多年多点条件下大豆脂肪酸含量QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是重要的经济作物,即是人类重要的植物蛋白和油分来源之一,又是重要的饲料作物。目前我国生产上脂肪酸品种还不能满足生产生活需要,迫切需要利用现代分子育种技术改良现有大豆品种的五种脂肪酸含量。大豆五种脂肪酸含量都属于多基因控制的数量性状,对其数量性状位点进行分析和定位,在分子辅助育种上具有重要指导意义。
     本研究利用源自美国大豆Charleston和中国优质品系东农594杂交获得的154个株系组成的重组自交系群体,在2007-2009年和3个不同的地点对大豆的脂肪酸含量进行了分析。得到了控制大豆五种脂肪酸含量的QTL。
     1.改进了大豆肪肪酸快速气相色谱分析方法。直接将磨碎豆粉中的脂质皂化、甲脂化后,利用色谱柱HP519091J-413,进行气相色谱分析。结果表明:软脂酸、硬脂酸、油酸、亚油酸和亚麻酸的出峰时间依次为6.57、7.83、8.73、8.86、9.06 min。这种方法的优点是快速、操作方便、节省药品,即使在较低的杂交世代样品很少,用普通法不易提取脂质时,此法也能顺利地完成分析工作。
     2.在三年三点条件下用气相色谱法测得大豆各株系子粒5种脂肪酸的含量,利用Win QTL Cartographer 2.5复合区间作图法(CIM)进行了QTL分析。结果共检测到68个相关的QTL位点,分布在18个连锁群上。多年多点同时检测到的QTL共有20个,其中控制软脂酸性状的3个QTL,包括qPal-C2-2、qPal-A1-1和qPal-N-1;控制硬脂酸性状的5个QTL,包括qSt-C2-1、qSt-D1a-1、qSt-B1-1、qSt-B1-2和qSt-F-1;控制油酸性状有5个,包括qOle-B2-1、qOle-C2-3、qOle-G-1、qOle-H-1和qOle-M-1;控制亚油酸性状的有3个,包括qLin-B1-1、qLin-C2-1,qLinN-1和qLin-H-1;控制亚麻酸性状的有3个,包括qLino-B1-1、qLino-C2-1和qLino-J-1。这些QTL的一致性较高,为特异脂肪酸含量标记辅助育种奠定了基础。在三年三点7个环境下,共定位了68个与大豆脂肪酸含量含量相关的QTL,有48个QTL只在一个环境中检测到,有20个QTL被多次检测到。说明在不同的环境条件下,控制大豆脂肪酸含量QTL的表达不同,进一步说明了大豆脂肪酸含量QTL受环境影响。
     3.本研究在三年三点7个环境下,有19个QTL存在环境互作,共发现45对脂肪酸QTL上位互作,发生在18个连锁群上。在上位互作中,检测到8对影响大豆软脂酸含量的上位互作位点,8对影响大豆硬脂酸含量的上位互作位点,12对影响大豆油酸含量的上位互作位点,11对影响亚油酸含量的上位互作位点,7对影响亚麻酸含量的上位互作位点,几乎覆盖所有连锁群。在这些上位互作位点中,绝大部分发生在不同的两条连锁群上,也有在一条连锁群上的两个位点,也发现同一位点与多个QTL位点发生互作。证明了上位互作方式的广泛性和复杂性。检测到了主效QTL也参与了上位性互作,进一步证实了主效QTL和上位性互作是数量性状重要的遗传基础之一。
     4.东北大豆品种五种脂肪酸含量在不同地区品种间差异均十分显著,并有较明显的地区性分布趋势。其中,软脂酸和油酸分布趋势是黑龙江>吉林>辽宁。硬脂酸和亚油酸是辽宁>吉林>黑龙江,亚麻酸为吉林>辽宁>黑龙江。
     脂肪酸组分相关分析结果:软脂酸与硬脂酸(r=-0.57)、软脂酸与亚油酸(r=-0.56)呈显著负相关,软脂酸与油酸正相关,与亚麻酸负相关,但是都未达显著水平。硬脂酸与油酸负相关,与亚油酸和亚麻酸负相关,但是均未达显著水平。油酸与亚油酸负相关达到极显著水平(r=-0.853),与亚麻酸负相关未达到显著水平。亚油酸与亚麻酸负相关达到了显著水平(r=-0.47)。
     通过关联分析,筛选到与脂肪酸组分关联的SSR标记共有33个。其中,与软脂酸相关联的有12个SSR标记;与硬脂酸含量相关联的标记有13个,与油酸相关联的SSR标记有18个,与亚油酸相关联的SSR标记有18个,与亚麻酸相关联的SSR标记有16个。本研究筛选到的与脂肪酸性状QTL共分离或紧密连锁的分子标记可供大豆脂肪性状品质性状育种中使用标记辅助选择时参考。本论文在以下获得了创新:
     1.改进一种快速测定大豆脂肪酸方法,首次使用色谱柱HP519091J-413在大豆脂肪酸含量的分析,且操作简便,需样品量少,分析时间短。
     2.在多年多点条件下,定位了大豆脂肪酸含量QTL68个,其中被多次检测到的有20个,将环境影响因素降低到最小,多次被检测到的QTL和筛选出的与SSR标记紧密连锁;并发现45对脂肪酸QTL上位互作,19个与环境互作位点。对大豆特异脂肪酸品种选育分子辅助育种有重要的意义。
Soybean is an important economical crop, which is the major plant protein and oil for people consumption, and material of feeding stuff. Nowadays, the varieties of high fatty acids soybean, can not afford the need of people’s life and production. Therefore, it is imperious demand to use modern breeding technology to modify the content of fatty acids in soybean. Fatty acids are quantitative traits which were controlled by many genes. It has important meaning for breeding application to map these quantitative traits in soybean linkage groups.
     The population of 154 recombination inbred lines derived from the cross of America cultivar Charleston and Chinese elite line Dongnong 594. Fatty acids content of the population, planted in three different sites, were analyzed during 2007 to 2009. QTL that underlying Fatty Acids content of soybean were found.
     1. This paper improved the analysis method, the rapid determination on fatty acids content by Gas Chromatography(GC) in Soybean. The grinded soybean meal was used as material for saponification and methyl esterification directly, then measured by chromatography column HP519091J-413. The results showed that: the peak time of palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid were 6.57, 7.83, 8.73, 8.86, and 9.06 min. The advantages of this method fast, operating easily, and medicine-saving. Furthermore, it could obtain good results with few samples, which is difficult to recover the lipids from common ways.
