可逆温致变色功能薄木的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可逆温致变色木材是一种新型的木质功能材料,能够随着温度的变化而发生智能变色和热能转换,实现暖色调和冷色调之间的可逆变化,满足人们对家具、装饰审美的个性化需求。温致变色技术在木质材料生产领域的应用,是实现木质材料功能化的主要途径之一,也是提高木质材料产品附加值和市场竞争力的重要手段。
     本研究通过改变可逆温致变色复配物的成分及其配比,确定变色复配物的最佳配比,制备了可逆温致变色薄木,分析了变色薄木的热变色性能,并探索了变色薄木的性能测试方法。采用原位聚合法,对最佳配比下的变色复配物进行微胶囊化处理,研究了微胶囊化的制备工艺。对制得的变色微胶囊,采取与浸渍树脂液混合的方法,通过涂层的方式实现了薄木的可逆变色。
     论文的主要研究结果如下:
     1可逆温致变色复配物及变色薄木的制备
     (1)以热敏玫红为隐色剂,在给定的配比条件下,以十二醇、十四醇及十六醇为溶剂,以双酚A为显色剂制得的复配物变色综合性能最好,变色复配物的变色温度区间分别为10~20℃、26~38℃、44~54℃。
     (2)以热敏玫红为隐色剂、双酚A为显色剂、十四醇为溶剂的变色复配物各组分的最佳配比为1:6:60。在此条件下制得的变色复配物变色灵敏,其消色、复色温度区间分别为33~37℃、27~33℃。
     (3)可逆温致变色复配物的变色机理为电子转移机理。由傅里叶红外光谱(FT-IR)可知,热敏玫红在1766cm~(-1)处具有酯羰基C=O吸收峰,而在复配物中,热敏玫红在低温下内酯环开裂,在1766cm~(-1)处内酯峰消失,失去电子,与电子接受体双酚A发生电子给予接受而变成红色。
     2可逆温致变色薄木的性能及其测试方法
     (1)根据NBS色差单位等级评价,可以确定变色薄木的消、复色温度区间和消、复色温度。以热敏玫红、双酚A和十四醇为复配物制得的变色薄木消、复色温度分别为31℃、25℃,消、复色温度区间分别为27~37℃、29~19℃。
     (2)可逆温致变色薄木的消色过程曲线和复色过程曲线连续但并不等同,在可逆变色过程中存在复色滞后现象。
     (3)变色薄木的光稳定性欠佳,添加紫外线吸收剂能改善变色薄木的光稳定性,并且随着紫外吸收剂用量的增大而光稳定性不断增强。经氙光辐射处理后,未添加紫外线吸收剂的可逆温致变色薄木的表面色差损失达19.79,损失率达27.44%,大于添加紫外线吸收剂的变色薄木的色差损失。紫外线吸收剂UV-326对变色薄木的光稳定性改善效果优于UV-531,当添加量为2.0%,综合效果最佳。
     (4)受氙光辐射照度、温度和相对湿度的影响,国家标准《装饰单板贴面人造板(》GB/T15104-2006)中耐光色牢度的测试标准不适用于变色薄木光稳定性的测试。
     3可逆温致变色微胶囊的制备工艺
     乳化剂种类及用量、乳化时间、乳化转速、壳芯比和缩聚pH值对微胶囊的结构、形态和粒径大小有重要的影响。聚乙烯醇0588(PVA-0588)对变色复配物的乳化效果最好。较佳的微胶囊化工艺为:PVA-0588添加量3.0%,乳化转速14000rpm,乳化时间30min,壳芯比4:2,缩聚pH值5.0。此条件下制备的变色微胶囊粒径分布窄,主要集中在3~5μm,变色灵敏,可逆变色效果好。
     4可逆温致变色微胶囊在薄木上的应用
     (1)变色微胶囊与三聚氰胺浸渍树脂混合而成的变色微胶囊乳液,通过涂层的方式可以实现薄木的可逆变色功能,制备的变色薄木具有良好的热变色性能。
     (2)制备的变色薄木存在复色滞后现象,其消、复色温度分别为33℃、25℃,消、复温度区间分别为25~35℃、27~19℃。
     (3)制备的变色薄木具有较好的耐疲劳性能,在经历10个冷-热循环(-20--100℃)周期后,其色度学参数明度指数L*、红绿轴色品指数a*、黄蓝轴色品指数b*及总色差E均无显著变化。
Reversible thermochromic wood is a kind of new functional material, which responds tochange of temperature by color change and energy conversion. The color can transformbetween warm and cool and it meets the individual needs of furniture and decoration aesthetic.The application of thermochromic in wood materials, is one of main method to realize thefunction of wood materials, which could improve value-added and market competitiveness ofthe wood products.
