油茶控制授粉家系子代遗传多样性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶是我国重要的木本油料本土树种,综合利用价值较高,为了更好的开发利用其资源为人类社会所服务,与此息息相关的工作之一是培育油茶优良品种,其良种培育以选择育种为主。在长期的栽培生产过程中,部分天然杂交种表现出明显的杂种优势,预示着杂交育种是油茶选择育种的一个具有巨大潜力的途径。为了深入探讨油茶杂交子代的遗传多样性,为油茶杂交育种提供指导和理论支持。本文针对油茶控制授粉家系七个共127份实验材料,采用SRAP和SSR两种分子标记的方法,分别对实验材料进行遗传位点的扩增,通过软件POPGENE 3.2和NTSYS 2.10对其扩增位点的统计结果进行计算分析,探讨家系内和家系间的遗传多样性丰富度。两种标记的实验结果分析均得到家系内的遗传多样性大于家系间的遗传多样性,此实验结果为油茶优良新品种的选择提供了更为有价值的理论指导信息,家系内个体水平上选育出油茶优良品种具有较大潜质;同时,从分子水平上对家系内的杂交后代进行了聚类分析,并探索各家系之间的亲缘关系,为确立油茶品种类群的划分提供理论和遗传上的依据。
     采用SRAP分子标记时,从105对SRAP引物中筛选出9对扩增稳定、重复性好、多态性高的引物,利用优化的SRAP-PCR反应体系对油茶杂交子代进行位点扩增。共检测到片段大小在100-700 bp之间的位点191个,其中多态性比率高达100%,平均每对引物扩增位点21.2个。利用POPGENE 3.2和NTSYS 2.10软件对统计结果进行分析处理显示:Nei基因多样性指数(H)在0.3405-0.3664之间,Shannon信息指数(I)在0.5146-0.5450之间;家系内的遗传多样性(Hs)为0.3547,家系间的遗传多样性(Dst)为0.0200,表明总的遗传变异中家系内占94.67%,家系间仅占5.33%,证实了家系内存在丰富的遗传多样性,并且远大于家系间的丰富度。油茶杂交子代个体间存在着丰富的遗传变异,说明从家系内筛选综合性状优良的油茶品种存在可行性。
     油茶SSR-PCR反应体系的优化研究,实验应用改良CTAB法提取油茶基因组DNA,采用L_(16)(4~5)正交设计试验,对影响油茶SSR- PCR反应体系的5因素(Taq聚合酶浓度、模板浓度、dNTPs浓度、引物浓度、Mg~(2+)浓度)在4水平上进行筛选,PCR统计结果经分析软件DPS处理,此实验还对其退火温度进行了摸索,确立了油茶SSR-PCR反应的优化体系:总体积为20μL,Taq聚合酶量为1.0 U·20μL~(-1),模板浓度75 ng·20μL~(-1),dNTPs浓度为0.15 mmol·L~(-1),引物浓度为0.4μmol·L~(-1),Mg~(2+)浓度为1.5 mmol·L~(-1),退火温为50℃。在此优化体系的基础上,从61对SSR引物中筛选出10对多态性高、扩增稳定、重复性好的引物,对127份实验材料的遗传变异位点进行了扩增。通过统计分析及其软件计算处理,探讨了油茶家系内和家系间遗传多样性的丰富度,为油茶优良品种的选育提供分子层面的理论指导信息。10对引物组合共检测到60个位点,位点的大小分布在100-280bp之间,其中多态性位点60个,平均每对引物6.0个,多态性比率为100%。利用POPGENE3.2和NTSYS2.10软件对统计结果进行分析显示:Nei基因多样性指数(H)在0.3279-0.3883之间,Shannon信息指数(I)在0.4864-0.5573之间;家系内的遗传多样性(Hs)为0.3641,家系间的遗传多样性(Dst)为0.0329,表明总的遗传变异中家系内占89.44%,家系间仅占10.56%,家系内存在丰富的遗传多样性,并且大于家系间的丰富度。油茶杂交子代个体间存在着丰富的遗传变异,家系内的遗传丰富度大于家系间,为油茶的选择育苗提供了理论方向,说明从中筛选综合性状优良的油茶品种存在可行性。据此推测,在通过杂交育种技术培育油茶新品种工作中,应以杂交后代个体选择为主,优良家系选择对油茶产量提升的潜力相对较小。
Camellia oleifera is a characteristic arboreal oil tree plant, the comprehensive utilization value is quite high. In order to exploit its resources for human society, one of the related jobs is to cultivate the thoroughbred Camellia oleifera, and the selection breeding plays an important part in the thoroughbred cultivation. In the long-term of the cultivation process, some natural hybrids have showed obvious advantages. It indicates that the hybrid breeding will play an enormous potential part in the thoroughbred cultivation of Camellia oleifera. In order to further explore the genetic diversity of Camellia oleifera for selecting high-quality seeds, in this study for a total of 127 varieties with 7 families. Mainly including SRAP and SSR marks, POPGENE 3.2 and NTSYS 2.10 were used to detect the genetic diversity among 127 Camellia oleifera cultivars of 7 families. Genetic diversity index information by SRAP and SSR marks indicated that plentiful genetic diversity was existed in this 7 families, genetic diversity in the family was more than that among the family genetic diversity. The rich genetic variation was existed in the hybrid offspring camellia oleifera, it’s feasible to choose the superior comprehensive offspring camellia oleifera in the family. The study is expected to provide some technical foundations for the study of the genetic breeding.