     2. Five kinds of fatty acid contents of 154 F14 and F15 lines crossed by Charleston(♀)×Dongnong594(♂) were measured by GC under the condition of three years and three sites. The QTL of fatty acids contents were analyzed with method of composite interval mapping (CIM) by Win QTL Cartographer 2.5. In total, 68 related QTL distributed on the 18 linkage groups were obtained. 20 QTLs were detected in different years or different sites, including 3 QTLs related with palmitic acid contents, qPal-C2-2,qPal-A1-1 and qPal-N-1; 5 QTLs related with stearic acid contents, qSt-B1-1, qSt-B1-2, qSt-D1a-1, qSt-C2-1 and qSt-F-1; 5 QTLs related with oleic acid contents, qOle-B2-1、qOle-C2-3、qOle-G-1、qOle-H-1 andqOle-M-1; 4 QTLs related with Linoleic acid contents, qLin-B1-1、qLin-C2-1,qLinN-1 and qLin-H-1, and 3 QTLs related with Linolenic acid contents, qLino-B1-1, qLino-C2-1, and qLino-J-1. These stable QTLs laid the foundation for specific fatty acid contents breeding by marker-assisted selection.
     68 underlying fatty acids content QTLs were mapped under the 3 years and 3 sites. Among them, 48 QTLs were located in one environment, 20 were detected repeatedly. The results implied that different QTL controlled the expression of soybean fatty acid content and the fatty acid content of soybean QTLs underdifferent environmental conditions.
     3. 19 were environmental interaction QTLs and 45 pairs epistatic QTLs, related with soybean under 7 environments of 3 years and 3 sites, were located on eighteen linkage groups. 8 pairs epistatic QTLs were related with soybean palmitic acid contents, and 8 pairs epistatic QTL were related with soybean stearic acid contents. 12 pairs epistatic QTLs were related with soybean oleic acid contents. 11 pairs epistatic QTLs were related with soybean linoleic acid contents in all linkage groups. In these epistatic loci, the vast majority occured in two different linkage groups, or in a linkage group on two sites, it also found that with a locus were interacted with many QTL loci. It confirmed the extension and complexity of epistatic way. Major effect QTLs, involved in the epistatic, confirmed the main effect and epistatic QTLs is the genetic basis of quantitative traits. 4. It reached very significant of five fatty acids content among varieties from different regions in Northeast China, and a more visible trend was found in the regional distribution. The trends of palmitic acid and oleic acid distribution were Heilongjiang > Jilin > Liaoning. Stearic acid and linoleic acid distribution were Liaoning >Jilin>Heilongjiang. And linolenic acid distribution were Liaoning >Jilin>Heilongjiang.
     Correlation analysis results of fatty acid composition: palmitic acid and stearic acid was significantly negatively correlated (r = - 0.57, r = - 0.56) with linoleic acid content. Palmitic acid was positively correlated with oleic acid and negatively correlated with linolenic acid, but they are not significant negative correlation. Stearic acid was negatively correlated with oleic acid (r = -0.853), but none were significant negative correlation. Oleic acid was negatively correlated with linoleic acid (r = - 0.47).
     33 SSR markers were associated with the fatty acids composition. 12 SSR markers were associated with palmitic acid; 13 markers were associated with stearic acid, 18 SSR markers were associated with oleic acid, 18 SSR markers were associated with linoleic acid, and 16 SSR markers were associated with linolenic acid QTLs. In this study, the QTLs isolated or tightly linked molecular markers can be used for marker-assisted selection of soybean quality breeding.
     The paper obtained the Innovation in the following:
     1. Improved methods for papid Determination of soybean fatty acid. For the first time using the column HP519091J-413 in the analysis of soybean fatty acids, and it was easy to operate, less sample, and short analysis times.
     2. In multiple years and and sites, the mapping 68 QTLs of the fatty acid content of soybean, of which were repeatedly detected, 20 QTLs, will minimize the environmental impact factors, many QTLs were detected and screened with SSR markers closely linked; and detected 45 pairs of epistatic QTL fatty acids, 19 QTLs of interaction with the environment. These results were important in soybean molecular breeding with specific fatty acids.
引文
陈霞. 1996,黑龙江省主栽大豆品种脂肪、脂肪酸组分的测定及其相关性的分析.大豆科学, 15(1)91~95
    陈恒鹤,尹丽华,王大秋,等. 1991,大豆蛋白质及脂肪含量的遗传和选择效果研究Ⅱ. 早世代的变异与选择.大豆科学, 10(1): 1~9
    陈庆山,张忠臣,刘春燕等. 2005,应用Charleston×东农594重组自交系群体构建大豆遗传图谱.中国农业科学, 38(7): 1312~1316
    崔昌浩,田晶,徐龙权. 2007,气相色谱法在检测细胞脂肪酸及菌种鉴定中的应用.大连轻工业学院学报, 26(2): 104~107
    方宣钧,吴为人,唐纪良. 2001,作物DNA标记辅助育种.北京:科学出版社高用明,朱军. 2000,植物QTL定位方法的研究进展.遗传, 22(3): 175~179
    高用明. 2001,复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.浙江大学博士学位论文
    高运来,陈庆山. 2009,东北农业大学硕士毕业论文
    高运来,姚炳晨,陈庆山. 2009,黑龙江省主栽大豆品种遗传多样性的SSR分析.植物学报
    高运来,朱荣胜,陈庆山. 2009,黑龙江部分大豆品种分子ID的构建.作物学报35(2): 211~218
    关媛,鄂文弟,王丽侠,等. 2007,中国东北大豆育成品种遗传多样性和群体遗传结构分析.作物学报, 33(3): 461~468
    郭龙彪,罗利军,邢永忠等. 2003,水稻重要农艺性状的两年QTL剖析.中国水稻科学, 17(3): 211~218
    韩雪芹,林延慧,张礼凤,等. 2008,山东省不同年代栽培大豆SSR标记遗传多样性分析. 中国农学通报, 24: 74~77
    何平,李晶昭,朱立煌. 1999,影响水稻花药培养力的数量性状基因座位间的互作.遗传学报, 26(5): 524~538.
    胡明祥. 1986,我国大豆品种脂肪酸组成的分析研究.吉林农业科学, (1): 12~17
    黄志斌,李淡秋. 1990,快速制备脂肪酸甲酯用于气相色谱分析.水产学报, 14(1): 40~43
    蒋洪蔚,李灿东,陈庆山. 2009,大豆导入系群体芽期耐低温位点的基因型分析及QTL定位. 35 (7): 1268~1273
    康明. 2006,大豆油酸亚麻酸遗传相关与QTL定位.东北农业大学硕士学位论文
    李梦,林飞,黄菊. 2008, QTL精细定位影响因素的数学模型.中国农业科学, 41(2): 340~346
    李传仁,王芳. 2008,大豆百粒重与主要农艺性状的关联度及相关性分析.现代农业科技, (13)202~203
    李文滨,郑宇宏,韩英鹏. 2008,大豆种质资源脂肪酸组分含量及品质性状的相关性分析.大豆科学, 27(5): 740~745
    李晓辉,李新海,高文伟,等. 2005,玉米杂交种DNA指纹图谱及其在亲子鉴定中的应用. 作物学报, 31(3):386~391
    李云海,肖晗,张春庆. 1999,用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异. 植物学报, 41 (10):1061~1066.