     In my research, the method was by changing the composition and proportion of thereversible thermochromic agent to determine the optimum ratio of reversible thermochromicagent. By analyzing the thermochromic properties of reversible thermochromic veneer, theperformance test method of reversible thermochromic veneer was explored. With the methodof in-situ polymerization, the reversible thermochromic agent with the best proportion wasmicroencapsulated, and then the technology of microcapsule was explored. By mixing theprepared microcapsule with impregnation resin, the reversible thermochromic veneer wasprepared, and the properties of thermochromic veneer were discussed including thermochromicproperties and thermal stability. The main results are summarized as follows:
     1Preparation of reversible thermochromic composite materials
     (1) Color developer and solvent had significant effect on thermochromism properties ofreversible thermochromic composite materials. The high aliphatic alcohols such as1-dodecanol (DD),1-tetradecanol (TD) and1-hexadecanol (HD) were more suitable forthermochromic materials than other high aliphatic acids including stearic acid (SA). And thecolor change of thermochromic materials was more obvious by taking bisphenol A (BPA) ascolor developer than by SA and p-nitrophenol (p-NP).By taking DD, TD and HD as solvent,thermochromic rose-red (TRR) as color former, the color change temperature intervals of thethermochromic composite materials were10~20℃,26~38℃,44~54℃, respectively.
     (2) For the thermochromic composite materials, the optimal mass ratio of TRR, BAP andTD was1:6:60. Under this condition, the reversible color change of thermochromic compositematerials occurred rapidly, and the intervals of achromic and chromic temperature were33~37℃,27~33℃, respectively.
     (3) The thermochromism mechanism was electron transfer mechanism. According to theresults of FT-IR spectrogram, there was a carbonyl group (C=O) in the wavenumbers of1766cm~(-1)in the color former TRR, a characteristic peak of esters. For thermochromic compositematerials, the lactone ring ruptured in the low temperature, the lactone peak disappeared.
     2Properties and testing methods of reversible thermochromic veneers
     (1) According to the grade evaluation the color difference unit of National Bureau ofStandards (NBS unit), the achromic and chromic temperature could be confirmed. Theachromic temperature and range of achromic temperature of thermochromic veneers whichbased on the thermochromic composite materials of TRR, BPA and TD were31℃and27~23℃in the decolorization process, while the chromic temperature and range of chromic temperaturewere25℃,29℃~19℃in the colorization process.
     (2) The color changes depended on temperature and thermal history, which was namedcolor hysteresis. The colors appearing on heating were in general not equal to those on cooling.
     (3) The light stability was not good enough and the ultraviolet light absorbers couldimprove the light stability. The loss of total color difference of the thermochromic veneers withno ultraviolet light absorbers increased with the prolonging Xenon-light irradiation time. Thelight stability of the thermochromic veneers with UV-326was better than the ones withUV-531. With the increasing of additive amount up to2.0%, the change of total colordifference was small, that is, the light stability was good.
     (4) The method of colorfastness to light in the National Standard GB/T15104-2006couldn’t suit for testing the light stability of reversible thermochromic veneers. It is necessaryto study the test condition for light stability of the thermochromic veneers, which wasinfluenced by irradiance, temperature and relative humidity.
