中国春小麦—粗山羊草染色体片段导入系的构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用小麦品种中国春(Chinese Spring, CS)与小麦D基因组供体粗山羊草(Aegilops tauschii)TA2424杂交,杂交后取其幼胚进行组织培养得到杂种F1代,F1再用中国春连续回交两代,回交后代自交四代得到2000多份BC2F4后代群体家系。通过检测杂交后代群体中粗山羊草的染色体片段导入情况,构建一套普通小麦中国春—粗山羊草染色体片段导入系(CSSLs)。选取小麦D基因组上的250对SSR标记,利用中国春和粗山羊草TA2424筛选出170对在两个亲本间具有多态性的SSR标记。用随机选取的238个杂交后代BC2F4的DNA作为模板进行PCR扩增,检测在杂种后代中两个亲本染色体之间的代换情况。在170对多态性引物中,有83%在杂交后代中检测到粗山羊草染色体导入片段,导入片段基本覆盖了D基因组,根据SSR检测的结果,绘制了一套覆盖率在95%以上的D基因组的染色体片段导入系图谱。在有些后代品系中,扩增产物带型和两个亲本的带型均不一致。在238个家系中片段代换变异率在90%以上的有2个标记位点:Xgpw322和Xgwm212;60%~90%的有4个标记位点:Xgwm106、Xcfd35、Xgwm114b和Xgwm624;0.42%~5.46%的有13标记个位点,分别分布在D基因组的不同染色体上。
Over 2000 BC2F4 progeny lines were produced by crossing Chinese Spring wheat with Aegilops tauschii accession TA2424 via embryo rescue technique and backcrossing with the recurrent parent Chinese Spring. A set of chromosome segment substitution lines (CSSLs) was developed by detecting the chromosome segments of Ae. tauschii with the polymorphic SSR markers from D genome. Two hundred and fifty SSR markers were used for screening polymorphism between CS and TA2424. One hundred and seventy polymorphic SSR markers were selected by detecting the PCR amplification products on 8% non-denaturing polyacrylamide gel electrophoresis. Two hundred and thirty-eight BC2F4 randomly selected progeny lines were used for detecting chromosome segments of Ae. tauschii with the polymorphic SSR markers. Based on the results of SSR detection, a profile of CSSLs covering 95% of Ae. tauschii D genome was developed. The results of this study indicateed that the sizes of the amplified products were not comparable to either parent in some progeny lines. Among the 238 tested, two markers Xgpw322 and Xgwm 212 had over 90% of substitution frequency; Xgwm106, Xcfd35, Xgwm114b and Xgwm624, 60~90%; and 13 markers, 0.42~5.46%. These markers with variation were distributed on different chromosomes of D genome.
引文
[1]董玉琛.小麦的基因源.麦类作物学报, 2000, 20: 78–81.
    [2] Botstein D R, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 1980, 32: 314–331.
    [3] Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Appied Genetics, 1989, 78: 495–504.
    [4] Nelson J C, Sorrells M E, et al. Molecular mapping of wheat-major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995, 141: 721–731.
    [5]贾继增, Gale M D.小麦染色体第6部分同源群RFLP连锁图绘制.中国科学(B辑), 1994, 24: 1281–1289.
    [6] Marino C L, Nelson J C, Lu Y H, et al. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. Em Thell). Genome, 1996, 39: 359–366.
    [7] Devos K M, Dubcovsky J, Chinoy C N, et al. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theoretical and Appied Genetics, 1995, 91: 282–288.
    [8] Nelson J C, Vandeynze A E, Autrique E. et al. Molecular mapping of wheat-homoeologous group3. Genome, 1995, 38: 525–533.
    [9] Devos K M, Gale M D. Extended genetic maps of the homoeologous group 3 chromosomes of wheat, rye and barley. Theoretical and Appied Genetics, 1993, 85: 649–652.
    [10] Nelson J C, Vandeynze A E, Autrique E, et al. Mollecular mapping of wheat-homoeologous group 2. Genome, 1995, 38: 516–524.
    [11] Devos K M, Millan T, Gale M D. Comparative RFLP maps of the hemeologous group 2 chromosomes of wheat rye and barley. Theoretical and Appied Genetics,1993, 85: 84–792.
    [12] Gill K S, Lubbers E L, Gill B S, et al. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 1991, 34: 36–374.
    [13] Pagnotta M A, Nachi M M, Elouafi I, et al. Genetic mapping of molecular markers in durum wheat using two RIL populations. Proceedings of the XLV Italian Society of Agricultural Genetics-SIGA Annual Congress. Salsomaggiore Terme, Italy. September, 26–29, 200l.
    [14] Dubcovsky J, Luo M C, Zhong G Y, et al. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics, 1996, 143: 983–999.
