大豆花叶病(SMV)抗性基因鉴定、分子验证、基因聚合与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病(SMV)是全球主要大豆产区分布最广的病毒性病害之一。全球范围内大豆种质交流和新的强毒力病毒株系的不断出现,使大豆安全生产面临挑战。大豆花叶病毒归马铃薯Y病毒科(Potyviridae)、马铃薯Y病毒属(Potyvirus),寄主范围狭窄,主要局限于豆科植物。可通过受侵染的种子,蚜虫和机械接种传播。植株受SMV侵染后,通常出现三种反应:无症状或仅在接种叶有局部致死斑(抗病类),致死(局部致死或整株致死)及花叶症状(感病类)。大豆对SMV的侵染反应受寄主基因型、病毒株系、侵染时期和环境条件(特别是温度)的影响。依据一套大豆鉴别材料的表型反应,美国已鉴定出7个SMV病毒株系(G1-G7),而在中国和日本,利用不同的大豆材料鉴定出不同的病毒株系,但各地鉴定的株系之间的关系尚不清楚,有待建立统一的病毒株系鉴别体系。美国利用Cho & Goodman(1979)的鉴别体系已经鉴定出位于大豆不同连锁群(MLG-F,-B2,-D1b)上的3个抗性基因位点(Rsv1,Rsv3,Rsv4),并在Rsv1位点发现9个等位基因。对SMV和大豆互作中是否存在“一因多效”现象,国内外专家的认识存在分歧。中国学者认为大豆对不同病毒株系的抗性受不同基因控制,不存在“一因多效”现象,而美国专家认为,SMV抗性基因的作用是“多效的”。分子标记作图的结果表明,中国报道的抗性基因位点与美国鉴定的基因基本重合。
     本研究在美国大豆花叶病鉴别体系的基础之上,进行了如下研究:(1)发掘大豆种质中新的SMV抗病基因,为大豆抗SMV育种提供多样化抗源,提高大豆抵抗病毒侵袭的能力;(2)结合经典遗传研究,探讨利用与抗性位点紧密连锁的分子标记确定抗性基因的可能性;(3)利用分子标记辅助选择育种技术聚合多个抗性基因,创制大豆新抗源,为广谱持久抗性材料的选育提供有用的育种种质;(4)研究抗性基因杂合状态下,温度对致死反应的影响,深化对大豆抗病基因与病毒互作机制的认识。
     研究用6个株系(G1~G3,G5~G7)鉴定了127份大豆材料的抗性反应、甄别这些材料中携带的可能抗性基因。结果显示:84份材料携带Rsv1位点上的抗性基因,分别是Rsv1-y 42份, Rsv15份,Rsv1-k 19份,8份Rsv1-t, 8份Rsv1-r, 1份Rsv1-n, 1份Rsv1-h;Rsv3位点材料各3份;16份材料可能携带Rsv1, Rsv3,或Rsv4位点上的新基因,比较其与已报道的9个抗性基因对不同病毒株系的反应模式,发现其中9份材料(Kosuzu, Suzumaru, PI 398877, Jitsuka, Clifford, and Tousan 65, Cosica, PI 61944,和PI 61947)可能携带Rsv1位点的新基因,2份(PI 339870 and PI 399091)可能携带Rsv3位点的新抗性基因,5份(KAERI-GNT-220-7, PI 398593, PI 438307, Rhosa和Beeson)可能携带Rsv4位点的新抗性基因。另外,18份材料全抗6个株系,可能携带Rsv1-h, Rsv4, Rsv1Rsv3, Rsv1Rsv4,或Rsv3Rsv4基因。
     遗传等位测验显示中国大豆品种J05携带两个独立的大豆花叶病抗性基因Rsv1和Rsv3。研究利用分子标记证实J05携带两个抗性基因。用SMV-G1接种的F(2J05 x Essex)单株,结果很好地符合3:1的分离比例,Rsv1位点附近的三个SSR标记,Satt114, Satt510和Sat_154,可在亲本J05和Essex中扩增出多态性条带,并与F连锁群的基因紧密连锁,证实J05中含有SMV G1的抗性基因Rsv1;选感SMV-G1的F_2单株的F_(2:3)家系接种SMV-G7株系,表现型出现1:2:1的分离比例,证实J05中存在Rsv3并与B2连锁群的两个SSR标记Satt726和Sat_424紧密连锁;但与基因Rsv4紧密连锁的两个标记Satt296和Satt542与SMV的抗性分离表现相互独立,表明J05中不含Rsv4基因。Rsv1和Rsv3位点的这些标记可用于J05中SMV抗性基因选择和聚合的有效分子工具。
     试验以J05(Rsv1Rsv3)和V94-5152(Rsv4)做抗性基因供体,利用分子标记聚合Rsv1, Rsv3和Rsv4三个SMV抗性基因。用J05 x V94-5152的F_2:3, F3: 4,和F4:5家系筛选携带三个抗性基因的聚合个体。8个与三个抗性基因连锁的PCR标记被用于分子辅助选择。两个SSR标记(Sat_154和Satt5 10)和一个基因特异性标记(Rsv1-f/r)被用于筛选携带Rsv1的单株; Satt560和Satt063用于筛选Rsv3;Satt266, AI856415和AI856415-g用于筛选Rsv4。有五个F4:5家系在所有8个标记位点上都重合,推测可能已经聚合了3个SMV抗病基因。
     迄今在大豆种质中已鉴定出了3个SMV抗性基因位点,Rsv1, Rsv3和Rsv4。Rsv1位点的大多数基因对一些SMV株系(而非全部)表现抗病;Rsv3对G5- G7表现抗病,对G1- G4表现感病;Rsv4对G1-G7表现在幼苗早期抗病。Rsv1位点的抗性基因常表现剂量效应,出现杂合致死;而当与特定的SMV株系互作时,可出现纯合体的致死反应。
     研究利用一套Essex等基因系和F_1杂种,探究了在不同温度条件下SMV的致死反应与抗性基因的剂量效应(基因型纯合对基因型杂合)之间的关系。结果表明,SMV侵染导致的致死症状受外界温度的影响。SMV接种携带Rsv3和Rsv4的植株,不论基因纯合或杂合,在所有温度下皆表现无症状。在纯合状态下,V94-3971(Rsv1)、PI 96983 (Rsv1)和V262 (Rsv1-n)植株接种G7或G1后,茎尖致死转化成花叶的温度阈值中分别为30oC, 33oC和33oC。但在杂合状态下,G7接种的F_1(V94-3973 x Essex)的温度阈值为29oC;G7接种的F_1(Essex x PI 96983)为30oC;G1接种的F_1(V262 x Essex)为31oC。而且,在G1接种的F_1(V262 x Essex)和G7接种的F_1(V94-3973 x Essex)杂合体中,还观察到不完全致死症状,即致死和花叶症状是混合出现的。茎尖致死对温度的反应受抗性基因、基因剂量效应、和细胞核背景的影响,细胞质效应可能存在但很有限。
Soybean mosaic virus (SMV) is one of the most prevalent viral diseases in all major soybean-growing areas worldwide. Germplasm exchanges and continual appearances of new virulent SMV strains have caused significant challenges to security of soybean production worldwide. Soybean mosaic virus, classified as the genus potyvirus in the family potyviridae with narrow hosts, limited primarily to the leguminosea, was transmitted by infected seeds, aphids, and mechanical inoculation. A plant infected by SMV would show reaction of symptomless or local necrotic spots on inoculated leaves (resistant type), systematic necrosis (local necrosis or stem top necrosis), or mosaic symptom (susceptible type). Symptoms of plant infected by SMV are alternated by host genotype, virus strain, development stage of infected soybean plant, and environmental conditions, especially temperature. Based on the phenotypic reactions to a set of differential soybean genotypes, seven strains of SMV(G1-G7) were identified in the U.S. However, in China and Japan, different soybean genotypes were used for identification of SMV strains. But the relationship of SMV strains identified in different countries was unknown and uniformity of SMV differential system was expected. Three resistance genes, Rsv1, Rsv3, and Rsv4 located on the molecular linkage group(MLG) F, B2, and D1b, respectively, were identified in the U.S. on the base of SMV identification system of Cho and Goodman(1979), and nine alleles were reported at the Rsv1 locus. There are different perception on the interaction of SMV and soybean. In China, resistance to different SMV strains was presumed to be conditioned by different genes and there were no pleiotrophic effect on a resistance gene. However, in the U.S., SMV resistance genes were shown to be pleiotrophic,that is, two different reactions to separate SMV strains may be controlled by the same host gene. But mapping results of resistance genes with molecular markers indicated that resistance genes named differently in different countries maybe the same or closely linked in MLG.