     3Preparation technology of reversible thermochromic microcapsule
     The type of emulsifiers and emulsifier dosage, emulsifying rotate speed, emulsificationtime, wall/core materials ratio and pH value had great influence on the structure, morphologyand particle size of thermochromic microcapsules. Polyvinyl alcohol0588(PVA-0588) wassuitable for emulsifier in the emulsification process of thermochromic composite materials.The optimum technology parameters for thermochromic microcapsules were as follows:emulsifier dosage3.0%, emulsifying rotate speed14000rpm, emulsification time30min,wall/core materials ratio4:2and pH value5.0. Under this condition, the microcapsules hadgood color and color change effect, the size distribution of microcapsules was narrow and theaverage diameter was3~5μm.
     4The application of thermochromic microcapsule in the veneers
     (1) The thermochromic microcapsule emulsion with melamine formaldehydeimpregnating resin could be used for the reversible thermochromic veneers which had goodthermochromic properties.
     (2) In the reversible color change process, there was a phenomenon named colorhysteresis, that is, the decolorization and colorization curves were continuous, but had form aclosed loop. The achromic and chromic temperature were33℃,25℃and the interval ofachromic and chromic temperature were25~35℃,27~19℃, respectively.
     (3) The reversible thermochromic veneers had good resistance to fatigue performance.The lightness index (L*), red-green index (a*), yellow-blue index (b*) and the total colordifference (E) had no significant changes after10thermocycling (-20—100℃).
引文
Abdullah N, Abu Talib A R, Mohd Saiah H R, et al. Film thickness effects on calibrations of a narrowbandthermochromic liquid crystal[J]. Experimental Thermal and Fluid Science,2009,33(4):561-578.
    Babulanam S M, Eriksson T S, Niklasson G A, et al. Thermochromic VO2films for energy-efficientwindows[J]. Solar energy materials,1987,16(5):347-363.
    Becker J C, Chimmelwright R S. Thermochromic coating and method of manufacturing thereof: US,2011123712A1[P].2011-05-26.
    Chris R, Maria Del P N E. Troubleshooting the extrusion process a systematic approach to solving plasticextrusion problems[M]. Munich Hanser,2001.
    Christie R M, Robertson S, Taylor S. Design Concepts for a Temperature-sensitive Environment UsingThermochromic Colour Change[J]. Journal of the International Colour Association,2007,1(1):1-11.
    Cui H N, Teixeira V, Meng L J, et al. Thermochromic properties of vanadium oxide films prepared by dcreactive magnetron sputtering[J]. Thin Solid Films,2008,516(7):1484-1488.
    Day J H. Thermochromism of inorganic compounds[J]. Chemical Reviews,1968,68(6):649-657.
    Dong C H, Liu Y, Long Z, et al. Effect of Papermaking Conditions on the Retention of ReversibleThermochromic Microcapsule in Paper[J]. Bioresources,2012,7(1):66-77.
    Fischer P, Lucas B, Omary M A, et al. Reversible luminescence thermochromism in dipotassiumsodiumtris[dicyanoargentate(I)] and the role of structural phase transitions[J]. Journal of Solid State Chemistry,2002,168(1):267-274.
    Fujita K, Ono Y. Reversible thermochromic compositions: EP,0873881A1[P].1998-10-28.
    Grubb W T, Kistiakowsky G B. On the Nature of Thermochromism[J]. Journal of the American ChemicalSociety,1950,72(1):419-424.
    Hay J L, Hollingsworth D K. A comparison of trichromic systems for use in the calibration ofpolymer-dispersed thermochromic liquid crystals[J]. Experimental thermal and fluid science,1996,12(1):1-12.
    He P, Huang W X, Yan J Z, et al. Preparation and thermochromic property of VO2/mica pigments[J].Materials Research Bulletin,2011,46(6):966-969.
    Karlessi T, Santamouris M, Apostolakis K, et al. Development and testing of thermochromic coatings forbuildings and urban structures[J]. Solar Energy,2009,83(4):538-551.
    Klanj ek Gunde M.2010. dynamic colour of chromogenic materials//IX Congreso Nacional del Color.Alicante: Universidad de Alicante.
    Koksal T, Dikbas I. Color stability of different denture teeth materials against various staining agents[J].Dental Materials Journal,2008,27(1):139-144.
