凝聚炸药起爆过程的电导率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容如下:
     1.通过大量实验,结合同轴测试方法和平面测试方法的优点,确定了电导率测试量计的设计形式和装配方式,初步建立了凝聚炸药起爆过程电导率研究的平面测试方法。实验得到的电压波形重复性较好,干扰信号明显减少,较好地反映了炸药冲击起爆过程爆轰产物中导电相的变化情况。实验结果表明,该方法可以用于凝聚炸药起爆过程的电导率研究。
     2.运用所建立的平面测试方法得出了不同加载条件下TNT炸药起爆过程和相同加载条件下RHT-906、JO-9159和JB-9014炸药起爆过程的电导率。实验结果表明,TNT、RHT-906和JO-9159炸药起爆过程的电压和电导率的变化趋势是基本一致的,但与JB-9014炸药存在明显的区别。JB-9014炸药冲击起爆过程电压波形的两次快速下降,以及电导率的两个明显峰值区域,可能是爆轰产物膨胀过程中部分炸药继续反应的原因。随着起爆压力的降低,TNT炸药起爆过程的最大电导率减小。在相同冲击加载条件下,RHT-906炸药起爆过程的最大电导率比TNT小。电导率实验结果初步得到了TNT和JO-9159炸药爆炸的化学反应时间,四发TNT的实验结果分别为0.11μs、0.12μs、0.16μs和0.15μs,而JO-9159炸药爆炸的化学反应时间约为0.0875μs。
     3.对含铝炸药起爆过程的电导率进行了研究。实验结果表明,RDX中加入铝粉后电导率显著增加,并对含铝炸药中铝粉对电导率的影响机理进行了分析。初步得到了几种炸药起爆过程最大电导率的排列顺序:含铝炸药>TNT>RHT-906>JO-9159>JB-9014。
     4.建立了含铝炸药的爆轰模型。采用三项式点火增长模型,未反应炸药和反应产物均采用JWL状态方程,结合非线性有限元DYNA2D程序,对含铝炸药冲击起爆过程的反应度进行了数值模拟。结果表明,含铝炸药轴线上不同拉格朗日位置的反应度存在一些差异。模拟结果与实验结果进行比较,发现含铝炸药起爆过程的电导率变化与反应度之间具有密切的关系,电导率能够较好地反映含铝炸药的起爆过程。
The main works of this dissertation are as follows:
    1. On the basis of many experiments and by extracting the excellence from the scheme of coaxial and planar measurement, the design of the gauge and assembling mode were ascertained, and the experimental measuring method of electrical conductivity was established elementarily. The voltage waveform of the experiments repeated well, and the interference was reduced obviously, which showed the changing process of conductive phase of detonation products well. The method could be used in studying the electrical conductivity in shock initiation process of condensed explosives.
    2. The electrical conductivity in the shock initiation process of TNT explosive under different initial shock load and of RHT-906, JO-9159, and JB-9014 explosive under the same condition was recorded by using the scheme of planar measurement established. According to the experimental results, the changing trend of the voltage and electrical conductivity of TNT, RHT-906, JO-9159 was consistent on the whole, which was distinctive obviously with JB-9014. There were two fast decrease of the voltage profile and two obvious peak of the electrical conductivity in the shock initiation process of JB-9014 explosive, perhaps because partial explosive continued reacting in the expansion process of detonation products. The maximum electrical conductivity of TNT decreased with the reduction of initiation pressure. Compared with TNT explosive, the maximum electrical conductivity of RHT-906 explosive was smaller at the same loading condition. The reaction time of TNT explosive detonating was obtained, which was about 0.11μs, 0.12 μs, 0.16μs and 0.15 μs respectively in four experiments, and that of JO-9159 was about 0.0875 μs.
    3. The electrical conductivity profile in the shock initiation process of aluminized explosives showed that the maximum value increased obviously with addition of aluminum powder in RDX, and the influence mechanism was analyzed. According to the experimental result, the order of the maximum conductivity was obtained as follows: aluminized explosives > TNT > RHT-906 > JO-9159 > JB-9014.
    4. The detonation model of aluminized explosives was established. By Choosing the ignition and growth model of reaction, JWL equation of state of the explosive and detonation products, combined with the calculation method of finite element in DYNA2D, the reaction degree of aluminized explosives in the shock initiation process was simulated. As a result, the reaction degree of different Lagrange position in the axis had some difference. Comparing calculation result with the experiment, there was close relation between the reaction degree and the electrical conductivity in the shock initiation process of aluminized explosives. The electrical conductivity could reflect the initiation process of aluminized explosives well.
引文
1 S. D. Gilev and A. M. Trubachev. Study of physical-chemical transformations in detonation wave by the electric conductivity method[C]. In Proc.12th Symposium (International) on Detonation, 2002.
    
