对该类型机床的磨削振动尤其是颤振抑制进行分析探讨,提高了外圆磨床的加工精度。通过对外圆磨床进行的结构动态特性分析和磨削过程的稳定性预测,完成了以稳定磨削条件下的高生产效率和高加工质量为优化目标的动态优化,探讨了设计、制造、检验、加工生产与维护的整个生命周期中的动态优化方法。
     本课题采用动态子结构法将结构及联接方式复杂的外圆磨床按各部件功能及其组合方式不同,划分为砂轮主轴系统、头架-主轴系统、尾架、砂轮架、滑鞍、工作台和床身等将相对简单的子结构,便于确保计算结果的准确性及进一步子结构动态优化的实施。在边界条件的确定上,通过动态试验频响函数法识别了刚度、阻尼等等效动力学参数,并利用试验测试结果修正边界条件,获得了接近真实工况的结构动态特性数值计算结果,为结构动态优化提供依据。
     在外圆磨削系统稳定性研究中,基于对磨削过程中颤振机理、特性的分析及切入磨、纵磨加工中颤振导致的不稳定磨削现象的研究,分别建立外圆切入磨及纵磨的工件颤振和砂轮颤振动力学模型,并通过对模型的求解分析预测颤振频率,建立适合外圆切入磨和纵磨特点的稳定性预测理论及稳定性判据,进而通过外圆磨削稳定性极限图解法分析磨床结构和磨削过程工艺参数对磨削稳定性的影响,提出外圆磨削稳定性的评价方法,为磨削稳定性的预测分析、动态优化及其工程应用提供理论依据和方法。
     设计并实施了MGB1412×250型高精度半自动外圆磨床的模态试验、空转试验和磨削动态试验。通过模态试验识别外圆磨床整机及各子结构的各阶固有频率,验证了外圆磨床结构动态特性分析的理论计算结果。对不同工艺参数匹配下的空转及磨削试验数据变化规律的分析,为磨削稳定性理论提供试验数据验证,此外,分析故障频率现象及其规律,获得了消除故障频率的减振方法。
     基于结构动态特性分析、稳定性理论研究及动态试验,采用结构动态优化结合磨削过程工艺参数动态优化的方法,对MGB1412×250型高精度半自动外圆磨床进行了动态优化以提高外圆磨床的动态特性,降低和消除了该磨床磨削振动引起的工件表面波纹度现象,提高了磨削精度。
Vibration is an unfavorable dynamic phenomenon encountered in grinding operation. It influences the quality parameters of work pieces surface spoiling its dimension precision and surface roughness, resulting in surface waviness. As the cooperation with XX CNC Co.Ltd. in the "Research on dynamics optimization of MGB1412×250 high precision cylindrical grinding machine ", the grinding vibration suppressing especially chatter suppressing is analyzed. Structure dynamic analysis and stability predication is necessarily used to restrain vibration especially chatter and improve precision of grinding work pieces. Therefore, a new conception of stability optimization based on stable grinding of high production efficiency and precision is used in the whole life cycle of the design, manufacture, inspection, machining operation and maintenance.
    Sub-structure dynamic method is used to analyze grinding wheel- principal axis system, lathe hedd, tail stock, grinding wheel stock, saddle, workbench and lathe bed etc. The simplicity of analyzing its dynamic characteristics and the precision of numerical value calculation is guaranteed by dividing complicated grinding machine into pieces. The boundary conditions are determined by dynamic experiments, based on frequency-response function, the equivalent dynamic parameters of stiffness and damping are recognized which are compared and modified by the boundary conditions obtained in dynamic experiments. The numerical value calculation results used by sub-structure dynamic methods and boundary conditions recognition technique agree well with modal experiential results which lay the foundation of structure dynamic optimization.
    Stability investigation is based on displacement feedback regenerative chatter principle. Considering work piece regenerative chatter and grinding wheel regenerative chatter, the plunging grinding closed loop system dynamic model is set up. The traverse grinding dynamic model is also set up with the simplified of plunging grinding to the sum of plunging grinding. Using frequency-response function which is expressed by grinding parameters and structure parameters, the characteristic equations are calculated. The predicting method of stability criterion with respect to the rate of chatter waviness increase is proposed. In this way, the influence of grinding parameters to grinding stability is portrayed.
    Experiments of modal analysis are designed and carried out to investigate and validate the dynamics model, stability theory. With the modal, racing and grinding experiments, the nature frequencies calculated by numerical value calculation of the whole grinding machine and its sub-structures is validated. The matching of grinding parameters designed in racing and grinding experiments are used to validate stability theory. Experiments are also used to diagnose the experimental grinding machine, the faults leading to surface waviness as well as vibration eliminate methods are pointed out.