     In this study for a total of 127 varieties of 7 families, SRAP-PCR of Camellia oleifera was applicated in the basis of optimization system. 9 pairs of SRAP primers had been selected from 105 pairs of SRAP primers. POPGENE 3.2 and NTSYS 2.10 were used to detect the genetic diversity among 127 Camellia oleifera cultivars, and total 191 sites were obtained, The size of the sites being between 100 bp and 700 bp, the average bands per SRAP primer pairs being 21.2, and the ratio of polymorphism was 100.00%. Nei index number was from 0.3405 to 0.3664 and Shannon index number was from 0.5146 to 0.5450. It was 0.3547 in the family genetic diversity, and it’s 0.0200 among the family genetic diversity. It’s 94.67% in the family genetic diversity, and it’s 5.33% among the family genetic diversity. Genetic diversity index information indicated that plentiful genetic diversity was existed in this 7 families and genetic diversity in the family was more than that among the family genetic diversity. The rich genetic variation was existed in the hybrid offspring camellia oleifera, it’s feasible to choose the superior comprehensive offspring camellia oleifera in the family.
     The genomic DNA extracted from 1eaves of Camellia oleifera with an improved method of CTAB was app1ied to optimize the SSR-PCR system. The four levels of five factors(Taq DNA polymerase, DNA, dNTPs, primers, Mg~(2+))in SSR-PCR system were studied by L_(16)(4~5) orthogonal design. The electrophoresis profiles of SSR-PCR were ana1yzed by software DPS. The annealing temperature of SSR-PCR reaction was also explored. A suitable SSR-PCR system (20μl) was established as: 1.0 U·20μL~(-1)U Taq DNA po1ymerase, 75ng·20μL~(-1), 0.15 mmol·L~(-1) dNTPs, 0.4μmol·L~(-1) primers, 1.5 mmol·L~(-1)Mg~(2+), and annealing temperature at 50℃. The optimization SSR-PCR system is expected to provide some technical foundations for the study of the genetic diversity of Camellia oleifera Resources. In this study for a total of 127 varieties with 7 families, SSR-PCR of Camellia oleifera was applicated in the basis of optimization system. 10 pairs of SSR primers had been selected from 61 pairs of SSR primers. POPGENE 3.2 and NTSYS 2.10 were used to detect the genetic diversity among 127 Camellia oleifera cultivars, and total 60 sites were obtained, The size of the sites being between 100 bp and 280 bp, the average bands per SSR primer pairs being 6.0, and the ratio of polymorphism was 100%. Nei index number was from 0.3279 to 0.3833 and Shannon index number was from 0.4864 to 0.5573. It was 0.3641 in the family genetic diversity, and it’s 0.0329 among the family genetic diversity. It’s 89.44% in the family genetic diversity, and it’s 10.56% among the family genetic diversity.Genetic diversity index information indicated that plentiful genetic diversity was existed in this 7 families and genetic diversity in the family was more than that among the family genetic diversity. The rich genetic variation was existed in the hybrid offspring Camellia oleifera, it’s feasible to choose the superior comprehensive offspring camellia in the family, and it’s high potential to select superior Camellia oleifera species in the family.