    Kul ar R, Fri kovec M, Hauptman N, et al. Colorimetric properties of reversible thermochromic printinginks[J]. Dyes and pigments,2010,86(3):271-277.
    Kul ar R, Klanj eg Gunde M, Kne aurek N. Dynamic Colour Possibilities and Functional Properties ofThermochromic Printing Inks[J]. Acta Graphica znanstveni asopis za tiskarstvo i grafi kekomunikacije,2012,23(1-2):25-36.
    Lafort A, Kebaili H, Goumri Said S, et al. Optical properties of thermochromic VO2thin films on stainlesssteel: Experimental and theoretical studies[J]. Thin Solid Films,2011,519(10):3283-3287.
    Lee M H. Thermochromic glazing of windows with better luminous solar transmittance[J]. Solar EnergyMaterials and Solar Cells,2002,71(4):537-540.
    Lee S C, Jeong Y G, Jo W H, et al. Thermochromism of a novel organic compound in the solid state viacrystal-to-crystal transformation[J]. Journal of Molecular Structure,2006,825(1-3):70-78.
    Li F Y, Zhao Y, Wang S, et al. Thermochromic core–shell nanofibers fabricated by melt coaxialelectrospinning[J]. Journal of Applied Polymer Science,2009,112(1):269-274.
    Liu Z J, Bao F C, Fu F. Study of Manufacturing Thermochromic Wood[J]. Wood and Fiber Science,2011,43(3):239-243.
    Liu Z J, Fu F, Bao F C. Study on Surface Free Energy of Thermochromic Wood[J]. Chinese ForestryScience and Technology,2010,9(1):60-66.
    Ma Y P, Zhu B R. Research on the preparation of reversibly thermochromic cement based materials atnormal temperature[J]. Cement and Concrete Research,2009,39(2):90-94.
    Ma Y, Zhang X, Zhu B, et al. Research on reversible effects and mechanism between the energy-absorbingand energy-reflecting states of chameleon-type building coatings[J]. Solar energy,2002,72(6):511-520.
    Maclaren D C, White M A. Competition between dye-developer and solvent-developer interactions in areversible thermochromic system[J]. Journal of Materials Chemistry,2003a,13(7):1701-1704.
    Maclaren D C, White M A. Dye-developer interactions in the crystal violet lactone-lauryl gallate binarysystem: implications for thermochromism[J]. Journal of Materials Chemistry,2003b,13(7):1695-1700.
    Maclaren D C, White M A. Design rules for reversible thermochromic mixtures[J]. Journal of MaterialsScience,2005,40(3):669-676.
    Malherbe I, Sanderson R D, Smit E. Reversibly thermochromic micro-fibres by coaxial electrospinning[J].Polymer,2010,51(22):5037-5043.
    Meir B. Measuring the temperature of stationary fluid in a microchannel using thermochromic liquidcrystals[D]. University of Southern California,2010
    Nakasuji N, Kataoka T, Inagaki H, et al. Thermochromic materials: US,4028118[P].1977-06-07.
    Nozaki T, Mochizuki T, Kaji N, et al. Application of liquid-crystal thermometry to drop temperaturemeasurements [J]. Experiments in Fluids,1995,18(3):137-144.
    Oka K, Fujiue N, Nakanishi S, et al. Thermochromism and solvatochromism of non-ionic polarpolysilanes[J]. Journal of Organometallic Chemistry,2000,611(1):45-51.
    Park S J, Shin Y S, Lee J R. Preparation and characterization of microcapsules containing lemon oil[J].Journal of Colloid and Interface Science,2001,241(2):502-508.
    Qazi I A, Awan M A, Baig M A. Development of thermochromic strips as a water pasteurization indicator[J].Journal of environmental sciecces,2003,15(6):863-864.
    Saeli M, Piccirillo C, Parkin I P, et al. Energy modelling studies of thermochromic glazing[J]. Energy andBuildings,2010,42(10):1666-1673.
    Seeboth A, Klukowska A, Ruhmann R, et al. Thermochromic Polymer Materials[J]. Chinese Journal ofPolymer Science,2007,25(02):123-135.