    Dynamic optimization technique in cylindrical grinding is based on structure dynamics, stability analysis and dynamic experiments with technique of structure dynamic modification and grinding parameter modification. As an example, dynamic optimization technique is used for MGB1412×250 high precision cylindrical grinding machine to improve its dynamic characteristics.
引文
1 2006年上半年中国机床工具行业研究报告[Z].http://www.askci.com/中商情报网
    2 中国磨床市场的现状与展望[Z].http://www.gq114.cn/商贸通网
    3 杨橚,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1983:20-22
    4 蔡光起,冯宝富,赵恒华。磨削技术的最新进展[J].世界制造技术与装备市场,2003,(1):16-19
    5 王涛,李剑,高航.磨削技术的现状与发展趋势[J].机械设计与制造,2003,(2):116-118
    6 李长河,蔡光起,修世超,庞子瑞.高效率磨粒加工技术发展及关键技术[J].金刚石与磨料磨具工程,2006,(5):77-82
    7 张建刚,林彬,于思远,韩建华,.磨削技术发展现状与趋势[J].机械工人(冷加工),2002,(11):25-27
    8 李长河,修世超,蔡光起.高速超高速磨削技术发展与关键技术[J].精密制造与自动化,2006,(4):16-21
    9 蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新发展[J].航空制造技术,2003,(4):33-37
    10 王维,蔡光起,李长河.第55届CIRP大会磨削方面论文介绍[J].金刚石与磨料磨具工程,2006,(2):80-82
    11 李长河,蔡光起,修世超,庞子瑞.高效率磨粒加工技术发展及关键技术[J].金刚石与磨料磨具工程,2006,155(10):77-82
    12 赵学堂,张水俊.“一次过加工”技术的发展及应用[J].机床与液压,2003,(2):8-18
    13 数控磨床应用现状与发展趋势[Z].http://www.51pla.com/全球塑胶网
    14 郭晓光,郭东明,康仁科,金洙吉.单晶硅超精密磨削过程的分子动力学仿真[J].机械工程学报,2006,(6):68-74
    15 丁宁,王龙山,李国发,陈向伟.细长轴磨削变形的变速优化智能预测控制研究[J].中国机械工程,2006,17(1):21-28
    16 李国发,王龙山,丁宁.基于进化神经网络外圆纵向磨削表面粗糙度的在线预测[J].中国机械工程.2005,16(3):223-226
    17 张磊,葛培琪,张建华,孟剑锋,程建辉,栾芝云.40Cr钢磨削强化的试验与数值仿真[J].机械工程学报,2006,(8):35-38
    18 裴葆青,罗学科,陈五一,黄波。并联磨床加工螺旋槽的磨削参数设计[J].北京航空航天大学学报,2005,31(1):94-97
    19 刘贵杰,刘立静,唐婷,王宛山.磨削过程计算机集成智能监控系统[J].中国机械工 程,2005,16(20):1843-1850
    20 刘贵杰,巩亚东,王宛山.磨削加工参数智能化在线调整方法研究[J].中国机械工程,2003,14(15):1268-1271
    21 S.Malkin,C.Guo,张一飞.外圆磨削加工的仿真、优化及控制[J].金刚石与磨料磨具工程,2001,(5):35-38
    22 田延岭,张大卫,陈华伟,黄田.基于微定位工作台的精密磨削过程动力学建模与误差补偿技术[J].机械工程学报,2005,36(4):1648-1652
    23 吴剑锋,张钢,杨新洲.机床磁悬浮导轨的动态特性分析[J].机械科学与技术,2004,(9):111-113
    24 赵永生,郑魁敬,施毅.5-UPS/PRPU五自由度并联机床动力学建模[J].机械设计与研究,2004,(3):69-94
    25 徐礼钜,范守文,李辉.基于并行计算的新型并联机床动力学解析模型[J].机械工程学报,2004,(4):890-894
    26 郭祖华,陈五一,陈鼎昌.基于全局动力学性能的并联机床结构参数优化[J].中国机械工程,2003,14(10):861-864
    27 赵兴玉,黄田,赵学满.一类并联机床整机结构动力学建模方法研究[J].振动工程学报,2003,16(3):295-301
    28 毛海军.新一代数控内圆磨床的动力学建模与优化[D].博士学位论文,东南大学,2001
    29 孟祥志,蔡光起,胡明,陈旭.三杆混联数控机床的动力学[J].机械工程学报,2006,(6):1456-1462
    30 付铁,丁洪生,荣辉,庞思勤.BKX-Ⅰ型变轴数控机床的有限元模态分析[J].机械设计与研究,2005,(4):65-70
    31 李鹭扬,吴洪涛,朱剑英.Gough-Stewart平台高效动力学建模研究[J].机械科学与技术,2005,16(17):901-905
    32 黄红武,赵小青,宓海青,贺兵.基于有限元的超高速平面磨床整机动力学建模及模态分析[J].湖南大学学报(自然科学版),2005,32(4):39-42
    33 王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社,1985:256-262
    34 付志芳.振动模态分析与参数辨识[M].北京:机械工业出版社,1990:50-65
    35 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用—建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2004:278-300