    林红,来永才,齐宁,等. 2005,黑龙江省野生大豆,栽培大豆高异黄酮种质资源筛选.植物遗传资源学报, 6(1): 53~55
    刘峰,陈受宜. 2000,大豆的基因组研究.生物工程进展, 20(5): 16~20
    刘峰,庄炳昌,张劲松等. 2000,大豆遗传图谱的构建和分析.遗传学报, 27(11): 1018~1026
    刘金,关建平,徐东旭,等. 2008,小扁豆种质资源SSR标记遗传多样性及群体结构分析. 作物学报, 34(11): 1901~1909
    刘长友,王素华,王丽侠,等. 2008.中国绿豆种质资源初选核心种质构建.作物学报, 34(4): 700~705
    刘定富等译. 1988,《生统遗传学》.第二版.科学出版社
    吕景良,邵荣春,吴百灵,等. 1990,东北地区大豆品种资源脂肪酸组成的分析研究.作物学报, 16(4)349~355
    彭琛琛. 2009,大豆脂肪及脂肪酸组分含量的遗传学研究进展.科技经济市场, (8): 53~56
    乔利仙,翁曼丽,孔凡娜,戴继勋,王斌. 2007, RSAP标记技术在紫菜遗传多样性检测及种质鉴定中的应用.中国海洋大学学报, 37(6)
    秦君,李英慧,刘章雄,等. 2009,黑龙江省大豆种质遗传结构及遗传多样性分析.作物学报, 35(2): 228~238
    任君. 2005,大豆油分含量SSR标记与QTL定位研究.山西农业大学硕士学位论文
    师治贤,刘梅,胡凤祖,等. 2004,青藏茶子种子中的脂肪酸含量分析.西北植物学报, 24(1): 149~151
    宋万坤,朱命喜,陈庆山,等. 2008,大豆饱和脂肪酸组分改良研究进展.生物技术通报增刊, 18~21
    宛煜嵩. 2002,大豆遗传图谱的构建及若干农艺性状的QTL定位分析.中国农业科学院博士学位论文
    王颢. 2007,甘肃省大豆种质资源脂肪酸组成及评价.甘肃科技, 3(7) : 211~213
    王毅,姚骥,张征锋,等. 2006,基于玉米综合QTL图谱的比较分析及株高QTL的统合分析.科学通报, 51(15):1776~1786
    王英,庄南生,高和琼,等. 2007,甘蔗种质遗传基础的ISSR分析.湖南农业大学学报, 33
    王立新,李云伏,常利芳,等. 2007,建立小麦品种DNA指纹的方法研究.作物学报, 33(10): 1738~1740
    王宁惠. 2006,油菜籽中脂肪酸含量的气相色谱分析.青海农林科技, 4: 35~36
    王晓燕,张彩英,贾晓艳. 2007,河北省大豆品种脂肪酸组成与含量分.河北农业大学学报, 30(2): 15~18
    王子迎,王源超,张正光,等. 2007,中国和美国大豆疫霉群体遗传结构的ISSR分析, 15(3): 215~223
    邬贤梦,官春云,李询. 2003,油菜脂肪酸品质改良的研究进展.作物研究, 17(3):152~158
    吴晓雷. 2000,大豆高密度遗传图谱构建和重要农艺性状基因定位、大豆属进化关系的研究.中国农业大学博士学位论文
    吴晓雷. 2001,大豆遗传图谱的构建和分析.遗传学报, 28(11):1051~1061
    谢锡怡. 2000,油脂科技的动态与展望.中国粮油学报, 15(5):l~5
    辛大伟. 2007,大豆生育期的QTL分析.东北农业大学硕士毕业论文
    邢晓燕,回瑞华,侯冬岩. 2006,几种稻米中脂肪酸的研究.鞍山师范学院学报, (4): 43~45
    邢永忠. 1999,用分子标记剖析水稻重要农艺性状的遗传基础.华中农业大学博士学位论文
    徐杰,胡国华,张大勇. 2006,大豆籽粒发育过程中脂肪酸组分的累积动态.作物学报, 32(11): 1759~1763
    徐宁,程须珍,王丽侠,等. 2009,用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用.作物学报, 35(2): 219~227
    徐鹏,王慧,李群. 2007,大豆油份含量QTL的定位.遗传学报, 29(1): 92~96
    徐云碧,朱立煌编. 1994,分子数量遗传学.中国农业出版社
    薛恩玉,李文华,姜妍. 2006.黑龙江省大豆育成品种农艺性状演化趋势.大豆科学, 25(4): 445~449
    严建兵. 2003,玉米杂种优势遗传基础及玉米与水稻比较基因组研究.华中农业大学博士学位论文
    杨柳,张彬彬,韩英鹏,等. 2008,大豆亚麻酸含量的QTL分析.大豆科学, 27(3): 270~278
    杨俊品. 2001,玉米分子遗传图谱构建及数量性状基因定位.博士论文
    殷剑美,陈旭升,狄佳春,等. 2007,杂交棉苏杂118的SSR指纹图谱构建.江苏农业科学, 4: 29~30
    于海芹,张天柱,魏春雁,等. 2005, 3种碱蓬属植物种子含油量及其脂肪酸组成研究.西北植物学报, 25(10): 2077~2082
    张镝,丁毅. 2007,基于AFLP标记的中国西藏近缘野生大麦遗传多样性分析.遗传, 29(6):725~730
    张军,赵团结,盖钧镒. 2008,中国东北大豆育成品种遗传多样性和群体遗传结构分析。作物学报, 34(9): 1529~1535
    张彦,郭士伟,何冰. 2006,利用SSR标记建立杂交水稻分子指纹图谱数据库.江苏农业学报, 22 (2) : 181~183
    张德水,董伟,惠东威. 1997,用栽培大豆与野生大豆间的杂种F2群体构建基因组分子标记连锁图谱框架图.科学通报, 42(2): 1326~1330
    张学杰,程传格,李法曾,等. 2003,蜀葵种油的脂肪酸组成分析.植物资源与环境学报, 12(3): 58~59
    张逸鸣,李英慧,郑桂萍,等. 2007,吉林省大豆育成品种的遗传多样性特点分析.植物遗传资源学报8: 456~463.