引文
[1]韦荣华.我国油茶产业期待做大做强[J].中国林业, 2006,10:24-5.
    [2]田朝光.普通油茶重要经济性状及脂肪酸组成遗传变异研究[J].中国林科院, 2000.
    [3]国家油茶中心.油茶高效实用栽培技术[M].科学出版社.
    [4]庄瑞林.中国油茶.中国林业出版社.
    [5]尤国清,巫流民,赵学民.油茶优良无性系选育及测定研究[J].江西林业科技, 1997, 2: 7-11.
    [6]韩宁林.我国油茶优良无性系的选育与应用[J].林业科技开发, 2000, 14(4): 31-33.
    [7]周盛,朱金惠,肖景治.油茶远缘杂交育种试验[J].经济林研究, 2001, 19(1): 20-25.
    [8]李建荣.油茶选优栽培试验研究[J].林业勘察设计(福建), 2004, 1: 101-103.
    [9]陈晓静,吕柳新.山茶亚科植物过氧化物酶同工酶分析.福建农学院学报, 1992, 21(4): 401-405.
    [10]谭晓风,漆龙霖,罗春清,贺晶.山茶属植物RAPD分析中琼脂糖凝胶电泳条件的研究.中南林学院学报, 2000, 20(2):83-85.
    [11]张国武,钟文斌,乌云塔娜,谭晓风,杜天真.油茶优良无性系ISSR分子鉴别.林业科学研究, 2007, 20(2):278-282.
    [12]林萍,郑婷婷,姚小华,王开良.油茶长林系列优良无性系的SRAP分子鉴别及遗传分析[J].农业生物技术学报, 2010, 18(2):272-279.
    [13]傅荣昭.生物工程进展[J]. 1998, 18(4):14-16.
    [14]王军,谢皓,郭二虎等. DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报, 2005, 20(1):76-80.
    [15]莫惠栋.数量遗传学的新发展—数量性状基因图谱的构建和应用[J].中国农业科学, 1996, 29(2):8-6.
    [16] Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18(6):531-535.
    [17]邓俭,刘忠,康德贤等. RAPD分子标记技术在蔬菜研究中的应用[J].种子, 2005, 24(3):39-42.
    [18]胡学军,邱正名,李金泉. RAPD分子标记技术及其在十字花科蔬菜研究中的应用[J].湖北农业科学, 2005, (3):107-109.
    [19]宋成文,曹后男,赵成日等.桃品种种质资源的RAPD分析[J].南京农业大学学报, 2005, 28(4):35-39.
    [20]马兵钢,牛建新,潘立忠等. RAPD-PCR对梨属植物品种鉴定的研究[J].西北农业学报, 2004, 13(1):84-8.
    [21] Vos P, Hogers R, Bleeker M et a1 . AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21):4407-4414.
    [22]郑先云. AFLP分子标记技术的发展[J].生命的化学, 2003, 23 (1):65-68.
    [23]胡晓丽,周春江,岳良松.三倍体毛白杨无性系的AFLP分子标记鉴定[J].北京林业大学学报, 2006, 28(2):9-14.
    [24] Li WY, Gu WC, Zhou SL. AFLP analysis on genetic diversity of Quercus Mongolica populations[J]. Scientic Silvae Sinicae, 39(5):29-36.
    [25] Ming J, Zhang QX. AFLP DNA fingerprinting analysis of close genetic relationships of cultivars of Prunus mume Sieb et. Zucc. [J]. Journal of Beijing Forestry University, 2004, 26(5): 31-35.
    [26] Wu R L, HartY F, Ha J J, et a1. An integrated genetic map of Populus deltoides base on amplified fragment length polymorphisms[J]. Theoretical and Applied Genetics, 2000, 100: 1249-1256.
    [27] Yin DM, Sun H, Yi NJ. Genuine fingerprinting analysis in Popul deltoids[J]. Acta Botanica Sinica, 1998, 40(8):778-780.
    [28]尤卫艳,黄华宏,童再康等.光皮桦AFLP分子标记体系的建立[J].生物技术, 2008,18(6)42-45.