     This dissertation was developed on the base of SMV identification system in the U.S. and four items were conducted, including (1) searching for the new resources of SMV resistance from the differential soybean germplasm, which can be used in the soybean breeding program as a resistance parent of SMV, and strengthening ability resistant to SMV infection; (2) exploring the possibility of conforming appearance of specific SMV resistance gene in a giving genotype combining molecular marker information and classical genetic procedure; (3) pyramiding three SMV resistance gene into a soybean plant through the procedure of marker-assisted selection (MAS), and created a new resistance resource unreported in nature, and used in the development of new soybean varieties with broader resistance to ever-changing SMV strains; (4) studying effect of temperature under the heterozygous state of resistance gene and extending the knowledge of soybean resistance gene and virus interaction.
     127 genotypes were screened with six SMV strains and specific alleles for resistance in these genotypes were differentiated in this research. The results demonstrated that 84 genotypes carry alleles at the Rsv1 locus: 42 with Rsv1-y, five with Rsv1, 19 with Rsv1-k, eight with Rsv1-t, eight with Rsv1-r, one with Rsv1-n, and one with Rsv1-h. Sixteen genotypes were identified to presumably carry new alleles for SMV resistance at Rsv1, Rsv3, or Rsv4. Nine of these 16 genotypes (‘Kosuzu’,‘Suzumaru’, PI 398877,‘Jitsuka’,‘Clifford’, and‘Tousan 65’,‘Corsica’, PI 61944, and PI 61947) may carry new alleles at the Rsv1 locus based on the comparison of their differential reaction patterns against the nine reported Rsv1 alleles. Two genotypes (PI 339870 and PI 399091) may carry new resistance alleles at the Rsv3 locus. Five genotypes (KAERI-GNT-220-7, PI 398593, PI 438307,‘Rhosa’, and‘Beeson’) may carry new alleles at the Rsv4 locus. In addition, 18 genotypes were resistant to all six strains tested and may carry Rsv1-h, Rsv4, Rsv1Rsv3, Rsv1Rsv4, or Rsv3Rsv4. Research is underway to confirm the new SMV resistance alleles through genetic and molecular approaches. J05 Soybean was previously identified to carry two independent genes, Rsv1 and Rsv3, for Soybean mosaic virus (SMV) resistance by inheritance and allelism studies. This research has confirmed that the two genes in J05 using molecular markers and a marker-assisted selection can be implemented. The segregation of F_2 plants from J05 x Essex exhibited a good fit to a 3:1 ratio when inoculated with SMV G1. Three simple sequence repeat (SSR) markers near Rsv1, Satt114, Satt510, and Sat_154, amplified polymorphic DNA fragments between J05 and Essex, and were closely linked to the gene on soybean molecular linkage group (MLG) F, thus verifying the presence of Rsv1 in J05 for resistance to SMV G1. The presence of Rsv3 in J05 was confirmed by two closely linked SSR markers on MLG B2, Satt726 and Sat_424, in F_2:3 lines that were derived from the SMV G1-susceptible F_2 plants and segregated in a 1:2:1 ratio for reaction to SMV G7. Two closely linked markers for Rsv4, Satt296 and Satt542, segregated independently of SMV resistance, indicating the absence of Rsv4 in J05. These SSR markers for Rsv1 and Rsv3 can serve as a useful molecular tool for selection and pyramiding of genes in J05 for SMV resistance.
     This research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F_(2:3), F_(3: 4), and F_(4:5) lines derived from J05 x V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F_(4:5) lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes for multiple and durable resistance to SMV. Three resistance loci, Rsv1, Rsv3, and Rsv4, have been identified in soybean germplasm by far. Most alleles at the Rsv1 locus exhibit resistance to some, but not all, strains of SMV, Rsv3 confers resistance to G5 through G7, and susceptibility to G1 to G4, and Rsv4 alleles provide genetic resistance to G1-G7 at the early seedling stage. Resistance genes at the Rsv1 locus often have a dosage effect resulting in necrosis in the heterozygous state and may confer necrotic reaction in the homozygous state when interacting with specific SMV strains. Necrotic symptom induced by SMV infection is affected by environmental factors such as temperature. Using a set of Essex isolines and F_1 hybrids, this study has explored relationship of SMV-induced necrosis expression and resistance gene dosage (homozygous vs heterozygous alleles) at different temperature regimes. The results showed that SMV-inoculated plants carrying Rsv3 and Rsv4 showed symptomless at homozygous and heterozygous state at all temperature regimes; Threshold temperature of symptom shifting from stem tip necrosis (STN) into mosaic were 30oC, 33oC, and 33oC in G7-inoculated homozygous genotypes V94-3971(Rsv1), PI 96983 (Rsv1), and G1-inoculated V262 (Rsv1-n), respectively. But at heterozygous state, threshold temperature was 29℃in G7-inoculated F_1(V94-3973 x Essex), 30℃in G7-inoculated F_1(Essex x PI 96983), and 31℃in G1-inoculated F_1(V262 x Essex); In addition, incomplete necrosis was observed in heterozygous state in G1-inoculated F_1(V262 x Essex) and G7-inoculated F_1(V94-3973 x Essex) where necrotic and mosaic symptoms were mixed. STN expression to temperature was affected by resistance gene, gene dosage, and nuclear background. Cytoplasm effect may exist but very limited.
引文
[1] Almeida A M R, Silveira J M. Effects of SMV (soybean mosaic virus) on the yield and other agronomic characteristics of soybean: date of inoculation and percentage of infected plants[J] (English Abstr.). Fitopatologia brasileira, 1983, 8 (2): 229-236.
    [2] Clinton G P. Note on plant disease of Connecticut[J]. Conn. Sta. Agr. Ann. Rept. 1915, 1916,446-447.
    [3] Golnaraghi A R, Shahraeen N, Pourrahim R, Farzadfar Sh, Ghasemi A. Qccurrence and relative incidence of viruses infecting soybeans in Iran[J]. Plant disease, 2004, 88:1069-1074.
    [4] Kim Y H, Kim O S, Lee B C, Im D J, Choi J K. Distribution and diversity of Soybean mosaic virus strains in Korea[J]. Korean J. Plant Pathol., 2000, 16:179.
    [5] Laguna I G, Giorda L M. EI virus del mosaic de la soja (Glycine max (L) Merr.) en Argentina. Revista de Investigaciones Agropecuarias INTA[J](English Abstr.), Buenos Aires, Republica Argentina, 1980, 15(3): 423-437.
    [6] Nariani T K, Pingaley K V. A mosaic disease of soybean (Glycine max (L.) Merr.)[J]. Indian Phytopathology, 1960, 13:130-136.
    [7] Pietersen G., Garnett H M. Properties and strain identity of soybean mosaic virus isolates from the Transvaal, South Africa[J]. Phytophylactica, 1992, 24:279–283.