    2 R. L. Jameson, S. J. Lukasik, and B. J. Pernick. Electrical Resistivity Measurements in Detonating Composition B and Pentolite [J]. J. Appl. Phys., Vol. 35, Pt. 1, No 3, 1964, pp 714-720.
    
    3 R. L. Jameson. Electrical Measurements in Detonating Pentolite and Compsition B[C]. Proc. 3rd Symposium (International) on Detonation, pp. 120-137.
    
    4 F. E. Allison. Detonation Studies in Electric and Magnetic Fields[C]. Proc. 3rd Symposium (International) on Detonation.
    
    5 B. Hayes. On the Electrical Conductivity of Detonating High Explosives[C]. Proc. 3rd Symposium (International) on Detonation.
    
    6 B. Hayes. On the Electrical Conductivity in Detonation Products[C]. Proc. 4th Symposium (International) on Detonation. Office of Naval Research, ACR-126: Washington, 1967, pp 595-601.
    
    7 B. Hayes. Electrical Measurement in Reaction Zones of High Explosives[C]. Tenth Symposium (International) on Combustion, the Combustion Institute, 1965, pp 869-874.
    
    8 D. G. Tasker and R. J. Lee. High current Electrical Conduction of Pressed Condensed Detonating Explosives.
    
    9 D. G. Tasker, R. H. Granholm and R. J. Lee. The Fast Measurement of Electrical Conductivity Structure within the Detonation Zone of Condensed Explosive[C]. Shock Waves in Condensed Matter, 1987.
    
    10 D. G. Tasker and R. J. Lee. The Measurement of Electrical Conductivity in Detonating Condensed Explosives[C]. In Proc. 9th Symposium (International) on Detonation, 1989.
    
    11 D. G. Tasker, R. J. Lee, P. K. Gustavson. Measurement of Electrical Conductivity in Detonating Condensed Explosives[R]. NITS No: AD-A264 482/1/HDM.
    
    12 A. P. Ershov, P. I. Zubkov. Combustion, Explosion and Shock Wave 10 (6), (November-December 1974 P. 776).
    
    13 J. D. Johnson. Carbon in Detonations[C]. In Proceedings of the 1989 APS Topical Conference in Condensed Matter, Elsevier Science Publishers, B. V, 1992, p. 697.
    
    14 S. D. Gilev and A. M. Trubachev. Reaction zone in detonations of dense explosives[C]. In Proc. 12th Symposium (International) on Detonation, 2002.
    
    15 S. D. Gilev and A. M. Trubachev. High Electrical Conductivity of Trotyl Detonation Products [J]. Technical Physics, Vol. 46. No. 2001. pp. 1185-1189.
    