    [15] Vacino P, Accerbi M. Cultivate identification in T. aestivum using highly polymorphic RFLP probes. Theoretical and Appied Genetics, 1993, 86: 833–836.
    [16] Myburg A A, Botha A M, Wilding W J M, et al. Identification and genetic distance analysis of wheat cultivars using RAPD fingerprinting. Cereal Research Comunication, l997, 25: 875–882.
    [17] AIpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome containing fw2.2: Amajor fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences USA, 1996, 93: 15503–15507.
    [18] Frary A, Nesbitt T C, Frary A, et al. fw2.2: A quantitative trait locus key to the evolution of tomato Truit size. Seicnce, 2000, 289: 85–88.
    [219] Tanaka H, Tomita M, Yasumuro Y. Limited but specific variations of seed storage proteins in Japanese common wheat (Triticum aestivum L.). Euphytica, 2003, 132: 167–174.
    [20] Yan Y M, Hsam S L K, Yu J Z, et al. Allelic variation of the HMW glutenin Subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica, 2003, 130: 377–385.
    [21] Assefa S. Resistance to wheat leaf rust in Aegilops tauschii coss and irtheritance of resistance in hexaploid wheat. Genetic Resources and Crops Evolution, 2000, 47:135–140.
    [22] Ma H, Singh R P, Muieeb-kazi A. Resistance to stripe rust in Triticum turgdum, T. tauschii and their synthetic hexaploids. Euphytica, 1995, 82: 117–124.
    [23] Yang W Y. Evolution of Aegilops tauechii coss for resistance to physiological strains CYR30 and CYR31 of wheats tripe rust in China. Genetic Resource and Crops Evolution, 1998, 45: 395–398.
    [24] Gert H J. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology, 1995, 85: 425–429.
    [25] Lubbers E L. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome, 1991, 34: 354–361.
    [26] Eastwood R F. A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tausehii. Genome, 1994, 37: 311–319.
    [27] Lagudah E S, Halloran G M. Phylogenetic relationships of Triticum tauchii, the D genome donor to hexaploid wheat. Theoretical and Appied Genetics, 1988, 75: 592–598.
    [28] Lagudah E S. The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome, 1991, 34: 375–386.
    [29] Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697.
    [30] R?der M S, Korzun V, WendehaKa K, et al. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023.
    [31] Tautz D, Renz M. Simple sequence repeats are ubiquitous repetitive component of eukaryotie genomes. Nucleic Acids Research, 1984, 12: 4127–4138.
    [32]贾继增,张正斌, Gale M D,等.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑), 2001, 31: 13–21.
    [33]田清震.中国小麦部分种质遗传多样性分析及小麦抗白粉病分子标记辅助选择研究: [博士毕业论文].北京:中国农业科学院,2002.
    [34] Davila J A, Loarce Y, Ferrer E. Molecular characterization and genetic mapping of random Amplified microsatellite polymorphism in barley. Theoretical and Appied Genetics, 1999, 98: 256–273.
    [35]曹越.植物遗传研究与分子标记技术.青海农林科技,专题综述2004(2).
    [36] Kojima T, Nagoaka T, Moda K. Genetic inkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theoretical and Appied Genetics, 1998, 96: 37–45.
    [37] Korzum V, Roder M S, Gannl M W, et al. Genetic analysis of dwarfing gene Rht8 in wheat. Theoretical and Appied Genetics, 1998, 96: 1104–1109.
    [38] Peng J H, Fahima T, Roder M S, et al. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived ftom wild emmer wheat Triticum dicoccoides and suggestive negative crossover interference on chromosome 1B. Theoretical and Appied Genetics, 1999, 98: 862–872.
    [39] Lelly T. Microsatellite can differentiate wheat varieties from different agroecological areas and of different quality. The 9th Internation wheat Genetics symposium, Saskatchewan, Canada, 1988, 123–125.
    [40]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学, 1999, 29: 1–10.
    [41] Sourdille P, Perretant M R, Charmet O, et al. Linkage between RFLP markers and genes affecting kemel hardness in wheat. Theoretical and Appied Genetics, 1996, 93: 580–586.
    [42]廖长见,王颖妲,潘光堂.作物染色体导入系的构建及其应用.分子植物育种2007, 5: 139–144.
    [43] Hittalmain S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Appied Genetics, 2000, 100: 1121–1128.
    [44] Law C N, Worland A J, Intervarietal chromosome substitution lines in wheat revisited. Euphytica, 1996, 89: 1–10.
    [45]李文涛,曾瑞珍,张泽民,等.水稻F1花粉不育性近等基因系导入片段的分析.中国水稻科学, 2003, 17: 95–98.
