甘蓝型油菜双向导入系的构建及评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室以欧洲甘蓝型油菜冬性品种Tapidor和中国半冬性栽培种宁油7号为亲本,构建TN DH群体,包含202个株系;并以该群体为母本,Ningyou7为父本,经过4次回交构建了导入系群体,称之为T-BC4群体。本研究目的为构建甘蓝型油菜双向导入系,因此以Tapidor为父本,构建了世代平衡的回交导入系群体,称之为N-BC4群体。同时,对双导入系群体进行了初步评估,并利用N-BC4群体对A9硫甙性状相关QTL进行了分析和研究。主要结果如下:
     完成甘蓝型油菜双向导入系的构建。以Tapidor为父本,构建N-BC4导入系群体。经过回交和自交的方法,得到包含大于4000个单株的BC4F1和BC4F2群体,完成了与T-BC4群体世代平衡的甘蓝型油菜双向导入系构建。另外分别得到来源于111个DH系对应239个单株BC2F1,360个单株BC2F2自交种;107个DH系对应501个单株BC3F,,105个DH系对应418个单株BC3F2自交种。以Ningyou7为父本的T-BC4群体,通过自交,得到来源于131个DH系对应BC4F2单株。经过回交,得到85个株系、133个单株的BC5F1回交种。
     对双向导入系进行了初步评估。结合开花时间,利用A10和C6 QTL区间内特异性分子标记对T-BC4群体和N-BC2群体进行了评估。调查两个群体约2000个单株开花时间,表明花期持续时间为30天,但即使来源于同一DH系的单株开花时间也有较大差异。同时,通过14对C6和3对A10连锁群开花QTL区间内分子标记进行评估,结果表明在双向导入系中同一QTL的作用刚好相反。开花时间早晚是由于导入相应染色体片段引起的,初步证明导入系群体构建成功。
     加密A9连锁群硫甙性状相关目标QTL所对应的遗传图谱置信区间。同时,利用T-BC4群体,通过A9连锁群硫甙QTL区间内分子标记进行筛选,为构建分离群体做准备。基于早期研究对对叶片、籽粒中各个硫苷分量和总量进行QTL定位分析,共有2个mQTL,表型方差均在20%以上。本研究利用白菜A9连锁群的BAC和Scaffold序列信息开发分子标记,加密QTL所对应的遗传图谱置信区间,完成目标QTL所对应的遗传图谱置信区间与白菜遗传图谱的比对。通过BAC和BAC-end共设计57对引物,其中3对定位到A9连锁群QTL区间内。经过QTL重新整合分析,目标QTL区间缩短为2cM。对来源于7个DH系810个BC4F2单株以及来源于11个DH系2000个BC4F3单株套袋自交,得到自交种,测定硫甙含量。同时利用目标QTL所对应遗传图谱置信区间内分子标记,对基因型进行筛选,结合基因型和表型,为构建分离群体奠定基础。
Based on TN DH population with 202 lines, which is constructed by a winter and a semi-winter type of B. napus. In order to construct reciprocal introgression lines, Tapidor is used as the male parent to get the introgression lines called N-BC4 population. At the same time, a preliminary evaluation is made with the traits of flowering time. Meanwhile, using T-BC4 population is a good way to study the trait of glucosolinate in B. napus. Results stated as below:
     The work of construction of reciprocal introgression lines is successfully accomplished and the seeds of N-BC1, N-BC2, N-BC3, and N-BC4 populations are harvested. Four-thousand self-pollinated and hybrided seeds had been harvested from the N-BC4 populations. The seeds number of N-BC2F1, N-BC2F2,N-BC3F1, N-BC3F2 is 239、360、501 and 418.The seeds gained from the T-BC4 population is divided into two parts:self pollinated seeds of BC4F2 inherited from 133 DH liens and hybrided seeds of BC5F1 from 133 DH lines.
     In order to evaluate the introgression lines, markers from QTL region on C6 and A10 has been used to detect the trait of flowering time. In hypothesis, if the segements of QTL region within C6 is introgressed, the flowering time would be earlier than Ningyou7. On the contrary if the segements of A10 QTL region is introgressed, the flowerting time would be later than Ningyou7 in the T-BC4 populations. However, in the N-BC2 populations, there is a different situation. The introgression segments of A10 QTL region will flower earlier than Tapidor, vice verse. The results goes as what we wished.
     Confirm target QTL and construct NIL. Two in sixty-four mQTL, q.mcG-A9b and q.mcG-A9c, were two major QTL that controlled the content of total glucosinolate, each explaining more than 20% of phenotypic variation and controlled different glucosinolates in seeds, so the two mQTL, qmcG-A9b and q.mcG-A9c were the target QTL. Some polymorphic markers responding to BACs and Scaffold of B. rapa were mapped in the confidence intervals of the two target QTL, and the candidate genes for q.mcG-A9b were achieved through comparing A9 genomics between B. rapa and B. napus. By the tool of comaparative genomics analysis, the QTL region of A9 has been denstified with BAC-based and BAC end -based SSR markers. Three of fifty seven markers were mappped to the QTL region the QTL region was narrowed 2 cM. The materials of backcross populations derived from lines of TN DH population, and in BC4F2 population,11 NILs with the number of 2000, and in BC4F3 population,7 NILs with the number of 810 included target chromosome segments of varying length is developed through the foreground selection for target QTL.