    36 毛海军,孙庆鸿,陈南.基于子结构阻抗匹配与优化拟合的高精度磨床整机动力学建模研究[J].中国机械工程,2002,13(5):376-378
    37 陈新,孙庆鸿,海军,陈南.基于接触单元的磨床螺栓连接面有限元建模与模型修正 [J].中国机械工程,2001,12(5):524-526
    38 张建润,卢熹,孙庆鸿,彭文,姚树健.五坐标数控龙门加工中心动态优化设计[J].中国机械工程,2005,(21):1356-1360
    39 陈新,孙庆鸿,毛海军,陈南.基于接触单元的磨床螺栓联接面有限元建模与模型修正[J].中国机械工程,2001,13(5):1898-1904
    40 张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报,2002,(10):1686-1690
    41 张广鹏,史文浩,黄玉美,胡德金.机床整机动态特性的预测解析建模方法[J].上海交通大学学报,2001,35(12):1834-1837
    42 王世军,黄玉美,赵金娟,张广鹏,王凯.机床导轨结合部的有限元模型[J].中国机械工程,2004,15(18):1634-1636
    43 曹定胜,王学林,张宏志.高速加工中心有限元计算模型与试验验证[J].振动与冲击,2006,(3):352-356
    44 吴筱坚.机床固定结合面的一种建模方法[J].机械科学与技术,2002,(3):12-14
    45 G. Warnecke, C. Barth. Optimization of the dynamic behavior of grinding wheels for grinding of hard and brittle materials using the finite element method [C]. CIRP, 1999, 48: 261-264
    46 Simnofske, Marc, Hesselbaeh, Jurgen. The increase of the dynamic and static stiffness of a grinding machine [J]. ASME, 2006, 8: 356-362
    47 F. Hashimoto, A. Kanai, M. Miyashita. Growing mechanism of chatter vibration in grinding process and chatter stabilization index of grinding wheel [C]. CIRP, 1984, 33: 259-263
    48 F. Hashimoto, J. Yoshioka, M. Miyashita. Sequential estimation of growth rate of chatter vibration in grinding processes [C]. CIRP, 1985, 34: 272-275
    49 R. A. Thompson. The dynamic behavior of surface grinding Part1: A mathematical treatment of surface grinding [J]. ASME, 1971, 12: 485-497
    50 R. A. Thompson. The character of regenerative chatter in cylindrical grinding [J]. ASME, 1973, 4: 858-864
    51 R. A. Thompson. On the doubly regenerative stability of a grinder [J]. ASME, 1974, 7: 275-280
    52 R. A. Thompson. On the doubly regenerative stability of a grinder: the combined effect of wheel and workpiece speed [J]. ASME, 1997, 5: 237-241
    53 T. EI. Wardani, M. M. Sadek, M. A. Younis. Theoretical analysis of grinding chatter [J]. ASME, 1987, 109: 314-320
    54 I. Inasaki, K. Tonou, S. Yonestu. Regenerative chatter in cylindrical plunge grinding [C]. JSME, 1977, 20: 1648-1654
    55 R. J. Baylis, B. J. Stone. The effect of grinding wheel flexibility on chatter [C]. CIRP, 1989, 38: 307-310
    56 N. Zhang, I. Kirpitchenko, D. K. Liu. Dynamic model of the grinding process [J]. Journal of sound and vibration, 2005, 280: 425-432,
    57 J. Biera, J. Vinolas, F. J. Nieto. Time-domain dynamic modeling of the external plunge grinding process. International Journal of Machine Tools & Manufacture [J]. 1997, 37: 1555-1572
    58 Li. Hongqi, Shin, C. Yung. Wheel regenerative chatter of surface grinding [J]. ASME, 2006, 128(6),: 393-403
    59 李刚,徐燕申,彭泽民.磨削过程动态模型的建立及其参数辨识方法的研究[J].机械工程学报,1992,(2):36-40