    [8] Takahashi K, Tanaka T, Iida W, Tsuda Y. Studies on virus diseases and causal viruses of soybean in Japan[A]. Bull. Tohoku Natl. Agr. Exp. Stn[R]. 1980, 62:1–130.
    [9] Tu J C. Incidence of soybean mosaic virus and tobacco ringspot virus in southwestern Ontario[J]. Canadian Plant Disease Survey, 1986, 66:2:49-50.
    [10] Yu T F. A list of plant viruses observed in China[J]. Pathology, 1939, 29: 459-461.
    [11] Wrather J A, Andenson T R, Arsyad D M, Tan Y, Ploper L D, Porta-Puglia A, Ram H H, Yorinori J T. Soybean disease loss estimates for the top ten soybean-producing countries in 1998[J]. Can. J. Plant Pathol., 2001, 23:115-121.
    [12] Almeida A M R, Sakai J, Souto E R, Kitajima E W, Fukuji T S, Handa K. Mosaic in Senna occidentalis in Southern Brazil induced by a new strain of soybean mosaic virus[J]. Fitopatologia Brasileira, 2002, 27:151-156.
    [13] Cho E K, Chung B J, Lee S H. Studies on identification and classification of soybean virus disease in Korea. II. Etiology of a necrotic disease of Glycine max[J]. Plant Dis. Rep., 1977, 61(4):313–317.
    [14] Gardner M W, Kendrick J B. Soybean mosaic[J]. Journal of Agricultural Research, 1921, 22:111-113.
    [15] Kendrick J B, Gardner M W. Soybean mosaic: seed transmission and effect on yield[J]. Journal of Agricultural Research, 1924, 27: 91-98.
    [16] Cho E K, Goodman R M. Strains of soybean mosaic virus: Classification based on virulence in resistant soybean cultivars[J]. Phytopathology, 1979, 69:467–470.
    [17] Cho E K, Goodman R M. Evaluation of resistance in soybeans to soybean mosaic virus strains[J]. Crop Sci., 1982, 22:1133–1136.
    [18] Gunduz I, Buss G R, Chen P, Tolin SA. Genetic and phenotypic analysis of Soybean mosaic virus resistance in PI 88788 soybean[J]. Phytopathology, 2004, 94:687-692.
    [19] Bowers G R Jr, Goodman R M. New sources of resistance to seed transmission of soybean mosaic virusin soybeans[J]. Crop Sci., 1982,22:155-156.
    [20] Hunst P L, Tolin S A. Isolation and comparison of two strains of soybean mosaic virus[J]. Phytopathology, 1982, 72:710–713.
    [21] Hunst P L, Tolin S A. Ultrastructural cytology of soybean infected with mild and severe strains of soybean mosaic virus[J]. Phytopathology, 1983, 73:615-619.
    [22] Lee Y S, Ross J P. Top necrosis and cellular changes in soybean doubly infected by soybean mosaic and bean pot mottle virus[J]. Phytopathology, 1972, 62:839-845.
    [23] Martin E M, Cho J D, Kim J S, Goeke S C, Kim K S, Kim R C. Novel cytopathological structures induced by mixed infection of unrelated plant viruses[J]. Phytopathology, 2004, 94:111-119.
    [24] Keeling B L. Effect of soybean mosaic virus on root volume and dry weight of soybean plants[J]. Crop Sci., 1982, 22: 629-630.
    [25] Suteri B D, Kothyari B P, Purohit S K. Effect of soybean mosaic virus on growth of soybean[J]. Indian Phytopathology, 1983, 36:719–721.
    [26] Tu J C, Ford R E, Grau C R. Some factors affecting the nodulation and nodule efficiency in soybeans infected by soybean mosaic virus[J]. Phytopathology, 1970, 60: 1653-1656.
    [27] Tu J C. Effect of different strains of soybean mosaic virus on growth, maturity, yield, seed mottling and seed transmission in several soybean cultivars[J]. J. Phytopathol., 1989, 126(3):231-236.
    [28] Bowers G R Jr, Goodman R M. Strain specificity of soybean mosaic virus seed transmission in soybean[J]. Crop Sci., 1991, 31:1171–1174.
    [29] Almeida A M R, Almeida L A, Oliveira M C N, Paiva F A, Moreira W A. Strains of soybean mosaic virus identified in Brazil and their influence on seed mottling and rate of seed transmission[J]. Fitopatologia brasileira (Brazil), 1995, 20:227-232.
    [30] Hill J H. Soybean mosaic[A]. In: G.L. Hartman, J.B. Sinclair, and J.C. Rupe. (ed.) Compendium of soybean diseases, 4th edition[R]. American Phytopathology Society Press, St. Paul, MN. 1999, 70–71.
    [31] Ross J P. Effect of Aphid-transmitted soybean mosaic virus on yield of closely related resistant and susceptible soybean lines[J]. Crop Sci., 1977, 17: 869-872.
    [32] Tu J C. The role of temperature and inoculum concentration in the development of tip necrosis and seedling death of beans infected with bean yellow mosaic virus[J]. Plant Dis., 1989, 73:405–407.
    [33] Calvert L A, Ghabrial S A. Enhancement by soybean mosaic virus of Bean pod mottle virus titer in doubly infected soybean[J]. Phytopathology, 1983, 73:992-997.
    [34] Ren Q, Pfeiffer T W, Ghabrial S A. Soybean mosaic virus incidence level and infection time: Interaction effects on soybean[J]. Crop Sci., 1997a, 37:1706–1711.
    [35] Ren Q, Pfeiffer T W, Ghabrial S A. Soybean mosaic virus resistance improves productivity of double-cropped soybean[J]. Crop Sci., 1997b, 37:1712-1718.
    [36] Koning, G., TeKrony, D. M., and Ghabrial, S. A. 2003. Soybean seedcoat mottling: Association with Soybean mosaic virus and Phomopsis spp. seed infection. Plant Dis. 87:413-417.
    [37] Bowers G R Jr, Goodman R M. Soybean mosaic virus: infection of soybean seed parts and seed transmission[J]. Phytopathology, 1979, 69:569–572.
    [38] Ross J P. Effect of temperature on mottling of soybean seeds caused by the soybean mosaic virus[J]. Phytopathology, 1970, 60:1798–1800.
    [39] Almeida A M R. Evaluation of soybean tolerance to soybean mosaic virus[J]. Fitopatologia-Brasileira(Brazil), 1995, 20:24-29.
    [40] Hill J H, Lucas B S, Benner H I, Tachibana H, Hammond R B, Pedigo L P. Factors associated with the epidemiology of soybean mosaic virus in Iowa [J]. Phytopathology, 1980, 70: 536–540.
    [41] Koning G., TeKrony D M, Pfeiffer T W, Ghabrial S A. Infection of soybean with soybean with soybean mosaic virus increase susceptibility to Phomopsis spp. seed infection[J]. Crop Sci., 2001, 41(6):1850-1856.
    [42] Quiniones S S, Dunleavy J M, Fisher J M. Performance of three soybean varieties inoculated with soybean mosaic virus and bean pod mottle virus[J]. Crop Sci., 1971, 11:662–664.
    [43] Kong G., TeKrony D M, Ghabrial S A, Pfeiffer T W. Soybean mosaic virus (SMV) and the SMV Resistance Gene (Rsv1): Influence on Phomopsis spp. seed Infection in an Aphid Free environment[J]. Crop Sci., 2002, 42(1):178-185.
    [44] Hill J H, Benner H I. Properties of soybean mosaic virus and its isolated protein[J]. Phytopathologische Zeitschrift, 1980, 97:272 -281.
    [45] Ross J P. A new recognized strain of soybean mosaic virus[J]. Plant disease report, 1975, 59(10): 806-808.