    张颖君,高慧敏,蒋春志,等. 2008,大豆种子脂肪酸含量的快速测定.大豆科学, 27(5): 859~862
    张玉山. 2006,水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建.华中农业大学博士学位论文
    张忠臣,战秀玲,陈庆山. 2004,大豆油分和蛋白性状的基因定位.大豆科学, 23(2): 81~85
    郑永战,盖钧镒,卢为国,等. 2006,大豆脂肪及脂肪酸组分含量的QTL定位.作物学报, 32(12): 1823~1830
    周蓉,王贤智,张小娟,等. 2007.湖北夏大豆种质SSR标记的遗传多样性研究.武汉植物学研究25: 544~549.
    朱军. 1998,复杂数量性状基因定位的混合线性模型方法.全国作物育种学术讨论会文集, 中国农业科技出版社,北京, 9~20
    朱军. 1999,运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版), 33(3): 327~344
    朱晓丽. 2006,大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位.东北农业大学硕士毕业论文
    庄炳昌. 2000,中国野生大豆的遗传多样性及品质性状的QTL定位.中国农业大学博士学位论文
    宗绪晓,关建平,王述民,等, Robert R Redden, Rebecca Ford. 2008.国外栽培豌豆遗传多样性分析及核心种质构建.作物学报, 34(9): 1518~1528
    Agrama H A,Eizenga G C,Yan W. 2007, Association mapping of yield and its components in rice cultivars.Mol Breed, 19: 341~356
    Alban C, Baldet P, Douce R. 1994, Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J, 300: 557~565
    Anderson J V, Lutz S M, Gengenbach B G, et al. 1995, Genomic sequence for a nuclear gene encoding acetyl-coenzyme a carboxylase in soybean. Plant Physiol, 109: 338
    Andrea J C, Joseph W B, Ana Maria C R, et al. 2006, Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci, 47: 304~310
    Arondol V, Lemieux B, Hwang I. 1992, Map-based cloning of a gene controlling omega-3 fatty acid deSaturation in Arabidopsis. Science, 58: 1353~1355
    Ashikari M, sakakibara H, Lin S, et al. 2005, Cytokinin oxidase regulates rice grain production.Science, 29(309): 741~750
    Ashton A R, Jenkeins C L D, Whitfield P R. 1994, Moleculer cloning of two defferent cDNA for maize acetyl-CoA carboxylase. Plant Mol Biol, 24: 35~49
    Auld D L, Heikkinen M K, Eriekson D A, et al. 1992, RaPeseed mutant with reduced levels of PolyunSaturated fatty acid and increased levels of oleic acid.Corp Scin, 32: 657~662
    Berberich T, Harada M, Sugawara K, et al. 1998, Two maize genes encodingω-3 fatty acid deSaturase and their differential expression to temperature. Plant Mol Biol, 36: 297~306
    BGuo D A, Sleper P, Lu J G, et al. 2006, QTLs Associated with Resistance to Soybean Cyst Nematode in Soybean: Meta-Analysis of QTL location. Crop Science, 46: 595~602
    Bilyeu K D, Palavalli L, Sleper D A, et al. 2003, Three microsomal omega-3-fatty acid deSaturase genes contribute to soybean linolenic acid levels. Crop Sci, 43: 1833~1838
    Bink MCAM, Janss LLCM Quaas RL. 2000, Markov chain Monte Carlo for mapping a quantitative trait locus in outbred populations. Genet Res, 75: 231~241
    Bleibaum J L, Genez A, Fayet-Faber J, et al. 1993, Modifications in palmitic acid levels via genetic engineering ofβ-ketoacyl-ACP synthases. ln Abstracts, National Plant Lipid Symposium, Minneapolis, MN
    Bostein D, White R I, Skolnixkm. 1993, Construction of genetic linkage map in man using restriction fragment length polymorphism. Amer Genet, 32: 314~318
    Breseghello F, Sorrells M E. 2006, Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.)cultivars.Genetics, 172: 1165~1177
    Broadwater J A, Ai J, Loehr T M, et al. 1998, Peroxodiferric intermediate of stearoyl-acyl carrier protein△9 -deSaturase : oxidase reactivity during single turnover and implications for the mechanism of deSaturation. Biochemistry, 37: 14664~14671
    Broun P, Gettner S, Somevrille C. 1999, Genetie engineering of Plnat lipids. Annu.Rev. Nutr, 19: 197~216
    Brummer E C, Graef G L, Orf J, Wilcox J R., Shoemaker R.C. 1997, Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations. Crop Sci, 37: 370~378
    Cahoon E B, Becker C K, Shanklin J, et al. 1994a, cDNAs for isoforms of the△9 - stearoyl-acyl carrier protein de Saturase from Thunbergia alata endosperm. Plant Physiol, 106:807~808
    Cahoon E B, Cranmer A M, Shanklin J, et al. 1994b, Hexadecenoic acid is synthesized by the activity of a soluble△6-palmitoyl-acyl carrier protein deSaturase in Thunbergia alata endosperm. J Biol Chem, 269: 27519~27526
    Cahoon E B, Lindqvist Y, Schneider G, et al. 1997, Redesign of soluble fatty acid deSaturases fromplants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA, 94: 4872~4877
    Cause M A, Fulton T M, Cho Y Q, et al. 1994, Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138: 1251~1274
    Chapman A, Pantalone U R, Ustun A, et al. 2002, Quantitative trait loci for agronomic and seed quality traits in an F2 and F4; soybean population. Euphytica, (90): l~7
    Chen L, Moon Y, Shanklin J, et al. 1994, Cloning and sequence of a cDNA encoding stearoyl-acyl carrier protein deSaturase from Glycine Max. Plant Physiol, 109: 1498 Chirstle,W W 1982, The analysis of simple lipid classes, Lipid analysis. Pergamon Prese Oxford, 83~86
    Chung C H, KimJ L, Lee Y C, et al. 1999, Cloning and characterization of a seed-specificω-3 fatty acid deSaturase cDNA from Perilla frutescens. Plant Cell Physiol, 40: 114~118
    Clough R C, Matthis A L, Barnum S R, et al. 1992, Purification and characterization of 3-ketoacyl-acyl carrier protein syn2thase III from spinach a condensing enzyme utilizing acetyl-Coenzyme-A to initiate fatty acid synthesis. J Biol Chem , 267: 20992~20998
    Cockerham C C, Zeng Z B. 1996, Design III with marker loci. Genet, 143: 1437~1456
    Concibido VC, La VB, Mclaird P. 2003, Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultival. Theor Appl Genet, 106(4): 575~582
    Conclbido V C, Denny R L, Boutin S R. 1994,DNA Marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycine Ichinohe). Crop Sci, 34: 240~246
    Corander J, Sillanpaa M J. 2002, A unified approach to joint modeling of multiple quantitative and qualitative traits in gene mapping. Theor. Biol. 218 (4): 435~461
    Cregan P B, Jarvik T, Bush A L, et al. 1999, An integrated genetic linkage map of the soybean genome.Crop Sci, 39: 1464~1490
    Csanadi G J, Vollmann G, Shift T, Le11ey. 2001, Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet, 103: 912~919
    Darvasi A, Soller M. 1997, A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 27: 125~132
    Dehesh K, Jones A, Kuntzon D S, et al. 1996, Production of high levels of 8:0 and 10:0 fatty acids in transfenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J, 9: 167~172
    Diers B W, Shoemaker R C. 1992, Restriction Fragment Length Polymorphism Analysis of Soybean Fatty Acid Content. JAOCS, 69(12): 1242~1244
    Dormann P, Voelker T A, Ohlrogge J B. 1995, Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Arch Biochem Biophys, 316: 612~618
    Egli M A, Gengenbach B G, Gronwald J W, et al. 1993, Characterization of maize acetyl CoA carboxylase. Plant Physial, 101: 499~506
    Eizenga G C, Agrama H A, Lee F N, et al. 2006, Identifying novel resistance genes in newly introduced blast resistant rice germplasm.Crop Sci, 46: 1870~1878
    Eldborough K M, Simon J W, Swinhoe R, et al. 1994, Studies on wheat acetyl-CoA carboxylase and the cloning of a partial cDNA. Plant Mol Biol, 24: 21~34
    Falconer D S. 1960, Introduction to Quantitative Genetics. 1st Ed. Oliver and Boyd, Edinburgh.