    [29]玲,姜廷波.白桦AFLP遗传连锁图谱的构建[J].遗传, 2009,31(2):213-218.
    [30]胡庭兴,张帆.用AFLP技术分析四川核桃资源的遗传多样性[J].植物生态学报, 2008, 32(6):1362-1372.
    [31]红霞,张志华,赵书岗等.核桃种质资源遗传多样性研究中的AFLP技术优化及引物筛选[J].华北农学报, 2008, 23(1):50-54.
    [32]金强,杨宇,王新建等.新疆核桃种质资源遗传多样性AFLP分析[J].江苏农业科学, 2009, 2:28-31.
    [33]白瑞霞,彭建营,张玉星. AFLP技术在枣种质资源鉴别和分类研究中的应用[D].河北农业大学园艺学院, 2005(8).
    [34]王永康,田建保,王永勤等.树品种品系的AFLP分析[J].树学报, 2007, 4(2):146-150.
    [35]乔勇,赵锦,杨海旭等. 21个枣品种(系)的AFLP指纹分析[J].植物遗传资源学报, 2009, 10(2):205-210.
    [36]向碧霞,黄敏仁,王明庥.分子标记在杨树遗传改良中的应用[J].南京林业大学学报, 1998,22(2):83-87.
    [37]王锋. cDNA-AFLP技术原理及其在研究植物基因差异表达中的应用[J].生物学通报, 2005,40(7)59-61.
    [38] Sudrez M C,Bemal A,Gutierrez J,et a1. Developing expressed sequence tags(ESTs) from polymorphic transcript-derived fragments (TDFs)in cassava (Manihot esculentaCrantz)[J]. Genome, 2000,43:62-67.
    [39] Brugnmns B, Carmen A F D, Bachem C W B, et a1. A novel method for the construction of genome wide transcriptome maps[J]. The Plant Journal, 2002,31(2):211-222.
    [40]付凤玲,李晚忱.用cDNA-AFLP技术构建基因组转录图谱[J].分子植物育种, 2003, 1(4): 523-525.
    [41]赵继荣,李宁,刘红霞等.小麦抗黄矮病相关基因cDNA-AFLP差异表达片段的验证[J].植物遗传资源学报, 2009, 01:16-20.
    [42]田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报, 2002,47(18)1412-1416.
    [43]刘志勇,杜永臣,王孝宣等.高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析[J].园艺学报, 2008,35(7).
    [44] Donson J, Fang Y, Espiritu Santo G, et al . Comprehensive geneexpression analysis by transcript profiling [J]. Plant Molecular Biology, 2002,48:95-97.
    [45] Juan, Davi, JoséLuis. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences [J]. Journal of Plant Physiology, 2006, 163(4): 452-462.
    [46] Zheng Xian wu, Chen Xue wei, Zhang Xiaohong, et al. Isolation and identification of a gene in response to rice blast disease in rice [J]. Plant Molecular Biology, 2004,54:99-109.
    [47] Bachem C W B, Van der Hoeven R S, de Bruijn S M, et al. Vi-sualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development[J]. The Plant Journal, 1996,9(5):745-753.
    [48] Qin L, Prins P, Jones J.T, et al. GenEST, a powerful link between cDNA sequence data and gene expression profiles generated by cDNA- AFLP[J]. Nuc.Acids Res, 2001,29:1616-1622.
    [49] Li G, Quiros C F. Sequence-related amplified polymorpgism ( SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet, 2001,103:455-461.
    [50] Akkaya M, Bhagwata A, Cregan B. Length polymorphisms of simple repeat DNA in soybcan[J]. Genetics, 1992,132:l131-1139.
    [51]向道权,曹海河,曹永国等.玉米SSR遗传图谱的构建及产量性状基因定位[J].遗传学报, 2001,28(8):778-784.
    [52] Hearen C, Ghosh S, Todd J. Mierosatellites for linkage analysis of genetic traits[J]. Trends in Genetic, 1993,32(8):288-294.
    [53] Wang Z, Weber J Zhong G, et a1. Survey of plant short tandem repeats[J]. Theor Appl Genet 1994,88:1-6.
    [54]张宏彦.蔬菜养分调控与品质[J].中国蔬菜, 2005(增刊)3-26.