    [46] Halbert S E, Irwin M E, Goodman R M. Altae aphid (Homoptera: Aphididae) species and their relative importance as field vectors of soybean mosaic virus[J]. Ann. Appl. Biol., 1981,97:1-9.
    [47] Buss G R, Roane C W, Tolin S A. Breeding for resistance to viruses in soybeans[A]. In: Proc. World Soybean Res. Conf. III[C], Shibles R (ed.), Ames, IA:Westview Press Inc., Boulder, CO. 1985, 433–438.
    [48] Chen P, Buss G R, Roane C W, Tolin S A. Allelism among genes for resistance to soybean mosaic virus in strain-differential soybean cultivars[J]. Crop Sci., 1991, 31:305–309.
    [49] Conover R A. Study of two virus causing mosaic disease of soybean[J]. Phytopathology, 1948, 38:724-735.
    [50] Demsky J W, Harris H B. Seed transmission of virus in soybean[J]. Crop Sci., 1974, 14: 888-890.
    [51] Koshimizu S, Iizuka T. Studies on soybean virus diseases in Japan[A]. Tohoku Nat. Agric. Exp. Stn. Bull.[R]. 1963, 27:1–104.
    [52] Edwardson J R, Christie R G (ed). Virus infecting forage legumes, vol. 2. Fla. Agric. Exp. Stn. Monogr. 1986, No. 14:431-437.
    [53] Hill J H, Alleman R, Hogg D B. First report of transmission of soybean mosaic virus by Aphis glycines in the New World[J]. Plant Dis., 2001, 85:561.
    [54] Wang R Y, Kritzman A, Hershman D E, Ghabrial S A. Aphid glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops[J]. Plant Dis., 2006, 90(7):920-926.
    [55] Clark A J, Perry K L. Transmissibility of field isolates of soybean viruses by Aphid glycine[J]. Plant disease, 2002, 86:1219-1222.
    [56] Vance V B, Beachy R N. Translation of soybean mosaic virus RNA in vitro: evidence of protein processing[J]. Virology, 1984a, 132:271–281.
    [57] Vance V B, Beachy R N. Detection of genomic-length soybean mosaic virus RNA on polyribosomes of infected soybean leaves[J]. Virology, 1984b, 138(1):26-36.
    [58] Eggenberger A L, Stark D M, Beachy R N. The nucleotide sequence of a soybean mosaic virus coat protein-coding region and its expression in Escherichia coli, Agrobacterium tumefaciens and tobaccocallus[J]. J. Gen. Virol., 1989, 70: 1853–1860.
    [59] Jayaram Ch, Hill J H, Miller W A. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene[J]. J. Gen. Virol., 1992, 73: 2067–2077.
    [60] Jayaram Ch, Hill J H, Miller W A. Nucleotide sequences of the coat protein genes of two aphid-transmissible strains of soybean mosaic virus[J]. J. Gen. Virol., 1991, 72:1001-1003.
    [61] Wang R Y, Ghabrial S A. Effect of aphid behavior on efficiency of transmission of soybean mosaic virus by the soybean-colonizing aphids, Aphis glycines[J]. Plant Dis., 2002, 86(11):1260-1264.
    [62] Omunyin M E, Hill J H, Miller W A. Use of unique RNA sequence-specific oligonucleotide primers for RT-PCR to detect and differentiate soybean mosaic virus strains[J]. Plant Dis., 1996, 80:1170–1174.
    [63] Domier L L, Latorre I J, Steinlage T A, McCoppin N, Hartman G L. Variability and transmission by Aphis glycines of North American and Asian soybean mosaic virus isolates[J]. Arch. Virol., 2003, 148, 1925–1941.
    [64] Choi B K, Koo J M, Ahn H J, Yum H J, Choi C W, Ryu K H, Chen P, Tolin S A. Emergence of Rsv-resistance breaking soybean mosaic virus isolates from Korean soybean cultivars[J]. Virus Research, 2005, 112:42-51.
    [65] Kang S H, Lim W S, Hwang S H, Park J W, Choi H S, Kim K H. Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions[J]. J. Gen. Virol., 2006, 87:225-229.
    [66] Pirone T P, Perry K L. Aphid: non-persistent transmission[]. In: Advances in botanical research: plant virus vector interactions[M], R T Plumb, Callow J A (ed). Academic Press, London: 2002, 36:1-19.
    [67] Sano Y, Kawata M, Kojima M. Comparative studies on soybean mosaic virus strains B and C: Nucleotide sequences of the capsid protein genes and virulence in soybean [Glycine max] cultivars. Ann. Phytopathol[J]. Soc. Jpn., 1997, 63 (5):381-384.
    [68] Lim H S, Ko T S, Lambert K N, Kim H G, Korban S S, Hartman G L, Domier L L. Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean[J]. Plant Physiology and Biochemistry, 2005, 43: 1014–1021.
    [69] Hajimorad M R, Eggenberger A L, Hill J H. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition[J]. Virology, 2003, 314: 497– 509.
    [70] Lucas B S, Hill J H. Characteristics of the transmission of three soybean mosaic virus isolates by Myzus persicae and Rhopalosiphum maidis[J]. Phytopathol. Z., 1980, 99:47-53.
    [71]郭东全,智海剑,王延伟,盖钧镒,周新安,杨崇良,李凯,李海潮.黄淮中北部大豆花叶病毒株系的鉴定与分布[J],中国油料作物学报,2005,27(4):64-68.
    [72] Tolin S A, Lacy G H. Viral, bacterial, and phytoplasmal diseases of soybean[A].In: Soybeans: improvement production, and uses[M]. Boerma H R, Specht J E (Eds). 3rd edition. ASA-CSSA-SSSA Inc. Madison, Wisconsin: 2004, 765-819.
    [73] Hill E K, Hill J H, Durand D P. Production of Monoclonal Antibodies to Viruses in the Potyvirus Group: Use in Radioimmunoassay[J]. J Gen Virol., 1984, 65:525-532.
    [74] Hill J H, Benner H I, Van Deusen R A. Rapid differentiation of soybean mosaic virus isolates by antigenic signature analysis[J]. J. Phytopathol., 1996, 142(2):152-162.
    [75] Chen P, Buss G R, Roane C W, Tolin S A. Inheritance in soybean of resistance and necrotic reactions tosoybean mosaic virus strains[J]. Crop Sci., 1994, 34:414–422.
    [76] Johnson J. The relation of air temperature to the mosaic disease of potatoes and other plants[J]. Phytopathology, 1922, 12:438-440.
    [77] Tu J C, Buzzell R I. Stem-tip necrosis: A hypersensitive, temperature dependent, dominant gene reaction of soybean to infection by soybean mosaic virus[J]. Can. J. Plant Sci., 1987, 67:661–665.
    [78] Zheng C, Chen P, Gergerich R C. Effect of temperature on the expression of necrosis in soybean infected with Soybean mosaic virus[J]. Crop Sci., 2005, 45:916–922.
    [79] Mansky L M, Durand D P, Hill J H. Effect of temperature on maintenance of resistance to soybean mosaic virus[J]. Phytopathology, 1991, 81:535-538.
    [80] Chen P, Choi C W. Characterization of genetic interaction between soybean and soybean mosaic virus[A]. In: Molecular Diagnosis of Plant Viruses[M]. Rao G P (ed.), Houston TX. U.S.A.:Studium Press, 2008, 389-422.
    [81] Kiihl R A S, Hartwig E E. Inheritance of reaction to soybean mosaic virus in soybeans[J]. Crop Sci., 1979, 19:372–375.