    Fan C C, Yu X Q, Xing X Y, et al. 2005, The main effects, epistatic effects and environmental interations of QTLs on the cooking and eatingquality of rice in a double-haploid line population. Theor Appl Genet, 110: 1445~1452
    Fisher R A. 1918, The correlations between relatives on the supposition of Mendelian inheritance. Trans. R.Soc.Edinb, 52: 399~433
    Flint-Garcia S A,Thuillet A C,Yu J M, et al. 2005, Maize association population: A high resolution platform for quantitative trait locus dissection. Plant J, 44: 1054~1064
    Fukuchi-Mizutani M, Savin K, Cornish E, et al. 1995, Senescence-induced expression of a homologue of△9-deSaturase in rose petals. Plant Mol Biol, 29: 627~635
    Fulco A J. 1969, The biosynthesis of unSaturated fatty acids by bacilli,I.Temperature induction of the deSaturation reaction. J Biology Chem, 244: 889~895
    Gelderman H. 1975,Investigation on inheritance of quantitative characters in animals by gene markers. I. methods. The Appl Genet, 46: 300~319
    Girke T, Schmidt H, Zahringer U, et al. 1998, Identification of a novel△6 -acyl-group deSaturase by targeted gene disruption in Physcomitrella patens. Plant J, 15: 39~48
    Goffinet B, Gerber S. 2000, Quantitative trait loci: a meta-analysis. Genetics, 155: 463~473.
    Gomieki P, Haselkorn R. 1993, Wheat acyl-CoA carboxylase. Plant Mio Biol, 22:547~552
    Grace E B, Robert G U. 2007, Effect of Temperature on Delta-9 Stearoyl-ACP and microsomal Omega-6 deSaturase gene expression and fatty acid content in developing soybean seeds. Crop Sci, 47: 1698~1704
    Gulliver B S, Slabas A R. 1994, A cetoacyl-acyl carrier protein synthase from avocado : its purification characteriSation and clear resolution from acetyl-CoA:ACP transacylase. Plant Mol Biol, 25: 179~191
    Haley C, Knott S. 1992, A simple regression method for mapping quantitative trait loci oflinked factors. Genet, 8: 299~309
    Hamada T, Kodama H, Takeshita K, et al. 1998, Characterization of transgenic tobacco with an increasedα-linolenic acid level. Plant Physiol, 118: 591~598
    Hansen L, von Wettstein-Knowles P. 1991, The barley genes Ad1 and Ad3 encoding acyl carrier peoteins I andⅢare located on different chromosomes. Mol Gen Genet, 229: 467~478
    Hartley J L, Temple G F, Brasch M A. 2000, DNA cloning using in vitro site-specific recombination. Genome Res, 10: 1788~1795
    Harwood J L. 1988, Fatty acid metabolism. Annu Rev Plant Physiol Mol Biol, 39: 101~138
    Harwood J L. 1996, Recent advances in the biosynthesis of plant fatty acid. Biochim Biophys Acta, 1301: 7~56
    Hellyer A, Slabas A. 1990, Acyl-[ acyl-carrier-protein] thioesterase from oil seed rape: purification and characterization. In: Plant Lipid Biochemistry , Structure and Utilization, Quinn P J,Harwood J L eds. Portland Press Limited, London , 160~162
    Heppard E P, Kinney A J, Stecca K L, et al. 1996, Developmental and growth temperature regulation of two different microsomal omega-6 deSaturase genes in soybeans. Plant Physiol, 110: 311~319
    Hlousek-Radojcic A, Post-Beittetmailler D, Ohlrogge D. 1992, Expression of constitutive and tissue specific acyl carrier protein isoforms in Arsbidopsis. plant physial, 98: 206~214
    Hoeschele I, Uimari P, Grignola F E, et al. 1997, Advances in statistical methods to map quantitative trait loci in outbred populations. Genet, 147: 1445~1457
    Hyten D L, Pantalone V R, Sams C E, Saxton A M, et al. 2004, Seed quality QTL in a prominent soybean population. Theor Appl Genet, 109: 552~561
    Ik-Young C, David L H, Lakshmi K M, et al. 2007, A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genet Soc Am, 176: 685~696
    Ishizaki-Nishizawa O, Fujii T, Azuma M, et al. 1996, Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial deSaturase. Nat Biotechnol, 14: 1003~1006
    Itoh R, Toda K, Takahashi H, et al. 1998,△9-fatty acid deSaturase gene containing a carboxyl-terminal cy2 tochrome b5 domain form the red alga Cyanidioschyzon merolae. Curr Genet, 33: 165~170
    Jansen R C. 1993, Interval mapping of multiple quantitative trait loci. Genet, 135: 205~211 Jansen R, Lister C, Dean C, et al. 1995, Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 91: 33~37
    Jaworski J G, Clough R C, Barnum S R. 1989, A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol, 90: 41~44
    Jessica A, Schlueter. et al. 2007, The FAD2 Gene Family of Soybean: Insights into the Structural and Functional Divergence of a Paleopolyploid Genome. Crop Sci, 47: 14~26
    Jonan W, Van O. 1999, LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity, 83: 613~624
    Jones A, Davies H M, Voelker T A. 1995, Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell, 7: 359~371
    Kabelka EA, Diers BW, Fehr WR et al..2004,Putative alleles for increased yield from soybean plant introductions. Crop Science, 44: 784~791
    Kao C H, Zeng Z B, Robert D. 1999, Multiple Interval Mapping for Quantitative Trait Loci.Genet. Research. 74: 279~289
    Karthik A, Richard F W, Joseph W B, et al. 2006, A Mutation in a 3-Keto-Acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci, 46: 2453~2459
    Katayoon D, Heeyoung T, Patricia E, et al. 2001, Overexpression of 3-Ketoacyl-Acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol, 125: 1103~1114
    Kater M M, Koningstein G M, Nijkamp H J J, et al. 1991, cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Mol Biol, 17: 895~909