    [46]刘冠明,李文涛,曾瑞珍,等.水稻亚种间单片段代换系的建立.中国水稻科学, 2003, 17: 201–204.
    [47]席章营.作物次级作图群体的研究进展[A].全国玉米种质扩增、改良、创新于分子育种学术会议论文集[C], 2004, 260–269.
    [48]冯常辉,张胜昔,王志伟,等.棉花染色体单片段导入系的研究进展.湖北农业科学, 2009, 48: 3159–3162.
    [49]刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定.遗传学报, 2004, 31: 1395–1400.
    [50] Howell P M, Marshall D F, Lydlate D J. Towards developing intervarietal substitution lines in Brassica napus using marker assisted selection. Genome, 1996, 39: 248–358.
    [51] Li W T, Zeng R Z, Zhang Z M, et al. Mapping of S-b locus for Fl pollen sterility in cultivated rice using PCR based markers. Acta Botanica Sinica, 2002, 44: 463–467.
    [52] Yamamoto T, Lin H X, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891.
    [53] Yamamoto T, Kuboki Y, Lin S Y, et al. Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as single mendelian factors. Theoretical and Appied Genetics, 1998, 97:37–44.
    [54] Takenchi Y, Lin S Y, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theoretical and Appied Genetics, 2003, 107: 1174–1180.
    [55] Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene constans. Plant Cell, 2000, 12: 2473–2483.
    [56] Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proceedings of the National Academy of Sciences USA, 2001, 98: 7922–7927.
    [57] Paterson A H, Lander E E S, Hewitt J J D, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726.
    [58] Blair M M W, Gaffis A J, Iyer A A S, et al. High resolution genetic map-ping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theoretical and Appied Genetics, 2003, 107: 62–73.
    [59]李灿东,刘春燕,蒋洪蔚,等.染色体片段导入系在作物遗传育种中的应用.生物技术通报,综述与专论, 2008.
    [60] Ghesquiere A, Sequier J, Second G, et al. First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a contig line concept. Euphytica, 1997, 96: 31–39.
    [61] Bernacchi D, Beck-Bunn T, Emmatty D, et al. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theoretical and Appied Genetics, 1998, 97: 170–180.
    [62]吴新儒,刘树兵,刘爱峰,等.小麦重要农艺性状QTL近等基因导入系的选育.麦类作物学报, 2007, 27: 583–588.
    [63]张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位.分子植物育种, 2004, 2: 743–746.
    [64] Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162.
    [65]陈云芳,杨文香,闫红飞,等.小麦抗叶锈病基因近等基因系TcLr35基因表达差异研究.植物病理学报, 2007, 37: 109–112.
    [66]张祖新,唐万虎,郑用琏,等.玉米型细胞质雄性不育与恢复花粉中基因表达差异分析.长江大学学报(自然科学版), 2005, 2: 59–63.
    [67]陈旋,皮远江,方明镜,等.玉米O2/o2近等基因系胚乳中基因表达差异分析.中国生物化学与分子生物学报, 2006, 22: 817–822.
    [68]王颖妲,水稻寡分蘖突变体近等基因系的构建及全基因组表达谱分析: [硕士学位论文].雅安:四川农业大学, 2007.
    [69]邓世民.小麦近等基因导入系的建立及产量相关性状主效QTL位点作图: [硕士毕业论文].泰安:山东农业大学. 2008.
    [70]吴新儒.小麦重要农艺性状单片段代换系的选育与抽穗期主效QTLs的精细定位: [硕士毕业论文].泰安:山东农业大学. 2007.
    [71] Elena G P, B?rner A, Marion S R. Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theoretical and Appied Genetics, 2006, 112: 634–647.
    [72]Pestsova E, B?rner A, R?der M S. Development of a set of Triticumaestivum–Aegilops tauschii introgression lines. Hereditas, 2001, 135: 139–143.
    [73]刘树兵.小麦近等基因导入系的建立及高大山羊草与小麦杂交后代的鉴定: [博士后研究工作报告].北京.中国农业科学院, 2005.
    [74] Yildirim A, Jones S S, Murray T D, et al. Resistance to stripe rust and eyespot diseases of wheat in Ttiticum tauschii. Plant Dieases, 1995, 79: 1230–1236.
    [75]肖静,田纪春.小麦(T. aestivum L.) D基因组的研究进展.分子植物育种, 2008, 6: 537–541.
    [76] Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in Polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381–1387.
    [77] Song K, Lu P, Tang K. et al. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences USA, 1995, 92: 7719–7723.
    [78]张连全,刘登才,周永红,等.在六倍体小麦的异源多倍化早期微卫星侧翼序列迅速发生了改变.中国科学(C辑), 2004, 34: 121–128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700