    Seeboth A, Lǒtzsch D, Potechius E, et al. Thermochromic effects of leuco dyes studied in polypropylene[J].Chinese Journal of Polymer Science,2006,24(4):363-368.
    Sekar N, Patil S S. Thermochromic dyes-Some new developments[J]. Colourage,2006,(11):88-90,110.
    Shi J Q, Zhou S X, You B, et al. Preparation and thermochromic property of tungsten-doped vanadiumdioxide particles[J]. Solar Energy Materials and Solar Cells,2007,91(19):1856-1862.
    Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials[J]. InternationalJournal of Pharmaceutics,2002,242(1):307-311.
    Tang H, Maclaren D C, White M A. New insights concerning the mechanism of reversible thermochromicmixtures[J]. Canadian Journal of Chemistry,2010,88(11):1063-1070.
    Viková M, Vik M. Colour Shift Photochromic Pigments in Colour Space CIE L*a*b*[J]. MolecularCrystals and Liquid Crystals,2005,431(1):403-415.
    Wen B, Zhang P. Bio-based coating: US,2011206836A1[P].2011-08-25.
    White M A, Leblanc M. Thermochromism in commercial products[J]. Journal of Chemical Education,1999,76(9):1201-1205.
    Wu Z M, Feng W Z, Sun X Z. Study on Preparation Techniques and Function of ThermochromicMicrocapsule: The Second International Conference on Advanced Textile Materials&ManufacturingTechnology[Z]. HangZhou: Zhejiang,2010.
    Wu Z P, Miyashita A, Yamamoto S, et al. Optical properties of vanadium dioxide thin film as a windowsthermochromic coating [J]. Materiales de Construccion,2000,50(258):5-10.
    Xu G, Jin P, Tazawa M, et al. Optimization of antireflection coating for VO2-based energy efficientwindow[J]. Solar Energy Materials and Solar Cells,2004,83(1):29-37.
    Zhu C F, Wu A B. Studies on the synthesis and thermochromic properties of crystal violet lactone and itsreversible thermochromic complexes[J]. Thermochimica Acta,2005,425(1–2):7-12.
    Zhu C F, Xu H H, Yang S J. Synthesis, Thermochromic Properties and Thermal Behavior of some SchiffBases. Part Ⅰ. p, p'-Diaminodiphenymethane-Schiff Bases and Sulphonamide Schiff Base[J]. ChineseChemical Letters,2001,12(8):687-690.
    曹优明.聚酯丙烯酸热变色涂料的研究[J].涂料工业,2005,35(11):22-24.
    曹优明.环氧-丙烯酸热变色涂料的研究[J].化工新型材料,2006a,34(5):71-74.
    曹优明.苯乙烯改性醇酸树脂热变色涂料的研究[J].化工新型材料,2006b,34(12):64-67.
    曹优明.丙烯酸改性醇酸树脂热变色涂料的研究[J].化工新型材料,2007,35(10):72-74.
    曹优明.丙烯酸改性酚醛环氧树脂热变色涂料的研究[J].化工新型材料,2008,36(6):94-95.
    曾盛.可逆示温材料的微胶囊化研究[D].西安:西北工业大学,2005b.
    曾盛,胡小玲,邓娟利.示温材料的制备及应用研究进展[J].材料导报,2005a,19(1):43-46.
    陈纯馨,陈忻,刘爱文,等.高温多变色可逆示温材料的研制[J].化工新型材料,2004,32(12):50-52,57.
    陈纯馨,陈忻,刘爱文,等.硼酸类复配物的固相制备及其热变色性能研究[J].化工新型材料,2006,34(2):46-48.
    陈建梅,曹荣. Bi-V类无机可逆热变色材料的研制[J].化学工业与工程技术,1996,17(3):12-15.
    陈燕琼,张子勇.胆甾型液晶的合成及显色示温液晶组成[J].化学世界,2003,44(7):373-376.
    成瑞云.一种能提高示温漆测试精度的新方法[J].燃气涡轮试验与研究,1992,(3):43-46.
    崔敬忠,达道安,姜万顺. VO2热致变色薄膜的结构与光电性能研究[J].中国空间科学技术,1998,(2):48-51,67.