    [82] Buss G R, Ma G, Kristipati S, Chen P, Tolin S A. A new allele at the Rsv3 locus for resistance to soybean mosaic virus[A]. In: Proceedings of the World Soybean Research Conference VI[C]. Kauffman H E (ed.), Chicago, U.S.A.:1999, 490.
    [83] Buss G R, Ma G, Chen P, Tolin S A. Registration of V94-5152 soybean germplasm resistant to soybean mosaic potyvirus[J]. Crop Sci., 1997, 37:1987–1988.
    [84] Ma G, Chen P, Buss G R, Tolin S A. Genetic study of a lethal necrosis to soybean mosaic virus in PI 507389 soybean[J]. J. Hered., 2003, 94:205-211.
    [85]王修强,盖钧镒,濮祖芹.黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科学, 2003, 22(2):102-107.
    [86] Xu Z, Polston J E, Goodman R M. Identification of soybean mosaic, southern bean mosaic and tobacco ringspot viruses from soybean in the People’s Republic of China[J]. Ann Appl Biol., 1986, 108:51–57.
    [87] Iizuka N. Studies on soybean mosaic virus strains[J] (English Abstr.). Ann. Phytopathol. Soc. Jpn., 1987, 53: 76-77.
    [88] Lin N S, Hsu Y H, Hsu H T. Immunological detection of plant virus and a mycoplasmalike organism by direct tissue blotting on nitrocellulose membranes[J]. Phytopathology, 1990, 80:824-828.
    [89] Jain R K, Mckern N M, Tolin S A, Hill J H, Barnett O W, Tosic M, Ford R E, Beachy R N, Yu M H, Ward C W. Confirmation that fourteen potyvirus isolates from soybean are strains of one virus by comparing coat protein peptide profiles[J]. Phytopathology, 1992, 82(3):294-299.
    [90]储瑞银,冷晓红,鲍一明,濮祖芹,潘乃穗,陈章良.应用聚合酶链式反应扩增大豆花叶病毒外壳蛋白基因及其序列分析[J].植物学报, 1992, 34(7):523-528.
    [91] Liu J, Peng X, Li L, Mang K. Cloning of coat protein gene of soybean mosaic virus and its expression in Escherichia coli[J]. Chin. J. Biotechnol., 1993, 9: 143–149.
    [92] Shukla D D, Ward C W. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group[J]. Advance in Virus Research, 1989, 36:273-314.
    [93] Frenkel M J, Ward C W, Shukla D D. The use of 3’non-coding nucleotide-sequences in the taxonomy of potyviruses– application to watermelon mosaic virus-2 and soybean mosaic virus-N[J]. J. Gen. Virol., 1989, 70: 2775–2783.
    [94] Kim Y H, Kim O S, Lee B C, Moon J K, Lee S C, Lee J Y. G7H, a new Soybean mosaic virus strain: its virulence and nucleotide sequence of CI gene[J]. Plant Dis., 2003, 87:1372–1375.
    [95] Kim Y H, Kim O S, Roh J H, Moon J K, Sohn S I, Lee S C, Lee J Y. Identification of Soybean mosaic virus strains by RT-PCR/RFLP analysis of cylindrical inclusion coding region[J]. Plant Dis., 2004, 88:641-644.
    [96] Chen P, Buss G R, Tolin S A. Reaction of soybean to single and double inoculation with different Soybean mosaic virus strains[J]. Crop Protection, 2004, 23:965-971.
    [97] Shi, A., P. Chen, R. Gergerich, A. Hou, and B. Zhang. 2008. Phenotypic interaction of two soybean mosaic virus strains[J]. Canadian Journal Plant Pathology (In Press).
    [98] Cho E K, Choi S H, Cho W T. Newly recognized soybean mosaic virus mutants and sources of resistance in soybeans[J]. Res. Rept. ORD (S.P.M.U). 1983, 25: 18–22.
    [99]王延伟,智海剑,郭东全,盖钧镒,陈庆山,李凯,李海朝.中国北方春大豆花叶病毒株系的鉴定与分布[J].大豆科学,2005,24(4):263-268.
    [100] Kosaka Y, Fukunishi T. Attenuated isolate of soybean mosaic virus derived at a low temperature[J]. Plant Dis., 1993, 77(9):882-886.
    [101] Roosinck M J. Mechanisms of plant virus evolution[J]. Annu. Rev. Phytopathol., 1997, 35, 191–209.
    [102] Eggenberger A L, Hill J H. Analysis of resistance-breaking determinants of soybean mosaic virus[J]. Phytopathology, 1997, 87:S27.
    [103] Silbernagel M J, Mink G. I, Zhao R L, Zheng G Y. Phenotypic recombination between bean common mosaic and bean common mosaic necrosis potyviruses in vivo[J]. Arch. Virol., 2001, 146(5):1007-1020.
    [104] Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes[J]. Curr. Opin. Plant Biol., 2000, 3:278–284.
    [105] Wang L, Eggenberge A, Hill J, Bogdanove A J. Pseudomonas syringae effector avrB confers soybean cultivar-specific avirulence on soybean mosaic virus adapted for transgene expression but effector avrPto does not[J]. Mol. Plant Microbe Interact., 2006, 19(3):304-312.
    [106] Buss G R, Roane C W, Tolin S A, Chen P. Inheritance of resistance to soybean mosaic virus in two soybean cultivars[J]. Crop Sci., 1989, 29:1439–1441.
    [107] Gai J Y, Zhang Z Y, Hui D W,Chen S Y. RAPD and RFLP markers linked with the gene resistant to a SMV strain in China[J]. Soybean Genetics Newsletter, 1997, 24:75-78.
    [108] Kwon S H, Oh J H. Resistance to a necrotic strain of soybean mosaic virus in soybeans[J]. Crop Sci., 1980, 20:403–404.
    [109] Gai J Y, Hu Y Z, Zhang Y D, Xiang Y D, Ma R H. Inheritance of resistance of soybean to four local strains of soybean mosaic virus[A]. In: Pascale A J (ed). Proceedings of the World Soybean Research Conference IV[C]. Buenos Aires: Argentina Soybean Association, 1989, 1182–1187.
    [110] Lim S M. Resistance to soybean mosaic virus in soybeans[J]. Phytopathology, 1985, 75:199–201.
    [111] Chen P, Buss G R, Tolin S A, Gunduz I, Cicek M. A valuable gene in Suweon 97 soybean for resistance to soybean mosaic virus[J]. Crop Sci., 2002, 42:333-337.
    [112] Chen P, Ma G, Buss G R, Gunduz I, Roane C W, Tolin S A. Inheritance and allelism tests of Raiden soybean for resistance to soybean mosaic virus[J]. J. Hered., 2001, 92:51-55.
    [113] Chen P, Buss G R, Tolin S A. Resistance to soybean mosaic virus conferred by two independentdominant genes in PI 486355[J]. J. Hered., 1993, 84:25-28.
    [114] Gunduz I, Buss G R, Chen P, Tolin S A. Characterization of SMV resistance genes in Tousan 140 and Hourei soybean[J]. Crop Sci., 2002, 42: 90-95.
    [115] Gunduz I, Ma G, Buss G R, Chen P, Tolin S A. Genetic analysis of resistance to Soybean mosaic virus in OX670 and Harosoy soybean[J]. Crop Sci., 2001, 41:1785-1791.
    [116] Liao L, Chen P, Buss G R, Yang Q, Tolin S A. Inheritance and allelism of resistance to soybean mosaic virus in Zao18 soybean from China[J]. J. Hered., 2002, 93:447-452.
    [117] Ma G., Chen P, Buss G R, Tolin S A. Genetic characteristics of two genes for resistance to soybean mosaic virus in PI 486355 soybean[J]. Theor. Appl. Genet., 1995, 91:907-914.