    [55] Staub J.E., Box J., and Meglic V. Comparison of isozyme and random amplified polymorphic DNA data for determining interspecific variation in cucumber[J]. Genet. Resour Crop Evol., 1997, 44(3):257-269.
    [56]李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种, 2006,4(5):702-708.
    [57] Ruiz J J, Garcia-Martinez S, Pico B, et a1. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detectedby SRAP and SSR markers[J]. J Am Soc Horticult Sci, 2005, 130(1):88-94.
    [58] Ferriol M, Pico B, Nuea F. Genetic diversity of a germplasm collection of Cucubita prop using SRAP and AFLP markers[J]. Theor Appl Genet, 2003,107:271-282.
    [59] Maria Ferriol, Belen Pico, Pascual Fernandez de Cordova, et a1. Molecular diversity of a germplasm collection of squash(Cucurbita moschata)determined by SRAP and AFLP marker[J]. Crop Science, 2004,44:653-664.
    [60]王凤涛,蔺瑞明,欧阳宏雨.利用SRAP标记分析河南小麦栽培品种的遗传多样性植物遗传资源学报[J]. 2009, 10(4):517-521.
    [61]杨平,刘仙俊,刘新春等.利用SRAP标记研究四川高原青稞育成品种的遗传多样性[J].遗传, 2008,30(1):115-122.
    [62]文雁成,王汉中,沈金雄等.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础[J].中国农业科学, 2006,39(2):246-256.
    [63] Zhang S.F, Fu T.D, Li Y.Y, Zhu J.C, Wang J.P, and Ma C.Z. Polymorphism analysis by sequence-related amplified pilymorphism markers in Brassica napus L.[J]. Huabei Nongxuebao (Acta Agriculturae Boreali-Sinica), 2006,21(1):50-54.
    [64]车卓,张艳,孙建.应用SRAP标记分析黑芝麻核心种质遗传多样性[J].作物学报, 2009,35(10):1936-1941.
    [65]林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报, 2004,31(6):622-626.
    [66]李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].园艺学报, 2005,32(4):643-647.
    [67] ATTIA FM, ALSOBAYEL A A, KRIADEESM S, et a1. Nutrient composition andfeeding value of Salicornia bigelovii torr meal in broiler diets[J]. Animal Feed Science Technology, 1997,65:257-263.
    [68]张旭,邢锦城,陈健华.利用SRAP分子标记研究美洲海莲子实生群体遗传多样性.江苏农业学报, 2009,25(6):1252-l257.
    [69]易杨杰,张新全,黄琳凯.野生狗牙根种质遗传多样性的SRAP研究[J].遗传, 2008,30(1):94-100.
    [70] Zeng B, Zhang X Q, Lan Y, et a1. Evaluation of genetic diversity and relationships in Orchardgrass(Dactylis glomerata L.) germplasm based on SRAP markers[J]. Canadian Journal of Plant Science, 2008,88:53-60.
    [71]周艳霞,尹俊梅,任羽.文心兰种质遗传多样性的SRAP分析[J].热带农业科学, 2009,29(7):43-46.
    [72]徐进,张西西,董爱香等.部分矮牵牛品种亲缘关系的SRAP分析[J].园艺学报, 2008,35(12):1837-1842.
    [73]瞿桢,魏英辉,李大威等.莲品种资源的SRAP遗传多样性分析[J].氨基酸和生物资源, 2008, 30(3):2l-25.
    [74]樊洪泓,李廷春,邱婧等.药用石解遗传多样性的SRAP标记研究[J].中国中药杂志,2008,33(1):6-10.
    [75]高丽霞,胡秀,刘念等.中国姜花属基于SRAP分子标记的聚类分析[J].植物分类学报, 2008, 46(6):899-905.
    [76]王从彦,李晓慧,胡颖. SRAP分子标记分析芜花遗传多样性[J].河南科学, 2008, 26(5):554-556.
    [77]陈智华,苗佳敏,钟金城.野生垂穗披碱草种质遗传多样性的SRAP研究.草业学报, 2009,18(5):192-200.
    [78]郭海林,郑轶琦,陈宣.结缕草属植物种间关系和遗传多样性的SRAP标记分析草业学报. 2009, 18(5):201- 210.
    [79]尹春英,彭幼红,罗建勋,李春阳.杨属遗传多样性研究进展[J].植物生态学报, 2004, 28(5):7l1-722.