    Kearsey M J. 1998, The principles of QTL analysis (a minimal mathematics approach). J.Exp. Bot. 49: 1619~1623
    Kempthorne O. 1957.An Introduction to Genetics Statistics. Wiley, New York Khush G S, Singh R J, Sur S C,et al. 1984, Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics, 107: 141~163
    Kinney A J. 1996, Development of genetically engineered soybean oil for food applications. Journal of Food Lipids, 3: 273~292
    Kirsch C, Hahlbrock K, Somssich I E. 1997, Rapid and transient induction of a parsley microsomal delta 12 fatty acid deSaturase mRNA by fungal elicitor. Plant Physiol, 115: 283~299
    Kirsch C, Takamiya-Wik M, Reinold S, et al. 1997, Rapid , transient , and highly localized induction of plastidialω-3 fatty acid deSaturase mRNA at fungal infection sites in Petroselinum crispum. Proc Natl Acad Sci USA, 94: 2079~2084
    Knney A J. 1996, Development of genetieally engineered soybena oil food applications.Food Lipids, 3: 273~292
    Knutzon D S, Bleibaum J L, Nelsen J, et al. 1992, Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol, 100: 1751~1758
    Kruijt M, Brandwagt B F, Wit P J. 2004, Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr-9 responsiveness. Genetics, 168(3): 1655~1663
    Kurata N, Nagamura Y, Yamamoto K, et al. 1994,300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 8: 365~376
    Lackey J A. 1980, Chromosome numbers in the Phaseoleae and their relation to taxonomy. Am J Bot, 67: 595~602
    Lander E S, Botstein D. 1989, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genet. 121: 185~199
    Lander E, Kruglyak L. 1995, Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet, 11: 241~247
    Lebowitz R J, Soller M and Beckmann J S. 1987, Trait-Based Analyses for the Detection of Linkage Between Marker Loci and Quantitative Trait Loci in Crosses Between Inbred Lines. Theoretical and Applied Genetics. 73: 556~562
    Lee J D, Bilyeu K, Shannon J G. 2007, Genetics and breeding for modified fatty acid profile in soybean seed oil J. Crop Sci. Biotech, 10(4): 201~210
    Li C C. 1955, Population Genetics, University of Chicago Press, Chicago
    Li Z K. 1997, Molecular analysis of epistasis affecting complex traits in Molecular Analysis of Complex Traits. Edited by AH PATERSON. 119~130
    Li Z L, Wilson R F, Rayford W E, et al. 2002, Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci, 42: 373~378
    Lindqvist Y, Huang W, Schneider G, et al. 1996, Crystal structure of△9-stearoyl-acyl carrier protein deSaturase from castor seed and its relationship to other di-iron protein. EMBO J, 15: 4081~4092
    Liu X M, Gill B S, Chen M S. 2005, Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6CD of wheat. Theor Appl Genet, 11(2): 243~249
    Los D A, Murata N, 1998. Structure and expression of fatty acid deSaturases. Biochim Biophys Acta, 1394: 3~15
    Lu H, Shen L, Tan Z, Xu Y, He P. 1996, Comparative mapping of QTL for agronomic traits of rice across environments using a doubled haploid population. Theorr Appl Genet. 93: 1211~1217
    MacKintosh R W, Hardie D G, Slabas A R, 1989, A new assay procedure to study the induction of b-ketoacyl-ACP synthase I and II, and the complete purification ofβ-ketoacyl-ACP synthase I from developing seeds of oilseed rape. Biochim Biophys Acta, 1002: 114~124
    Mansur L, Lark K G, Kross H, et al. 1993, Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.). Theor Appl Genet, 86: 907~913
    Mansur L, Orf M J, Chase H K. 1996, Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sciences, 36: 1327~1336
    Maria J, Monteros, Joseph W, et al. 2008 Molecular Mapping and Confi rmation of QTLs Associated with Oleic Acid Content in N00~3350 Soybean Published in Crop Sci, 48: 2223~2234
    Martinez O, Curnow R N. 1992, Estimation the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet , 85: 480~488
    Masayuki Shibata, kiyohiko Takayama, Aya ujiie, et al. 2008, Genetic relationship between lipid content and linolenic acid concentration In soybean seeds. Breeding science, 58: 361~366
    McCouch S R, Chen X, Panaud O, et al. 1997, MicroSatellite markers development mapping and applications in rice genetics and breeding. Plant Mol. Bio, 35: 89~99
    Mendoza D, Cronan Jr. 1983, Thermal regulation of membrane fluidity in bacteria.Trends Biochem Sci, 8: 49~52
    Mendoza D, Klages U A, Cronan J E. 1983, Thermal regulation of membrane fluidity in Escherichia coli.effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I, J Biol Chem, 258(4): 2098~2101
    Metcalice L D, et al. 1966, Rapid preparation of fatty acid esters from Lipids for gas chromatograph analysis Analytical Chemistry 38: 514~515
    Michelmore R, Paran I, Kesseli RV.1991, Identification of marker linked to disease resistance gene by bulk segregant analysis: a rapid mathod to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci. 88: 9828~9832
    Miguel A, Andrade, Chris Sander. 1997, Bioinformatics: from genome data to biological knowledge. Current Opinion in Biotechnology, 8: 675~683
    Miquel M,Borwse J. 1995, Moleeular biology of oil seed modifieation. Inform, 6(1): 109~111
    Mizutani M, Tasaka Y, Tanaka Y, et al. 1998, Characterization of△9-acyl-lipid deSaturase homologues from Arabidopsis thaliana. Plant Cell Physiol, 39: 247~253
    Murata N, Los D A. 1997, Membrane fluidity and temperature perception. Plant Physiol, 115(3): 875~879