    [118] Zheng C, Chen P, Gergerich R. Genetic analysis of resistance to soybean mosaic virus in J05 soybean[J]. J. Hered., 2006, 97(5):429–437.
    [119] Zheng C, Chen P, Gergerich R C. Characterization of resistance to soybean mosaic virus in diverse soybean germplasm[J]. Crop Sci., 2005b, 45:2503-2509.
    [120] Flor H H. Host-parasite interaction in flax rust- its genetics and other implication[J]. Phytopathology, 1955, 45:680-685.
    [121] Flor H H. Current status of the gene-for-gene concept[J]. Annual review Phytopathology, 1971, 9:275-296.
    [122]向远道,盖钧镒,马育华.大豆对4个大豆花叶病毒株系的抗性及其连锁遗传研究[J],遗传学报, 1991,18(1):51-58.
    [123] Ma G., Chen P, Buss G R, Tolin S A. Genetics of resistance to two strains of soybean mosaic virus in differential soybean genotypes[J]. J. Hered., 2004, 95(4):322–326.
    [124] Ma G, Chen P, Buss G R, Tolin S A. Complementary action of two independent dominant genes in Columbia soybean for resistance to soybean mosaic virus[J]. J. Hered., 2002, 93:179-184.
    [125] Bowers G R, Paschal E H, Bernard R L, Goodman R M. Inheritance of resistance to soybean mosaic virus in‘Buffalo’and HLS soybean[J]. Crop Sci., 1992, 32:67–72.
    [126] Wang Y, Hobbs H A, Bowen C R, Bernard R L, Hill C B, Haudenshield J S, Domier L L, Hartman G L. Evaluation of soybean cultivars,‘Williams’isogenic lines, and other selected soybean lines for resistance to two soybean mosaic virus strains[J]. Crop Sci., 2006, 46:2649-2653.
    [127] Gore M A, Hayes A J, Jeong S C, Yue Y G, Buss G R, Saghai Maroof M A. Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean[J]. Genome, 2002, 45:592-599.
    [128] Yu Y G, Saghai Maroof M A, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance[J]. Phytopathology, 1994, 84:60-64.
    [129] Roane C W, Tolin S A, Buss G R. Inheritance of reaction to two viruses in the soybean cross‘York’x‘Lee 68’[J]. J. Hered., 1983, 74:289–291.
    [130] Shi A, Chen P, Zheng C, Hou A, Zhang B. A PCR-based marker for the Rsv1 locus conferring resistance to soybean mosaic virus[J]. Crop Sci., 2008, 48:262-268.
    [131] Silva M F, Kiihl R A S, Almeida A M R. Inheritance of resistance to Soybean mosaic virus in FT-10 soybean[J]. Euphytica, 2004, 135: 339–343.
    [132] Buss G R, Chen P, Tolin S A. Genetic interaction of differential soybean genotypes and soybean mosaic virus strains. In: Soybean feeds the world. Proc. World Soybean Res. Conf. V[C]. Napompeth B (ed.),Bangkok, Thailand: Kasetsart University Press, 1994, 153–157.
    [133] Jeong S C, Hayes A J, Biyashev R M, Saghai Maroof M A. Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal“hotspot”for disease resistant genes in soybean[J]. Theor. Appl. Genet., 2001, 103:406-414.
    [134] Hayes A J, Jeong S C, Gore M A, Yu Y G,.Buss G R, Tolin S A, Saghai Maroof M A. Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans[J]. Genetics, 2004,1(66):493-503.
    [135] Li Z, Bernard R L, Nelson R L. A RAPD marker with a heterozygous form linked to the Rsv1 locus in soybean[A]. In: Agronomy abstracts 1998 Annual meetings[C]. USA, Baltimore, Maryland. 1998, 157.
    [136] Jeong S C, Saghai Maroof M A. Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean[J]. Plant Breeding, 2004, 123:305-310.
    [137] Yu Y G, Saghai Maroof M A, Buss G R. Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers[J]. Theor Appl Genet., 1996, 92: 64-69.
    [138] Buzzell R I, Tu J C. Inheritance of soybean resistance to soybean mosaic virus[J]. J Hered., 1984, 75:82.
    [139] Buzzell R I, Tu J C. Inheritance of a soybean stem-tip necrosis reaction to soybean mosaic virus[J]. J. Hered., 1989, 80:400-401.
    [140] Bowers G R Jr. Inheritance of resistance to soybean mosaic virus in soybeans and studies on seed transmission[D]. Ph. D. Thesis, University of Illinois, Urbana, 1980.
    [141] Jeong S C, Kristipati S, Hayes A J, Maughan P J, Noffsinger S L, Gunduz I, Buss G R, Saghai Maroof M A. Genetic and sequence analysis of markers tightly linked to the Soybean mosaic virus resistance gene, Rsv3[J]. Crop Sci., 2002, 42:265-270.
    [142] Wang Y, Nelson R L, Hu Y. Genetic analysis to soybean mosaic virus in four soybean cultivars from China[J]. Crop Sci., 1998, 38:922-925.
    [143] Fu S X, Zhan Y, Zhi H J, Gai J Y, Yu D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean[J].Genetics, 2006, 128:63-69.
    [144] Hayes A J, Ma G, Buss G R, Saghai Maroof M A. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus[J]. Crop Sci., 2000, 40:1434-1437.
    [145] Hwang T Y, Moon J K, Yu S, Yang K, Mohankumar S, Yu Y H, Lee Y H, Kim H S, Kim H M, Maroof M A, Jeong S C. Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean[J]. Gemome, 2006, 49(4):380-388.
    [146] Cregan P B. Technology in the Cregan Lab. [Cited 2007 Dec 10]. Available from: http://bldg6.arsusda.gov/~pooley/soy/cregan/cregan.html, 2003 July.
    [147]陈永萱,朱明德,孙健.大豆花叶病毒病的鉴定[J].植物病理学报, 1981, 11:31-36.
    [148]董平,尹玉琦,李国英,崔星明.大豆病毒病的鉴定[J].石河子大学学报(自然科学版), 1984,2:41-47.
    [149]周家炽,蔡淑莲. 1957-1958年豆类病毒工作报告[J],植病学报,1959,5(1):7-11.
    [150]裘维蕃.大豆花叶病的研究初报[J].科学, 1950,32:217.
    [151]刘仪.大豆花叶病毒诊断研究初报[J].植物病理学报, 1963, 6(2):209-213.
    [152]张明厚,吕文清,钟兆西.大豆病毒病的调查[J].植物保护, 1979,4:
    [153]尚佑芬.济南大豆病毒病的病原鉴定[J].山东农业科学, 1986, 6: 18-20.
    [154]刘世怡,陆德清.大豆花叶病毒病毒原鉴定[J].贵州农业科学,1986,1:17-19.
    [155]马润年.大豆病毒病的研究[J].山西农业科学, 1985, 5: 12-14.
    [156]沈淑琳,舒秀珍,王树琴,陈燕芳,陆家珏,李晓芹,许宏冠.大豆病毒种类鉴定和检验技术研究[J].大豆科学, 1987,3:178-187.
    [157]许志刚, J.E.Polston, R.M.Goodman.侵染大豆的三种病毒病的鉴定[J].大豆科学, 1986, 1:161-165.
    [158]张明厚,吕文清,钟兆西,大豆病毒病的类型及其病原鉴定[J].植物病理学报,1980, 10(2):113-118.
    [159]祝其昌,张秋荣,侯庆树,大豆花叶病对籽粒影响的初步探讨[J].江苏农业科学, 1984, 6
    [160]陈新,朱成松,顾和平,祝其昌,薛万军,封红旗,陈叙.江苏省夏大豆褐斑粒率与病毒病病害程度及大豆主要性状关系的研究[J].作物研究; 2000, 4:22-25.