    代彩红,黄勃,于家琳.材料老化领域中的光辐射度计量与量值溯源[J].中国计量,2010,(8):13-16.
    董翠华.可逆温致变色微胶囊的制备及其用于防伪纸抄造的研究[D].南京:江南大学,2009.
    董翠华,龙柱,庞志强,等.可逆热致变色材料及其应用现状[J].材料导报:网络版,2008,3(2):4-7.
    杜江燕,李来发,陈维,等.溴酚蓝-碱土金属离子-十八醇热变色复配物的制备及热变色性[J].精细化工,2000a,17(8):473-475.
    杜江燕,李来发,周志华.溴甲酚绿-碱土金属离子-十六醇热变色复配物制备及热变色性[J].功能材料,2000b,31(5):554-555,557.
    杜江燕,王昉,陈昌云,等.可逆热变色复配物热变色性及机理探讨:甲酚红—碱土金属离子—十六醇体系合成及热变色性[J].染料工业,1999,36(4):1-4.
    冯文昭.棉织物的温敏变色整理[D].天津:天津工业大学,2008b.
    冯文昭,吴赞敏,葛婧媛.新型热敏变色材料的微胶囊化研究[J].天津工业大学学报,2008a,27(2):32-35.
    傅峰,卢克阳,鲍甫成,等.温敏可逆变色木质材料及其制造方法:中国,101817192A[P].2010-09-01.
    傅峰,卢克阳,鲍甫成,等.温敏可逆变色木质装饰板材:中国,201728716U[P].2011-02-02.
    葛明兰,王建基.结晶紫内酯和热敏红的抗氧化性和光稳定性的研究[J].北京石油化工学院学报,2005,13(1):38-40.
    龚培宁,陶朱,马培华.热致变色复配液晶多孔膜制备工艺中的扫描电镜研究[J].电子显微学报,1997,16(1):44-48.
    顾继友.胶粘剂与涂料[M].中国林业出版社,1999
    郝晓秀.光(温)致变色材料的合成及其在防伪纸中的应用研究[D].天津:天津科技大学,2005.
    郝志峰,杨阳,余坚,等.甲酚红-硼酸体系可逆热致变色颜料的研究[J].精细化工,2004,21(4):241-244,248.
    郝志峰,余坚,余林,等.结晶紫-硼酸复配物的固相合成及其热变色性能[J].精细化工,2005,22(2):95-98.
    胡智荣,陈声宗,钟旭东.低温可逆变色涂料的研究[J].湖南大学学报(自然科学版),2000,27(1):35-39.
    胡智荣,钟庭秀,李玉平,等.水性低温可逆示温涂料的研究[J].涂料工业,2001,31(10):21-23.
    贾宁.热敏“动态”变色涂料的应用[J].网印工业,2000,(6):32-33.
    姜鲁勇,华曦,奚关根,等.手性热变色液晶的合成及配方Ⅰ.光活性对烷基和对烷氧基苯甲酸的烷基酚酯类[J].华东理工大学学报,1994a,20(1):114-119.
    姜鲁勇,华曦,奚关根,等.手性热变色液晶的合成及配方Ⅱ.光活性对烷基联苯甲酸的烷基酚酯类及烷氧基酚酯类[J].华东理工大学学报,1994b,20(1):119-127.
    李凤生.微纳米粉体后处理技术及应用[M].北京:国防工业出版社,2005
    李青,马晓光.低温热敏变色材料复配物的制备研究 [J].染整技术,2009,31(6):1-5.
    李文戈,朱昌中,王文芬,等.可逆热致变色材料[J].功能材料,1997,28(4):337-341.
    梁治齐,李金华.功能性乳化剂与乳状液[M].北京:中国轻工业出版社,2000
    刘军,赵曙辉,李文刚,等.结晶紫内酯可逆热变色复配物的DSC研究[J].印染助剂,2003,20(6):39-41.
    刘优昌,布岩,薛璐,等.新型功能材料——变色材料在纺织品中的应用[J].中国纤检,2011,(19):77-79.
    刘志佳.温致变色木材的制备和机理研究[D].北京:中国林业科学研究院,2010a.