    60 M. Weck, N. Hennes, A. Schulz. Dynamic behavior of cylindrical traverse grinding processes [C]. CIRP, 2001, 50: 213-216
    61 T. Shinuze, I. Inasaki. Regenerative chatter during cylindrical traverse grinding [C]. JSME, 1978, 21: 317-322
    62 刘强,尹力.一种面向数控工艺参数优化的铣削过程动力学仿真系统研究[J].中国机械工程,2005,16(13):1146-1150
    63 王立刚,刘习军,贾启芬.机床颤振的若干研究和进展[J].机床与液压,2004,(11):1-5
    64 王民,袁伟军,李南京,费仁元,杨建武.切削稳定性控制技术研究[J].现代制造工程,2004,(1):8-10
    65 赵宏伟,王晓军,于骏一.机床再生型切削颤振系统稳定性极限预测[J].西南交通大学学报,2003,38(5):547-552
    66 李宝灵,高尚晗,高中庸,韦高.金属切削过程中自激振动的试验分析[J].机械制造,2004,(8):98-113
    67 Bukkapatnam, T. S. Satish, Palanna. Experimental characterization of nonlinear dynamics underlying the cylindrical grinding process [J]. ASME, 2004, 126(6): 341-344
    68 I. Inasaki, B. Karpuschewski, H. S. Lee. Grinding chatter-origin and suppression[C]. CIRP, 2001, 50: 515-534
    69 Y. Altintas, M. Weck. Chatter of metal cutting and grinding [C]. CIRP, 2004, 53: 619-642
    70 Z. Y. Weng, W. D. Xie, B. Lu, Y. W. Ye, H. Yao, X. S. He. Grinding chatter and ground surface waviness in surface grinding process. Key Engineering Materials [J]. 2004, 258: 352-356
    71 徐燕申.机械动态设计[M].北京:机械工程出版社,1992:198-220
    72 董绍强,廖道训,陆永忠.摄动法在局部结构动力修改逆问题中的应用研究[J].机械科学与技术,2001,(6):801-805
    73 闻邦椿,刘树英等.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001:422-423
    74 王东华,刘占生.基于遗传算法的转子结构优化设计[J].汽轮机技术,2005,(6):407-410
    75 毛海军,孙庆鸿,陈南等.基于BP神经网络的磨床主轴系统动态优化方法研究[J].制造业自动化,2000,(2):39-41
    76 徐张明,沈荣瀛,华宏星.基于频响函数相关性的灵敏度分析的有限元模型修正[J].机械强度,2003,(1):5-8
    77 S. S. Rao, Li. Chen. Determination of optimal machining conditions: A coupled uncertainty Model [J]. ASME, 2000, 122: 207-214
    78 B. K. Suthas, B. Ramaraja, K. Ramachandra. Simultaneous optimization of machining parameters for dimensional instability control in aero gas turbine components made of Inconel 718 alloy [J]. ASME, 2000, 122: 586-589
    79 Q. Meng, J. A. Arseculataine, P. Mathew. Calculation of optimum cutting conditions for turning operations using a machining theory [J]. International Journal of Machine Tools & Manufacture, 2000, 40: 1709-1733
    80 M. Pogacnik, J. Kopac. Dynamic stability of the turn-milling process by parameter optimization: Part B[J]. Proc. Mech. Eng, 2000, 214: 127-135
    81 B. Y. Lee, Y. S. Tang, H. R. Li. An investigation of modeling of the machining database in turning operations [J]. Journal of Materials Processing Technology, 2000, 105: 1-6
    82 师汉民,陈日耀.基因遗传算法用于切削用量优化[J].机械工艺师,1992,(9):3-6
    83 郑华林,吴胜萍.切削用量的模糊优化设计[J].水利电力机械,1994,(6):24-28
    84 李旭东,黄克正,艾兴等.切削用量智能化选择的神经网络建模[J].组合机床于自动化加工技术,1999,(10):13-17
    85 贾春玉,姜桂荣.车削加工中切削用量的人工智能优化控制[J].机械设计与制造工程,2001,(10):9-10
    86 B. M. Brzhozovskij, I. N. Yankin. The internal grinding process quality increasing through optimal dynamic cutting conditions providing [C]. CIRP, 2003, (11): 34-37