    [161]吴宗璞;钟兆西;高凤兰;孟庆喜;王金陵;大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究[J].大豆科学, 1986, 2:158-164.
    [162]廖林,王金陵,吴忠璞,高风兰,杨庆凯.大豆花叶病(SMV)若干抗性鉴定指标分析[J].大豆科学, 1993, 2:131-136.
    [163]智海剑,胡蕴珠,刘天宇;大豆花叶病毒对大豆生长的影响[J].中国油料作物学报; 1996, 1: 44-47.
    [164]刘丽君,陈怡,高明杰,崔喜恒.大豆SMV病源相关蛋白的诱导与耐病性获得[J].大豆科学, 1994,13(4): 345-348.
    [165]廖林,赵荣林,张志权,王金陵.不同抗性大豆品种感染大豆花叶病毒后一些生理生化性状的变化[J].中国油料作物学报, 1993, 1:26-29.
    [166]胡蕴珠,智海剑,沈文飚,徐朗莱.对SMV不同抗性的大豆品种体内过氧化物酶活性变化的研究[J].大豆科学, 1997,16(1): 28-33.
    [167]沈文飚,徐朗莱,胡蕴珠,智海剑,孔军礼.大豆花叶病毒(SMV)的侵染对大豆叶片过氧化物酶及其同功酶的影响[J].南京农业大学学报, 1997, (4):88-92.
    [168]徐金星,刘忠民,刘翠明.大豆品种接种SMV叶片POD同工酶的研究[J].东北农业大学学报, 2000, 31(1):20-25.
    [169]刘丽君,吴俊江,高明杰,李文华. SMV侵染对大豆内源激素平衡的影响[J].大豆科学, 2000, 4:326-329.
    [170]朱宏波,腾冰,高凤兰.不同抗性大豆品种感染SMV1后若干生化变化[J].西北农业学报, 2001, 10(3): 38-40.
    [171]陆京杰,陈永萱.大豆花叶病毒的侵染对大豆碳氨化合物代谢的影响[J].南京农业大学学报, 1994,17(02): 43-47.
    [172]栾晓燕,杜维广.大豆品种(系)感染SMV后观和产物的积累和分配[J].大豆科学, 1998,17(1):44-47.
    [173]李学湛. SMV与TRSV混合感染大豆叶片细胞的超微结构研究[J].大豆科学, 1988,1:
    [174]李学湛, K.S.Kim, H.A.Sctt.复合病毒感染对大豆叶片细胞超微结构的影响[J].电子显微学报, 1991, 10(1):10-15.
    [175]智海剑,盖钧镒,郭东全,王延伟.对大豆花叶病毒不同抗性类型品种的细胞超微结构特征[J].南京农业大学学报; 2005,28(1):6-10.
    [176]濮祖芹,曹琦,房德纯,薛宝娣,方中达.大豆花叶病毒的株系鉴定[J].植物保护学报, 1982,9 (1):15-20(19).
    [177]谢淑仪,阎万元,金莲香,刘洪江,胡吉成.吉林省栽培和野生大豆病毒病的毒原种类及野生资源抗病鉴定报告[J].吉林农业科学, 1982, 1:(胡吉成,谢淑仪.野生大豆病毒病的初步鉴定.植物病理学报, 1984, 14 (2) : 122-123.
    [178]吕文清,张明厚,魏培文,等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理学报,1985,15(4):225-228.
    [179]陈永萱,薛宝娣,胡蕴珠,方中达.大豆花叶病毒(SMV)两个新株系的鉴定[J].植物保护学报,1986,13(4): 221-225(226)
    [180]余子林.湖北地区大豆花叶病毒的研究[C].全国大豆病害学术讨论会论文摘要汇编, 1986.
    [181]罗瑞梧,尚佑芬,杨崇良等.山东省大豆花叶病毒株系鉴定[J].山东农业科学,1990,(5):16-19.
    [182]尚佑芬,赵玖华,杨崇良等.黄淮地区大豆花叶病毒株系鉴定[J].山东农业科学,1997,(6):24-27.
    [183]杨雅麟.长江中下游地区大豆花叶病毒(SMV)株系组成、分布及抗性研究[D].南京农业大学硕士论文,2002.
    [184]战勇,智海剑,喻德跃,盖钧镒.黄淮地区大豆花叶病毒株系的鉴定与分布[J].中国农业科学, 2006,39(10): 2009-2015.
    [185]廖林,刘玉芝.抗花叶病大豆品种的抗病力和病毒毒株致病力变化的研究[J].中国油料, 1996,18(3): 56-59.
    [186]许志刚, R.M.Goodman, J.E.Polston.大豆花叶病毒株系的鉴定[J].南京农学院学报, 1983,3: 36-40
    [187]张明厚, H.A.Scott.大豆花叶病毒(SMV)一强株系的若干特性[J].东北农业大学学报,1984,1:29-37.
    [188]张景凤,赵慧,桂晋刚,刘坤凡,王道文.利用RT_PCR、DNA序列分析及原核基因表达对我国大豆花叶病毒进行分子鉴定(英文) [J].植物学报, 1999,9: 27-30.
    [189]张明厚,魏培文,张春泉,张俊华,吕文清.东北亚四国(地区)SMV株系毒力比较[J].大豆科学,1998,17(2):101-107.
    [190]马淑梅.中国大豆品种对大豆花叶病毒(SMV)病抗病性鉴定结果[J].大豆科学1991,3:240-244.
    [191]储瑞银,冷晓红,鲍一明,濮祖芹,潘乃穟,陈章良.应用聚合酶链式反应扩增大豆花叶病毒外壳蛋白基因及其序列分析[J].植物学报, 1992,34(7):523-528.
    [192]周雪平,濮祖芹,方中达,储瑞银,陈章良.大豆花叶病毒外壳蛋白基因克隆及在病毒检测中的应用[J].病毒学报, 1994,10(1):81-84.
    [193]董宏平,程宁辉,濮祖芹.大豆花叶病毒Sc株系外壳蛋白基因的部分序列分析[J].南京师大学报(自然科学版), 1998,21(3):67-71.
    [194]郭东全,智海剑,王延伟,李海朝,盖钧镒,杨华,李凯,白丽.大豆花叶病毒5个分离物的鉴定及外壳蛋白序列分析[J].大豆科学, 2006,3: 218-222.
    [195]刘俊君,彭学贤,莽克强.大豆花叶病毒NIb基因的cDNA克隆和序列分析[J].中国科学B辑, 1994, 24(3): 265-271.
    [196]陈炯;黎昊雁;尚佑芬;陈剑平;大豆花叶病毒黄淮5号株系的基因组全序列分析[J].病毒学报, 2002,18(3):270-274.
    [197]黎昊雁,陈炯,陈剑平.大豆花叶病毒杭州分离物基因组全序列测定及其结构分析[J].科技通报, 2003,19(2):90-93.
    [198]钟兆西,吴宗璞,高凤兰,林宝祥.选SMV抗源品种的初步研究[J].大豆科学,1986, 3:239-242.
    [199]盖钧镒,胡蕴珠,崔章林,智海剑,胡文杰,任珍静.大豆资源对SMV株系的抗性鉴定[J].大豆科学,1989,8(4):323-330.
    [200]吴全安,梁克恭,曹骥.粮食作物种质资源抗病虫鉴定方法[M].北京:农业出版社,1991.2.
    [201]杨崇良,尚佑芬,李长松等.北方大豆品种资源抗大豆花叶病毒筛选(研究简报)[J].植物病理学报,1997, 27(1):27-28.
    [202]陈怡.大豆种质对SMV 1号株系的抗性遗传[J].黑龙江农业科学,1999,(1):4-6.