    [80]刘艳萍,郭志富,刘玉东.应用SRAP标记分析新疆地区主要杨属树种的遗传多样性[J].植物生理学通讯2008, 44(2):225-228.
    [81]路娟,张绍铃,刘庆忠.樱桃SRAP-PCR体系优化及其遗传多样性分析[J].果树学报,2009,26(2):163-169.
    [82]张四普,汪良驹,曹尚银. 23个石榴基因型遗传多样性的SRAP分析[J].果树学报, 2008,25(5):655-660.
    [83] McCouch S R, Chen X, Panaud O, et al. Microsatellite marker development、mapping and applications in rice genetics and breeding[J]. PIant Mol Bio1, 1997,35:89-99.
    [84] WuKS, JonesR, DannebergerL, et al. Detection of microsatellite polymorphisms without cloning[J]. Nucleic Acids Res, 1994, 22:3257-3258.
    [85]唐荣华,张君诚,吴为人. SSR分子标记的开发技术研究进展西南[J].农业学报, 2002, 5(4):106-109.
    [86]宋建,陈杰,陈火英,刘杨,庄天明.利用SSR分子标记分析番茄的遗传多样性[J].上海交通大学学报, 2006,6(24):524-528.
    [87]王日升,李杨瑞,杨丽涛,李立志,方锋学,李文嘉.番茄栽培品种SSR标记和形态标记的遗传多样性分析[J].热带亚热带植物学报, 2006,l4(2):120-125.
    [88] Prasad M, Varshney R, Roy J, et a1. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat[J]. Theor Appl Genet, 2000,100(4):584-592.
    [89]赵军海,冯国华,刘东涛,刘世来等.小麦育种亲本材料遗传多样性的SSR分析[J].麦类作物学报, 2009,29(6):982-986.
    [90]王林海,田志强,董中东等. SSR标记技术在小麦品种遗传多样性上的应用[J].河南农业大学学报, 2007,41(1):5-12.
    [91]魏育明,郑有良,周永红,等.四川小麦地方品种和主栽品种SSR多态性比较研究[J].四川I农业大学学报,2001,19(2):117-121.
    [92]郭小丽,刘冬成,罗铮等.我国部分优质小麦品种遗传差异的SSR标记分析[J].麦类作物学报, 2004,24(1):1-5.
    [93]郝晨阳,王兰芬,张学勇等.我国育成小麦品种的遗传多样性演变[J].中国科学, 2005,35(5):408-415.
    [94] Smith J S. An evaluation of the utility of SSR loci. as molecular markers in maize(Zea mays L):comparison with data from RFLPs and pedigree[J].Theor Apple Genet, l997,95:163-173.
    [95]邱红波,叶雨胜,戴保威,彭忠华. 36个贵州主要玉米自交系的SSR遗传分析[J].贵州农业科学, 2009,37(12):5-8.
    [96]肖木辑,李明顺,孙有位等.辽宁省主要玉米自交系的SSR遗传多样性分析[J].玉米科学, 2006,14(1):33-36.
    [97]王明泉,苏俊,李春霞,龚士琛等.黑龙江省部分审定玉米品种亲本自交系的遗传多样性分析[J].中国农学通报, 2009,25(22):274-279.
    [98]聂永心,张丽,潘光堂,荣廷昭.四川省常用玉米自交系SSR遗传多样性分析[J].分子植物育种, 2005, (3):43-51.
    [99]孙友位,李明顺,张德贵,肖木辑,谢振江.利用SSR标记研究85个玉米自交系的遗传多样性[J].玉米科学, 2007,15(6):19-26.
    [100]聂平,杜德志,徐亮,姚艳梅.不同生态类型甘蓝型油菜的SSR遗传多样性分析[J].西北农业学报, 2008,17(4):109-113.
    [101]唐容,王通强,黄泽素,代文东.利用SSR对甘蓝型黄籽油菜遗传多样性的研究[J].贵州农业科学, 2009,37(2):7-l1.
    [102]雷天刚,张学昆,李加纳,谌利等.甘蓝型黄籽油菜SSR标记遗传多样性[J].中国油料作物学报, 2005,27(1):41-45.