    刘志佳,鲍甫成,傅峰.温致变色杨木单板浸渍工艺[J].林业科学,2012,48(1):143-147.
    刘志佳,鲍甫成,卢克阳,等.温敏可逆变色的木质儿童浴盆:中国,201719134U[P].2011-01-26.
    龙玲,万祥龙,王启宝,等.纳米TiO2对水性木器漆涂饰单板耐光色牢度的影响[J].木材工业,2010,24(1):11-14.
    卢克阳,傅峰,刘志佳,等.温敏可逆变色木质温度指示牌:中国,201724743U[P].2011-01-26.
    卢克阳,傅峰,刘志佳,等.温敏可逆变色木质防伪标签:中国,201765752U[P].2011-03-16.2011-03-16.
    卢灢泉,邓振华.实用红外光谱解析[M].电子工业出版社,1989
    罗利荣.一种变色木地板:中国,202055473U[P].2011-11-30.
    毛庆禄,赵贵文.可逆热变色材料[J].化学世界,1994,35(4):169-172.
    裴婷.乙基纤维素-无机变色材料微胶囊制备原理及制备技术研究[J].印染助剂,2009,26(5):39-42.
    濮维忠,夏文健.一种具有感应变色功能的地板:中国,201447834U[P].2010-05-05.
    乔吉超,胡小玲,管萍.工艺参数对可逆示温微胶囊性能影响的研究[J].微细加工技术,2007,(3):43-47.
    乔吉超,胡小玲,管萍,等.可逆示温微胶囊的制备及性能研究[J].微细加工技术,2008,(1):40-44.
    任会萍,高艳阳,何三雄.溴甲酚酯类复配物制备及其热变色性能的研究[J].化工新型材料,2008,36(2):55-57.
    任晓文主编.药物制剂工艺及设备造型[M].北京:化学工业出版社,2010
    阮亮.液晶的热色效应及其应用[J].物理,1998,27(8):483-489.
    宋健.微胶囊包合型可逆热变色材料的研究[D].大连:大连理工大学,1995.
    宋健,刁大杰,李光天,等.复凝聚法制备热变色色素微胶囊的研究[J].染料工业,1996,33(1):9-13.
    宋健,李光天.可逆热变色复配物变色机理的研究——相变与变色现象之间的关系[J].染料工业,1998,35(4):11-13.
    隋震.一种变色地板:中国,202117283U[P].2012-01-18.
    孙英瀚.温感变色地板的制造方法:中国,101116988[P].2008-02-06.
    王斌峰,李灵炘.利用胆甾型液晶制做变色织物[J].液晶通讯,1993,1(4):46-49.
    王春燕,陈忻,刘爱文.含钴低温可逆示温涂料的研究[J].广东化工,2009,36(8):47-48.
    王昉,杜江燕,孙其昌,等.用示差扫描量热法测定甲酚红-碱土金属离子-十六醇体系的热变色性[J].分析仪器,2002,(1):26-28.
    王昉,杜江燕,周志华.三种可逆热变色复配物的DSC研究[J].化学世界,2001,42(12):627-629.
    王建基,张玉红,朱斌荣.助剂对热敏绿变色的影响研究[J].内蒙古师范大学学报(自然科学汉文版),2002,31(2):137-140.
    王凯军.热致变色复配物的配制及微胶囊化研究[D].苏州:苏州大学,2008c.
    王凯军,张明祖,管丹.热致变色材料制备及微胶囊包封[J].印染助剂,2008a,25(7):41-44.
    王凯军,张明祖,管丹.可逆热致变色复配物的制备及微胶囊化研究[J].精细与专用化学品,2008b,16(7):24-26.
    王磊,王建春,龚松仪,等.二氧化钒温致变色材料在纺织领域的应用研究[J].中国科技博览,2009,(17):118.
    王士舫,董自励.科学技术发展简史(第三版)[M].北京:北京大学出版社,2010
    王小青,任海青,赵荣军,等.毛竹材表面光化降解的FTIR和XPS分析[J].光谱学与光谱分析,2009,29(7):1864-1867.