    87 F. Hashimoto, G. D. Lahoti. Optimization of set-up conditions for stability of the center less grinding process [C]. CIRP, 2004, 53(1): 271-274
    88 秦歌,任春红,谌湘倩.平面砂带磨床磨削参数的优化设计[J].煤矿机械,2005,(7):15-17
    89 尹志宏.神经网络优化技术在磨床主轴优化中的应用[J].机械强度,2005,(3):58-62
    90 胡如夫,孙庆鸿,陈南,毛海军.数控内圆磨床部件动态优化设计研究[J].制造技术与机床,2004,(1):39-41
    91 伍建国,毛海军,孙庆鸿.基于BP神经网络的内圆磨床主轴动态分析方法研究[J].南京航空航天大学学报,2003,35(1):105-108
    92 胡如夫,孙庆鸿,陈南.高精度内圆磨床整机集成优化设计研究[J].兵工学报,2003,24(2):230-233
    93 胡如夫,孙庆鸿,陈南,陈新,毛海军.高精度数控内圆磨床开发设计中的关键技术研究[J].兵工学报,2003,24(1):97-101
    94 胡如夫,孙庆鸿,陈南,陈新.高精度内圆磨床结构动态优化设计研究[J].中国机械工程,2002,13(18):1542-1544
    95 陈新,何杰,毛海军,陈南,孙庆鸿.基于动力学特征的磨床床身结构优化布局设计[J].制造技术与机床,2001,(2):21-22
    96 Muramatsu, Atsushi, Hashimoto, Masanori. Effects of on-chip inductance on power distribution grid IEICE Transactions on Fundamentals of Electronics [J]. Communications and Computer Sciences, 2005, (12): 3564-3572
    97 B. M. Brzhozovskij, I. N. Yankin. The internal grinding process quality increasing through optimal dynamic cutting conditions providing [J] Autoimmtmization Sovremennye Technology, 2003, (11): 34-37
    98 陈新,刘泽民,罗鸿,周济.基于试验模态参数的结构多层结合部特征特征参数识别[J].试验力学,1995,(2):172-180
    99 刘晓平,徐燕申,宋健伟,彭泽民.机械结构结合部阻尼特征参数识别的研究[J].振动与冲击,1995,(3):61-65
    100 洪钟瑜,周谦.复杂结构联接刚度的优化识别技术[J].振动与冲击,1994,(1):54-59
    101 杨家华,陈为福,黄旭东.机床床身立柱结合面参数识别的研究[J]。北京工业大学学报,1999,(1):44-49
    102 张宇,廖伯瑜.机床结合部参数的有效识别方法[J].昆明理工大学学报,1998,(2):36-40
    103 贺兵.超高速平面磨床的构造特征及动态特性研究与结构优化[D].硕士学位论文,湖南大学,2004
    104 T. Inamura, T. Sata. Stiffness and damping identification of the element of a machine-tool structure [C]. CIRP, 1979, (1): 1258-1279
    105 余洋,张建润,卢熹.五轴联动加工中心主轴系统的结构优化[J].精密制造与自动化,2006,166(2):23-25
    106 Li. Hongqi, C. Yung, Shin. A time-domain dynamic model for chatter prediction of cylindrical plunge grinding [J]. ASME, 2006, 128(5),: 404-415
    107 Janez Gradisek, Andreas Baus, Edvard Govekar, Fritz Klocke, Igor Grabec. Automatic chatter detection in grinding [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 1397-1403
    108 师汉民.机械振动系统—分析、测试、建模、对策[M].武汉:华中科技大学出版社,2004:111-113
    109 R. Snoys, I. C. Wang. Analysis of the static and dynamic stiffness of the grinding wheel surface [J], MTDR, 1968, 54: 1255-1297
    110 M. Younis, M. M. Sadek, T. E1-Wardani. A new approach to development of a grinding force model [J]. ASME, 1987, 109: 306-313.
    111 王积伟,陆一心,吴振顺.现代控制理论与工程[M].北京:高等教育出版社,2003:189-190
    112 S. A. Tobias. Machine tool vibration [M]. Blackie and Sons, Ltd. 1965, 13: 315-321
    113 张军,唐文彦,强锡富.再生型切削颤振稳定性极限的图解法[J].中国机械工程,2000,11(5):496-498
    114 易良蕖.简易振动诊断现场实用技术[M].北京:机械工业出版社,2003:159-162
    115 王玉金,赵韩,罗继伟.高速机床主轴支承系统轴承配置分析[J].制造技术与机床,2003,(1):44-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700