    16 S. D. Gilev and A. M. Trubachev. Detonation Properties and Electrical Conductivity of Explosive-Metal Additive Mixtures [J]. Combustion, Explosion, and Shock Waves.V6138, No. 2, pp. 219-234,2002.
    17 S.D. Gilev. The Development of a Method of Measuring a Condensed Matter Electro-conductivity for Investigation of Dielectric-Metal Transitions in a Shock Wave[J]. J. PHYS IV FRANCE 7, 1997, C3-211~216.
    18 Chang Hai, Li Baozhong. Study on the Reference Materials for the Electric Conductivity of the Powdered Explosive & Propellant[C]. Proceedings of the International Symposium on Test and Measurement v 6, 2003, pp 4574-4576.
    19 周霖,廖英强,徐更光,爆轰产物导电性的实验测量[J].含能材料,Vol.13,No.3,2005,6.
    20 孙业斌,惠君明等,军用混合炸药[M].北京:兵器工业出版社,1995.
    21 黄辉,黄勇,李尚斌,含纳米级铝粉的复合炸药研究[J].火炸药学报,第2期,2002.
    22 黄勇,黄辉,关立峰等,含铝炸药配方及性能研究[C].全国火炸药技术及顿感弹药学术研讨会论文集,2002.
    23 R.H. GUIRUIS, et al. Time-Dependent Equations of State for Aluminized Underwater Explosives[C]. Tenth Symposium (International) on Detonation. 1993.675-682.
    24 陈朗,张寿齐,赵玉华,不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击,Vol.19,No.3,1999.
    25 龙新平,VLW爆轰产物状态方程及纳米级铝粉含铝炸药爆轰特性研究[D].北京理工大学博士学位论文,1999.12.
    26 陈朗,龙新平,冯长根,蒋小华,含铝炸药爆轰[M].北京:国防工业出版社,2004.6.
    27 M.A. Cook. Aluminized explosives[J]. J. Phys. Chem., Vol. Ⅰ, NO. 1, p189-196, 1957.
    28 孙锦山,朱建士,理论爆轰物理[M].北京:国防工业出版社,1995.
    29 龙新平,何碧等,含铝炸药反应机理数值模拟研究[C].全国火炸药技术及顿感弹药学术研讨会论文集,2002.
    30 陈朗,冯长根等,含铝炸药爆轰数值模拟研究[J].北京理工大学学报,Vol.21,No.4,2001.8.
    31 苗勤书,徐更光,王廷增,铝粉粒度和形状对含铝炸药性能的影响[J].火炸药学报,2002,2.
    32 M. Cowperthwaite. Steady-state detonation in ammonium perchlorate/aluminum compositions with components in mechanical but not thermal equilibrium[C]. Eleventh Symposium (international) on Detonation. P 193-203, 1998.
    33 P.J. Miller. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives. MRS (Materials Research Society), p413-420, 1996.
    34 R.E. Duff and E. Houston. Measurement of the Chapman-Jouguet Pressure and reaction Zone Length in a Detonating High Explosive[J]. The Journal of Chemical Physics, Vol. 23, 1955, p1268-1273.
    35 A.N. Dremin and P. E Pokhil. Russ. J. Phys.Chem.34, 1206(1960).
    36 B.G. Craig. Measurements of the Detonation-Front Structure in Condensed-Phase Explosives[C]. Tenth Symposium on Combustion, 1965, p863-867.
    37 W.C. Davis, B. G. Craig, and J. B. Ramsey. Phys. Fluids 8, 2169 (1965).
    38 V. A. Veretennikov, A. N. Dremin, O. K. Rozanov, and K. Shvedov, Combust. Explos. Shock Waves(USSR)3, 1 (1967).
    39 V. M. Zaitsev, P. K Pookhil, and K. K. Shvedov, Proc. Acad, Sci. SUUR, Phys, Chem. Sect. 132, p529(1960).
    40 A.N. Dremin, V. M. zaitsev, V. S. Ilyukhin, and P. F. Pokhil. In Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1960), p610.
    41 W.C. Davis. In Sixth Symposium (International)on Detonation, ACR-221 (Office of Naval Research, Coronado, CA., 1976), p637.
    42 张振宁,王志兵,卢芳云.JO-9159炸药的初始密度对爆轰波反应区宽度影响的实验研究[J].高压物理学报,Vol.13.No.4,Dec., 1999,p268-271.
    43 P. C. Souers. A Library of Prompt Detonation Reaction Zone Data. UCRL-ID-130055 Rev 1, June 1998.
    44 P. C. Souers and R. Garza. Kinetic Information from Detonation Front Curvature[C]. Eleventh Symposium (Int)on detonation, 1998, p459-465.