    [103] Cho MJ, Widholm JM,Vodkin LO. Cassettes for seed specific expression tested in transformed embryogenic cultures of soybean[J]. Plant Mol Biol Rep, 1995,13:255-269.
    [104]高运来,姚丙晨,刘春燕一,李文福,蒋洪蔚.黑龙江省主栽大豆品种遗传多样性的SSR分析[J]植.物学报, 2009,44(5):556-561.
    [105]赵尚敏,白晨,张惠忠,牛素清,李晓东,付增娟.适于甜菜遗传多样性分析的SSR引物筛选[J].中国糖料, 2009,4:6-8.
    [106]韩骞,王辉,王进茂,赵健如,杨敏生.利用SSR引物通用性分析杨柳科树种遗传多样性[J].分子植物育种, 2009,7(5):904-91l.
    [107] Tuskan G. A, Gunter L. E, Yang Z. M, Yin T. M. Sewell M.M and DiFazio S.P Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J]. Canadian Journal of Forest Research, 2004,34:85-93.
    [108] Hormaza J.I. Molecular characterization and similarity relationships among apricot(prunus armeniaca L.)genotypes using simple sequence repeats[J]. Theor.App1.Genet, 2002, 104(2-3):321-328.
    [109]徐立安,李新军,潘惠新,邹惠渝等.用SSR研究栲树群体遗传结构[J].植物学报, 2001, 43(4):409-412.
    [110]马克平.试论生物多样性的概念[J].生物多样性, 1993,1(1):20-22.
    [111]冯夏莲,何承忠,张志毅等.植物遗传多样研究方法概述[J].西南林学院学报, 2006,26(1):69-74.
    [112]李建军,刘志坚,肖层林. SRAP技术在遗传的研究进展[J].现代生物医学进展, 2007, 7(5).
    [113]郑婷婷,林萍,杨水平,等.油茶SRAP-PCR反应体系的优化[J].林业科学研究, 2010, 23(2):302-307.
    [114] Doyle J J. Doyle J L Isolation of plant DNA from fresh tissue[J]. Focus, 1990,12:13-15.
    [115] Wirght S. The genetic structure of populations[M].1951,15:323-350.
    [116]周连第.板栗种质资源遗传多样性研究[D].北京:中国农业大学博士论文, 2005.
    [117]杜洋文.油茶杂交亲子代表型性状遗传变异研究[D].重庆:西南大学大学硕士论文, 2009.
    [118]陈晓静,吕柳新.山茶亚科植物过氧化物酶同工酶分析[J].福建农学院学报, 1992, 21(4):401-405.
    [119]谭晓风,漆龙霖,罗春清,贺晶.山茶属植物RAPD分析中琼脂糖凝胶电泳条件的研究[J].中南林学院学报, 2000,20(2):83-85.
    [120] Ram Kumar Sharma, Pankaj Bhardwaj, Rinu Negi,Trilochan Mohapatra, et al. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.)[J]. BMC Plant Biology. 2009, 9:53 doi:10.1186/1471-2229-9-53.
    [121]郑丽珊,王静毅,冀小蕊等.香蕉SSR反应体系的优化[J].热带农业科学, 2007.
    [122] Hautea DM, MolinaGC, Balatero CH, et al Analysis of induced mutants of Philippine bananas with molecular markers. [M].Jain S Mohan,Swennen Rony. Banana Improvement: Cellular,Molecular Bi0logy, and Induced Mutations New Hampshire:Science Publishers, 2004:45-57.
    [123] BuhariwaUa H K, Jarret R L, Jayashree B, et a1. Isolation and Characterization 0f microsateUite markers from Musa balbisiana[J].Molecular Ecology Notes, 2005, 5(2): 327-330.
    [124]何正文,刘运生,陈立华等.正交设计直观分析法优化PCR条件[J].湖南医科大学学报, 1998:23 (4):403-404.
    [125]杨云水,李续娥,吴明宇等.正交实验法在PCR反应条件优化中的应用[J].生物数学学报. 2005,20(2):202-206.
    [126]王振国,张海英,于广建等.黄瓜SRAP反应体系的正交设计优化[J].华北农学报, 2007, 22(4):112-l15.
    [127]黄永芳,陈锡沐,庄雪影等.油茶种质资源遗传多样性分析[J].林业科学, 2006,42(4): 38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700