    [203]张伟,宋淑云,晋齐鸣,郭文广,沙洪林,李红,康岭生.吉林省大豆新品种(系)抗大豆花叶病毒病鉴定及抗源筛选[J].吉林农业大学学报, 2004, 26(4): 371-374,377.
    [204]智海剑,盖钧镒.大豆对SMV数量抗性的表现形式与种质鉴定[J].中国农业科学,2004,37(10):1422-1427.
    [205]智海剑,盖钧镒,何小红.大豆对SMV数量(程度)抗性的综合分级方法研究[J].大豆科学,2005,24(1):5-11.
    [206]严隽析,马育华.大豆花叶病抗性遗传的初步研究[J].大豆科学,1985,4(4):249-259.
    [207]胡蕴珠,盖钧镒,马育华,陈永萱,方中达.大豆对两个SMV株系抗性的遗传研究[J].南京农业大学学报,1985,8(3): 17-22.
    [203]郑翠明,常汝镇,邱丽娟.大豆对SMV3号株系的抗性遗传分析及抗病基因的RAPD标记研究[J].中国农业科学, 2001,34(1):1-4.
    [204]刘丽君,吴俊江,李玉征,高明杰,郝连林,蒲国峰,谢华,张淑珍,郑翠明,邱丽娟.大豆对SMV1株系抗性基因的分子标记研究[J].大豆科学, 2002,21(2):93-95.
    [205]滕卫丽,李文滨,韩英鹏,赵桂云,邱丽娟,常汝镇;大豆SMV3号株系抗病基因的SSR标记[A].全国作物生物技术与诱变技术学术研讨会论文摘要集[C], 2005年.[后发表在大豆科学2006,25(3):244-248.]
    [206] Hai-Chao Li, Hai-Jian Zhi, Jun-Yi Gai, Dong-Quan Guo, Yan-Wei Wang, Kai Li, Li Bai, Hua Yang. Inheritance and Gene Mapping of Resistance to Soybean Mosaic Virus Strain SC14 in Soybean[J]. Journal of Integrative Plant Biology, 2006, 48 (12), 1466–1472.
    [207]李文福,刘春燕,高运来,李灿东,蒋洪蔚,王堃,陈庆山,胡国华.大豆种粒斑驳抗性的遗传分析及基因定位[J].作物学报,2008,34(9)1544-1548.
    [208]王永军,东方阳,王修强,杨雅麟,喻德跃,盖钧镒,吴晓雷,贺超英,张劲松,陈受宜.大豆5个大豆花叶病毒株系抗性基因的定位[J].遗传学报, 2004,31(1):87-90.
    [209]战勇,喻德跃,陈受宜,盖钧镒.大豆对SMV SC-7株系群的抗性遗传与基因定位[J].作物学报, 2006,32(6):936-938.
    [210]栾晓燕,李宗飞,满为群,白羊年,马岩松,刘鑫磊,郑宝香,杜维广.与大豆SMV3号株系抗性相关的分子标记的鉴定.分子植物育种, 2006, 4(6):841-845.
    [211] Zhang Z, Chen S, Gai J. The comparison of resistance gene analogs from Kefeng No. 1 and PI 96983[J]. Soybean Genetics Newsletter, 1998, 25:57-58.
    [212] Zheng C, Chang R, Qiu L, Chen P, Wu X, Chen S. Identification and characterization of a RAPD/SCAR marker linked to a resistance gene for soybean mosaic virus in soybean[J]. Euphytica, 2003, 132:199-210.
    [213] Cregan P B, Jarvik T, Bush A L, Shemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome[J]. Crop Sci., 1999, 39:1461-1490.
    [214] Li Z R, Bernard R L, Nelson R L. A RAPD marker with a heterozygous form linked to the Rsv1 locus in soybean. 1998 Agronomy Abstracts. Madison (WI): ASA. 1998. p. 157.
    [215] Kisha T, Sneller C H, Diers B W. Relationship between genetic distance among parents and genetic variance in populations of soybean[J]. Crop Sci., 1997, 37:1317-1325.
    [216] Liu B. Statistical Genomics - Linkage, Mapping, and QTL Analysis[M]. Boca Raton (FL): CRC Press, 1998.
    [217] Allard R W. Formulas and tables to facilitate the calculation of recombination values in heredity[J]. Hilgardia., 1956, 24:235-279.
    [218] Weir B S. Genetic Data Analysis II: Methods for Discrete Population Genetic Data[M]. Sunderland (MA): Sinauer Associates, Inc., 1996.
    [219] Shigemori I. Studies on the breeding on soybeans for the resistance to soybean mosaic virus (SMV). Bull Nagano Chusin Agri Ex Sta, 1991, 10:1-60.
    [220] Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR[J]. Theor. Appl. Genet., 2004, 95:313-320.
    [221] Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theor. Appl. Genet., 2000, 100:1121-1128.
    [222] Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Cao D. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat[J]. Plant Breeding, 2000, 119:21-24.
    [223] Castro A J, Chen X, Hayes P M, Johnston M. Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: Effects on resistance at the seedling stage[J]. Crop Sci., 2003, 43:651-659.
    [224] Collier C C, Ohm H W, Jones M J, Williams C E. Molecular markers to track the pyramiding of several Hessian fly resistance genes into a single line of common wheat[A]. In: Plant Anim. Genome V[C], San Diego, CA :1997, 92.
    [225] Wang J, Chapmanb S C, Bonnettc D G, Rebetzkec G J, Croucha J. Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection[J]. Crop Sci., 2007, 47:582-588
    [226] Mohler V, Singrun C. General considerations: Marker-assisted selection[A]. In: Molecular marker systems in plant breeding and crop improvement (Biotechnology in Agriculture and Forestry)[M], L?rz H, Wenzel G(ed). Springer, Berlin: 2004, 55:305-317.
    [227] Brahm L, Rocher T, Friedt W. PCR-based markers facilitating marker assisted selection in sunflower for resistance to downy mildew[J]. Crop Sci., 2000, 40:676-682.
    [228] Fjellstrom R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes[J]. Crop Sci., 2004, 44:1790-1798.
    [229] Concibidoa V C, Diers B W, Arellic P. A decade of QTL mapping for cyst nematode resistance in soybean[J]. Crop Sci., 2004, 44:1121-1131
    [230] Samuel G. Some experiments on inoculating methods with plant viruses, and on local lesions[J]. Ann. Appl. Biol., 1931, 18:494–507.
    [231] Kassanis B. Some effect of high temperature on the susceptibility of plants to infection with viruses[J]. Ann. Appl. Biol., 1952, 39:358–369.
    [232] Hendrix J W. Temperature-dependent resistance to tobacco ringspot virus in L8, a necrosis-prone tobacco cultivar[J]. Phytopathology, 1972.62:1376–1381.
    [233] Roggero P, Lisa V, Nervo G, Pennazio S. Continuous high temperature can break the hypersensitivity of Capsicum chinense‘PI 152225’to tomato spotted wilt tospovirus (TSWV)[J]. Phytopathol. Mediterr., 1996, 35:117–120.
    [234] Kyle M M, Provvidenti R. Inheritance of resistance to potyviruses in Phaseolus vulgaris L. 2. Linkage relations and utility of a dominant gene for lethal systemic necrosis to soybean mosaic virus[J]. Theor. Appl. Genet., 1993, 86(2-3):189-196.
    [235] Edwards M L, Cooper J L. Plant virus detection using a new form of indirect ELISA[J]. J. Virol. Meth., 1985, 11:309-319.
    [236]郭东全,王延伟,智海剑,盖钧镒,李海朝,李凯.大豆对SMVSC-13株系群的抗性遗传及基因定位的研究[J].大豆科学, 2007,26(1):21-24.
    [237]美国作物种质资源库http: //www.ars-grin.gov/cgi-bin/npgs/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700