    Murphy D J, 1994, Manipulation of lipid metabolism in transgenic plants:biotechnological goals and biochemical realities. Biochem Soc Trans, 22: 926~931
    Nikolau B J, Ohlrogge J B, Wurtele E S. 2003, Plant biotin-containing carboxylases. Arch Biochem Biophys, 414: 211~222
    Nishida I, Beppu T, Matsuo T, et al. 1992, Nucleotide sequence of a cDNA clone encoding a prescursor to stearoyl-(acyl-carrier-protein) deSaturase from spinach, Spinacia oleracea. Plant Mol Biol, 19: 711~713
    Nishida I, Murata N. 1995, Chilling sensitivity in plants and cynobacteria:the crucial contribution of membrane lipids. Ann Rev Plant Physiol Plant Mol Biol, 47: 541~568
    Nishiuchi T, Hamada T, Kodama H, et al. 1997, Wounding changes the spatial expression pattern of the Arabidopsis plastidω-3 fatty acid deSaturase gene (FAD7) through different signal transduction pathways. Plant Cell, 9: 1701~1712
    Ohlrogge J B, Browse J. 1995, Lipid biosynthesis. Plant Cell, 7: 957~970
    Ohlrogge J B, Somerville C R. 1991, The genetics of plant lipids. Biochim Biophys Acta, 1082: 1~26
    Orf J H, Diers B W, Boerma H R. 2004. Genetic improvement: conventional and molecular based strategies. In Soybeans: Improvement, Production, and Uses, 3rd edn. USA. American Society of Agronomy. Inc, pp 417~450
    Orf J H, et al. 1999, Genetics of soybean agronomic traits: comparison of three related recombinant inbred population. Crop Sci, 39: 1642~1651
    Page R A, Okada S, Harwood J L. 1994, Acetyl-CoA carboxylase exert strong flut control over lipid synthesis in planta. Biochim Biophys Acta, 1210: 369~372
    Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. 2005, Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 45: 2015~2022
    Panthee D. R, Pantalone V R, Saxton A M. 2006, Modifier QTL for fatty acid composition in soybean oil. Euphytica, 152: 67~73
    Paterson A H, Lander E S, Hewitt J D, et al. 1988, Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721~726
    Poirier Y, Dennis D E, Klomparens K, et al. 1992, Polyhydroxybutyrate, a biodegradablethermoplastic, produced in transgenic plants. Science, 256: 520~523
    Positive Bacteria:Physiology, Biochemistry and Molecular Biology, American Society for Microbiology Press, Wash-ngton, pp. 411~425
    Post-Beittetmailler D, Roughan P G, Ohlrogge J B. 1992, Regulation of plant fatty acid biosynthesis Analysis of acyl-Coenzyone A and Acetyl-CoA carrier protein substrate pools in spinach and pea chloroplasts. Plant physial, 100: 923~930
    Qi Z-M, Li H, Chen Q-S. An integrated map of soybean physical map and genetic map. Northeast Agric Univ ( in press)
    Qu S, Liu G, Zhou B, et al. 2006, The broad-spectrum blast resistance gene pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172(3): 1901~1914
    Qui B X, Arelli P R, Sleper D A. 1999, RFLP markers associated with soybean cyst nematode resistance and seed composition in a‘Peking’בEssex’population. Theor Appl Genet, 98: 356~364
    Rahman S M,Takagl Y, Kumamaru T. 1996, Low linolenate sourolces at the fan locus in soybean lines M-5 and IL-8. Breed Sci, 46: 155~158
    Reith M. 1993, Aβ-ketoacyl-acyl carrier protein synthase III gene (fabH) is encoded on the chloroplast genome of the red alga Porphyra umbilicalis. Plant Mol Biol, 21: 185~189
    Romagosa I, Han F, Ullrich S E, et al. 1999, Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross. Mol Breed, 5: 143~152
    Rudner L, Glass G V, Evartt D L, et al. 2002, A user’s guide to the meta-analysis of research studies. ER IC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, (http://www.edres.org/meta)
    Russell N J. 1984, Mechanisms of thermal adaptation in bacteri-a:blueprints for survival. Trends Biochem Sci, 3: 108~112
    Sachidanandam E, Weissman D, Schmidt SC, et al. 2001, A map of human genome sequence variation containing 1.42 million SNPs. Nature, 409: 928~933
    Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. 2004, Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 168: 2169~2185
    Sasaki Y, Hakamada K, Suama Y, et al. 1993, Chloroplast-encoded protein as a subunit acetyl-CoA carboxylase in pea plant. J Biol Chem, 268: 25118~25123
    Satagopan J M, Yandell B S, Newton M A, Osborn T C. 1996, Markov chain Monte Carlo approach to detect polygene loci for complex traits. Genet, 144: 805~816
    Sayanova O, Smith M, Lapinskas P, et al. 1997, Expression of a bor-age deSaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of △6-deSaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA, 94: 4211~4216
    Scherer D E, Knauf V C. 1987, Isolation of cDNA clone for acly carrier protein-I of spinach. Plant Mol Boil, 9: 127~134
    Schmid K M, Ohlrogge D B. 1990, A root acly carrier protein-II from spinach is also expressed in leaves and seeds. Plant Mol Moil, 15: 765~778
    Sebolt A M. Shoemaker R C. Diers B W. 2000, Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science, 40(5): 1438~1444
    Sen S, Churchill GA. A statistical framework for quantitative trait mapping. Genet, 2001, 159: 371~387
    Shan D P, Qi Z M, Qiu H M, Hu G H, Chen Q Sh. 2008,Epistatic Effects of QTLs and QE Interaction Effects on Oil Content in Soybean. Acta Agron Sin, 34(6): 952~957
    Shanklin J, Somerville C R. 1991, Stearoyl-acyl carrier protein deSaturase form higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA, 88: 2510~2514
    Shintani D K, Ohlrogge J B. 1994, Characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiology, 104: 1221~1229.