    王雪良.热变色性材料在纤维中的应用[J].印染译丛,1994,(4):87-88.
    王引卫,张团红. S/O型可逆热变色微胶囊的制备与性能[J].材料科学与工程学报,2011,29(3):445-447.
    王瑛.热致变色染料及其液晶聚合物的合成与性能研究[D].沈阳:东北大学,2005.
    王振邦.人-机-环境工程设计中环境条件与人的工效问题[J].系统工程与电子技术,1988,(3):39-47.
    文得.新颖液晶变色衣[J].光的世界,1992,10(3):22.
    吴宝龙,吴赞敏,冯文昭.有机热敏变色材料及应用(下)[J].染整技术,2008a,30(9):15-17,31.
    吴宝龙,吴赞敏,冯文昭.有机热敏变色材料及应用(上)[J].染整技术,2008b,30(8):12-15.
    吴雅红,郝志峰,余坚,等.固相法合成孔雀石绿-硼酸复配物及其热变色性能的研究[J].江苏化工,2005,33(1):26-29,32.
    吴赞敏,吕小卓,冯文昭.热敏变色整理剂的研制[J].纺织学报,2009,30(1):91-96.
    席喆,管萍,胡小玲.示温材料的制备及示温原理[J].化学工业与工程,2009,26(6):547-553.
    徐栋,陈宏书,王结良.变色材料的研究进展[J].兵器材料科学与工程,2011,34(3):87-91.
    许时婴,张晓鸣,夏书芹,等.微胶囊技术:原理与应用[M].化学工业出版社,2006
    杨锦钊.热变色材料在纤维上的应用[J].国际纺织品动态,1993,(2):39-40.
    杨蕾.热变色性材料在纤维中的应用[J].江苏印染,1993,(1):43-44.
    杨涛.热变色材料在塑料中的应用[J].塑料助剂,2007,(1):50-51.
    杨文斌,吴秋宁,邓锡贤,等.一种智能型可逆热致变色木塑复合材料:中国,102634126A[P].2012-08-15.
    杨旭.结晶紫内酯微胶囊的制备及变色性能研究[D].苏州:苏州大学,2009.
    尹冬冬.有机化学下[M].北京:高等出版社,2010
    于永,高艳阳.结晶紫-硼酸体系的热变色性能研究[J].江苏化工,2006,(30):12-15,18.
    于永,高艳阳.孔雀石绿-硼酸体系的热变色性能研究[J].化工技术与开发,2007,36(5):19-25.
    俞书宏,张康林,钱逸泰.热变色胆甾相液晶的制备及微囊化技术的研究[J].高分子材料科学与工程,1999,15(5):151-153.
    张宝砚,李远明,姜功臣,等.以孔雀绿内酯为变色剂的可逆示温涂料的研究[J].涂料工业,1997,(1):9-10.
    张法林.胆甾型液晶热变色材料的开发及在织物上的应用[J].染料工业,1994,31(5):7-10,42.
    张慧萍,李正宇,李永明,等.无机低温热变色材料的研究及应用[J].云南师范大学学报:自然科学版,2000,20(5):59-61.
    张康林,俞书宏,冀亚飞.胆甾相液晶颜色图象与组成、温度关系的研究[J].安徽化工,1994,(4):21-24.
    张乐显.可逆热致变色材料的制备及其在防伪领域的应用研究[D].武汉:华中科技大学,2009.
    张团红,胡小玲,杨峰,等.低温敏感示温材料的研究[J].涂料工业,2007,37(1):11-13.
    郑冀,梁辉,马卫兵,等.材料物理性能[M].天津:天津大学出版社,2008
    周达飞.材料概论(第二版)[M].北京:化学工业出版社,2009
    周公度.结构和物性——化学原理的应用(第三版)[M].北京:高等教育出版社,2009
    周益春,郑学军.材料的宏微观力学性能[M].北京:高等教育出版社,2009
    朱明,杨代军.一种新型的低温可逆变色油墨的研制[J].四川师范大学学报(自然科学版),2002,25(5):518-520.
    朱谱新.染织色彩原理及配色[M].北京:中国纺织出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700