    45 P. C. Souers. Size Effect and Detonation Front Cuurvature[J]. Propellents, Explosives, Pyrotechnics 22, 1997, p221-225.
    46 H. P. Eyring, R. B. Parlin. The stability of detonation, Chem. Rev., 1949, 45, 1369-181.
    47 S. A. Sheffied, D. D. Bloomquist. Subnanosecond Measure methods of Detonation Fronts in Solid High Explosives[J]. J Chem-phys, 1984, 80(8), p3831.
    48 W. L. Seitz, H. L. Stacy, et al. Detonation Reaction-Zone Structure of PBX-9502[C]. Ninth Symposium (International) on detonation. Portl and Orgegen: OCNR113291-7, 1989, p657-669.
    49 R. L. Gustavsen, S. A. Sheffield. Progress in Measuring Detonation Wave Profiles in PBX9501[C]. Eleventh Symposium (Int.) on detonation, 1998, p821-827.
    50 A. Utkin, S. Kolesnikov, S. Pershin and V. Fortov. Influence of initial density on the reaction zone for steady-state detonation of high explosives[C]. 12th Symposium (Int.) on detonation, 2002, 8.
    51 S. A. Sheffield, R. P. Engelke. Particle Velocity Measurements of the Reaction Zone in Nitromethane[C]. Twelfth Symposium (Int.) on detonation, 2002. LA-UR-02-4331.
    52 彭先其,马如超,刘俊,VISAR测试技术研究炸药反应区厚度[J].流体力学实验与测量,第17卷,第一期,2003年03月,p43-45.
    53 P. A. Persson, B. Andersson, S. O. Stahl. A Technique for Detailed Time-Resolved Radiation Measurements in the Reaction Zone[C]. Forth Symposium (Int.) on detonation, 1962, p602.
    54 I. M. Voskoboinikov, M. F. Gogulya. Radiation of the Shock Front in a Liquid near the Interface with a Detonating Charge[J]. Khimicheskaya Fizika (Russian Journal of Chemical Physics), Vol. 3, No. 7, 1984.
    55 S.N. Lubyatinsky and B. G. Loboiko. Detonation Reaction Zones of Solid Explosives[C]. Eleventh Symposium (Int.) on detonation, 1998, p836-844.
    56 赵同虎,张新彦,李斌,用光电法研究钝感炸药JB-9014反应区结构[J].高压物理学报,2002,Vol.16,No.2,p111.
    57 R. L. Gustavsen, S. A. Sheffidld. Embedded Electromagnetic Gauge Measurements and Modeling of Shock Initiation in the TATB Based Explosives LX-17 and PBX-9502[J]. Shock Compression of Condensed Matter, 2001.
    58 李忠鹏,组合式电磁粒子速度计及炸药冲击起爆过程研究[D].中国工程物理研究院硕士学位论文,2005.
    59 董海山,炸药及相关物性能[M].中国工程物理研究院科技丛书编辑部出版,2005.2.
    60 徐涛,程克梅,陈曙东,王晓川,赵颖彬,JO-9159炸药柱在加速老化条件下表面特性的变化[J].火炸药学报,第26卷第4期,2003.11.
    61 章冠人,陈大年,凝聚炸药起爆动力学[M].北京:国防工业出版社,1991.
    62 孙承伟,卫玉章,周之奎,应用爆轰物理[M].北京,国防工业出版社,2000.
    63 罗观,低易损性含铝炸药配方组成与性能关系研究[D].中国工程物理研究院硕士学位论文,2003.
    64 王蓉,李志鹏,电磁速度计法研究炸药爆轰产物粒子速度(内部资料).
    65 R.L. Jameson and A. Hawkins. Shock Velocity Measurements in Inert Monitors Placed on Several Explosives[C]. Fifth Symposium (Int.) on detonation, 1970, p23.
    66 曾代朋,非均质炸药起爆传爆过程的数值模拟研究[D].国防科技大学研究生学院硕士学位论文,2004.
    67 恽寿榕,涂侯杰,梁德寿,张汉萍,爆炸力学计算方法[M].北京理工大学出版社,1995.
    68 陈朗,蒋小华等,含铝炸药驱动金属平板实验与数值计算[J].北京理工大学学报.
    69 张振宁,炸药反应速率以及数值模拟技术阶段报告(内部资料).
    70 张振宁,DYNA2D程序使用手册(二维固体非线性动力学分析程序)[M].内部资料,1993,5.
    71 陈朗,含铝炸药爆轰性能研究.中国工程物理研究院流体物理研究所,冲击波与爆轰物理研究室,博士后出站报告(1999).
    72 J.S. Daniel. An Equation of State for Polymethylmethacrylate. UCID-16982, 1975.
    73 E. Lee, D. Breithaupt, C. Mcmillan, N. Parker, J. Kury, C. Tarver, W. Quirk, and J. Walton. The Motion of Thin Metal Walls and the Equation of State of Detonation Products. UCID-91490, 1985.
    74 张宝平,张庆明,黄风雷,爆轰物理学[M].北京:兵器工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700