    Shoemkaer R C, Olson T C. 1993, Molecular linkage map of soybean (Glyeine max L.Merr),InO Bren S J ed Genetic Maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, 131~138
    Siggaard-Andersen M, Kauppinen S, von Wettstein-Knowles P. 1991, Primary structure of a cerulenin bindingβ-ketoacyl [acyl-carrier-protein] synthase from barley chloroplasts. Proc Natl Acad Sci USA, 88: 4114~4118
    Slabas A R, Chase D, Nishida I, et al. 1992, Molecular cloning of higher-plant 3-oxoacyl- (acyl-carrier-protein) reductase. Biochem J, 283: 321~326
    Slabas A R, Fawcett T. 1992, The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol, 19: 169~191
    Slocombe S P, Piffanelli P, Fairbairn D, et al. 1994, Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein deSaturase gene. Plant Physiol, 104: 1167~1176
    Soller M J, Beckmann J S. 1983, Genetic polymorphism in varietals identification and genetic improvement. Theorr Appl Genet, 67: 25~33
    Soller M, Brody T, Genizi A. 1976, On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theorr Appl Genet, 47: 35~39
    Somerville C R, Browse J. 1991, Plant lipids : metabolism , mutant, and membranes. Science, 252: 80~87
    Somerville C, Browse J, Jaworski J G. 2000, Lipids. Rockville M D: American Society of Plant Physiologists, 456~527
    Somerville C. 1995, Direct tests of the role of membrane lipid composition inlow-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci, 92(14): 6215~6218
    Song Q J, Marek L F, Shoemaker R C, et al. 2004, A new integrated genetic linkage map of the soybean. Theor Appl Genet, 109:122~128
    Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, German M, Orf J H, Lark KG. 2001, Soybean Response to Water: A QTL Analysis of Drought Tolerance Crop Science, 41: 493~509
    Spencer M M, Landau-Ellis D, Meyer E J, et al. 2004, Molecular Markers Associated with Linolenic Acid Content in Soybean. JAOCS, 81: 559~562
    Spencer M M, Pantalone V R, Meyer E J. 2003, Mapping the Fas locus controlling stearic acid content in soybean. Theor Appl Genet, 106: 615~619
    Sperling P, Schmidt H, Heinz E. 1995, A cytochrome-b5-containing fusion protein similar to plant acyl lipid deSaturases. Eur J Biochem, 232: 798~805
    Stojsin D,Luzzi B M,Ablett G R. 1998, Inheritance of 1ow linoleIlic acid level in the soybean line RG10. Crop Sci, 38: 1441~1444
    Stoutjesdijk P, Hurlstone C, Singh S P, et al. 2000, High-oleic Australian Brassica napus and B juncea varieties produced by co-suppression of endogenous 12-deSaturases. Biochemical Society Transactions, 28: 938~940
    Stuber C W, Moll R H, Goodman M M. 1980, Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.). Genetics, 95: 225~236
    Stuber C W. 1995, Mapping and manipulating quantitative traits in maize. Trends Genet, 11: 477~481
    Susana Casa L, Beatriz O Liveira. 2007,Fatty acids analysis by gas chroma-tography. Encyclopedia of Chromatography, 2: 1~15
    Suutari M, Laakso S. 1994, Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 20(4):285~328
    Tanksley S D, and Orton T J, et al. 1983, Lsozyme in plant genetics and breeding. Part B, Amsterdam
    Tanksley S D, Ganal M W, Prince J P, et al. 1982, Mvariation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity, 49: 11~25
    Thaller G, Hoeschele I. 1996, A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci. Methodology. 93: 1161~1166
    Thelen J J, Ohlorgge J B. 2002, Metabolie Engineering of Fatty Aeid Biosynthesis in Plants. Melabolci Egineering, 4: 12~21
    Thomas D C, Cortessis V A. 1992, Gi sampling approach to linkage analysis. Hum Hered. 42: 63~76
    Thompson E A. 1994, Monte Carlo likelihood in genetic mapping. Statist Sci, 9: 355~366
    Thompson G A, Scherer D E, Aken S F, et al. 1991, Primary structures of the precursors andmature forms of stearoyl-acyl carrier protein deSaturase form safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA, 88: 2578~2582
    Thomson M J, Edwards J D, Septiningsih E M, et al. 2006, Substitution mapping of QTL, a flowering time QTL associated with transgressive variation in rice, reveals multiple sub–QTLs. Genetics
    Thomson M J, Tai T H, McClung A M, et al. 2003, Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza Sativa cultivar Jefferson. Theor Appl Genet, 107: 479~493
    Thornsberry J M, Goodman M M,Doebley J, et al. 2001, Dwarf8 polymorphisms associate with variation in flowering time. NatGenet, 28: 286~289
    Topfer R, Martini N, Sehell J. 1995, Modifieation of Plant lipid synthesis. Science, 268: 681~686
    Uimari P, Hoeschele I. 1997, Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genet, 146: 735~743
    Voelker T A, Hayes T R, Cranmer A M, et al. 1996, Genetic engineering of a quantitative trait : metabolic and genetic parameters influencing the accumulation of laurate in rape seed. Plant J, 9: 229~241
    Vollmann J, Schausberger H, Bistrich H, et al. 2002, The presence or absence of the soybean Kunitz trypsin in hibitor as a quantitative trait locus for seed protein content. Plant Breed, 121: 272~274
    Wan X Y, Wan J M, Jiang L, Wang J K, et al. 2006, QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 112: 58~70
    Wang D L, Zhu J, Li Z K, et al. 1999, Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theorr Appl Genet, 1255~1264
    Wang Y G, Deng Q Y, Liang F S, et al. 2001, Molecular marker assisted selection for yield-enhancing genes in the progeny of Minghui63×O. rufipogo. Agric Sci China, 103: 75~83
    Weeden N F and R. 1987, Providenti: A marker locus, Adh–1,for resistance to pea enation mosaic virus. Pisum Newsletter, 19: 82~88
    Weller J I. 1986, Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 42: 627~641
    Wu W R, Li W M, Tang D Z et al. 1999, Time–related mapping of quantitative trait loci underlying tiller number in rice. Genet, 151: 297~303
    Wu W R, Li W M. 1994, A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theorr Appl Genet, 89: 535~539
    Wu W R, Li W M. 1996, Model fitting and model testing in the method of joint mapping of quantitative trait loci. Theorr Appl Genet, 92: 477~82
    Xing Y Z, Tan Y F, Hua J P, et al. 2002, Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor ApplGenet, 105: 248~257
    Xu Y. 1997, Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev, 15: 85~139
    Yadav N S,Wierzbicki A, Aergerter M. 1993, Cloning of higher plant omega-3 fatty acid deSaturase. Plant Physiol, 103: 467~476
    Yarmilla Reinprecht, Vaino W Poysa, Kangfu Yu, et al. 2006, Seed and agronomic QTL in low linolenic acisd lipoxygenase-free soybean (Glycine max (L.)Merrill ) germplasms. Genome, 49: 1510~1527
    Yu Y G, Saghai-Maroof M A, Buss G R. 1994, RFLP and micro Satellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 84: 60~64
    Yu, S B, Li J X, Xu C G, et al. 1997, Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci, 94: 922~931
    Zeng lu Li, Richard F, Wilson Warren E, et al. 2002, Molecular Mapping Genes Conditioning Reduced Palmitic Acid Content in N87-2122-4 Soybean polymorphism. Crop Sci, 42: 373~378
    Zeng Z B. 1993, Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl Acad Sci, 90: 10972~10976
    Zeng Z B. 1994, Precision mapping of quantitative trait loci. Genet, 136: 1457~1468
    Zhang P, Diers B W, Olson T C, et al. 1990, RFLP mapping in soybean: association between marker Loci and variation in quantitative traits. Genetics, 126: 735~742
    Zhang Q F, Hua J P, Yu S B, et al. 2001, Genetics and molecular basis of heterosis in rice. In: Rice genetics IV, Eds; Khush GS, Brar DS, Hardy B, IRRI, 173~185
    Zhu Y L, Song Q J, Hyten D L, et al. 2003, Single nucleotide polymorphisms in soybean. Genetics, 163: 1123~1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700