引文
1.傅廷栋.我国油菜育种目标及品种审定问题的商榷.中国油料作物学报,2007,29:350-352
    2.郭晋杰.玉米自交系农系531导入系群体的构建及遗传改良研究.[硕士学位论文].保定:河北农业大学图书馆,2008
    3.郭嗣斌.小粒野生稻导入系的构建及性状鉴定.[博士学位论文].武汉:华中农业大学图书馆,2009
    4.何风华,等.利用单片段代换系定位水稻抽穗期QTL.中国农业科学,2005,38:1505-1513
    5.蒋洪蔚,李灿东,刘春燕,等.大豆导入系群体芽期耐低温位点的基因型分析及QTL定位.作物学报,2009,35:1268-1273
    6.刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定.遗传学报,(31):1396-1440
    7.刘后利.几种芸薹属汕菜的起源和进化.作物学报,1984,10:9-18
    8.刘后利.油菜的遗传和育种.上海:科学技术出版社,1987,261-288.
    9.龙艳.甘蓝型油菜开花期QTL定位及分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    10.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博十学位论文].武汉:华中农业大学图书馆,2006
    11.孙志忠.利用染色体片段代换系定位水稻重要的农艺性状QTLS.[硕士学位论文].江苏:扬州大学图书馆,2010
    12.王汉中.我国油菜产业发展的历史回顾与展望.中国油料作物学报,2010,32:300—302.
    13.王晶.甘蓝型油菜中控制开花的主效QTL簇的解析和“成花素”基因家族的克隆和分析.[博士学位论文].武汉:华中农业大学图书馆,2009
    14.王立秋,赵永锋,薛亚东,等.玉米衔接式单片段导入系群体的构建和评价.作物学报,2007,33:663-668.
    15.谢学文,许美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应..作物学报,2008,34:1885-1893
    16.徐华山,余四斌等.构建水稻优良恢复系背景的重叠片段代换系及其效应分析.作物学报,2007,33(6):979-986
    17.杨静,孙勇,程立锐,等.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响.作物学报,2009,35:974-982
    18.曾瑞珍,施军琼,黄朝锋,等.籼稻背景的单片段代换系的群体的构建.作物学报,2006,32:89-95
    19.赵永锋.玉米单片段导入系群体的构建及QTL鉴定初探.[硕十学位论文].保定:河北农业大学图书馆,2006
    20.朱军.遗传学.北京:中国农业出版社,2001
    21. Aida Y, Tsunematsu H, Doi K, et al. Development of a series of introgression lines of Japonica in the background of Indica rice. Rice Genet Newsl,1997,14:41-43
    22. Ben Chaim A, Borovsky Y, Rao GU, et al. fs3.1:a major fruit shape QTL conserved in Capsicum. Genome,2003,46:1-9
    23. Brown AHD, Munday J, Oram RN. Use of isozyme-marked segments from wild barley (Hordeum spontaneum) in barleybreeding. Plant Breed,1988,100:280-288
    24. Canady MA, Meglic V, Chetel, et al..A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome,2005,48:685-697
    25. Concibido VC. La Vallee B, Mclaird P, et al. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet,2003, 106:575-582
    26. Eduardo I, Arus P, Monforte AJ. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession P1161375. Theor Appl Genet, 2005,112:139-148
    27. Eshed Y, Abu-Abied M, Saranga Y, et al. Lycopersicon esculentum lines containing small overlapping introgressions from Lycopersicon pennellii. Theor Appl Genet,1992, 83:1027-1034
    28. Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in Lycopersicon esculentum—a tool for fine mapping of genes. Euphytica,1994,79:175-179
    29. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141:1147-116
    30. Finkers R, van Heusden AW, Meijer-Dekens F, et al. The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet,2007,114:1071-1080
    31. FU Ting-Dong. Genetic Analysis of Oil Content in Brassica napus L. Using Mixed Model of Major Gene and Polygene. Acta Genetica Sinica,2006,33:171-180
    32. Fulton TM, Nelson JC, Tanksley SD. Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet, 1997,95:895-902
    33. Garcia GM, Stalker HT, Kochert G. Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD marker. Genome,1995, 38:166-176
    34. Hori K, Sato K, Nankaku N, et al. QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp.vulgare and Hordeum vulgare ssp. Spontaneum. Mol Breed,2005,16:295-311
    35. Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using markerassisted selection. Genome,1996,39:348-358
    36. J.S. Parker, D.J. Lydiate. Detection and eff ects of a homoeologous reciprocal transposition in Brassica napus. Genetics,2003,165:1569-1577.
    37. Jena KK, Khush GS, Kochert G. RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor Appl Genet,1992,84:608-616
    38. Kramer C. Genetic characterization of exotic germplasm in spring-type Brassica napus L. Validation. confi rmation, tester complementation and prediction of hybrid seed yield quantitative trait loci. Ph.D. diss. Univ. of Wisconsin, Madison.
    39. Li ZK, Fu BY, Gao YM, et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes on rice (Oryza sativa L.). Plant Mol Biol,2005, 59:33-52
    40. Matus I, Corey A, Filichkin T,et al. Development and characterization of recombinant chromosome substitutionlines (RCSLs) using Hordeum vulgare subsp spontaneum as a source of donor alleles in a Hordeum vulgare subsp vulgare background. Genome,2003, 46:1010-1023
    41. Mei HW, Xu JL, Li ZK, et al. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet,2006, 112:648-656
    42. Monforte AJ, Tanksley SD. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L.esculentum genetic background:A tool for gene mapping and gene discovery. Genome, 2000.43:803-813
    43. N. D. Young and S. D, Tanksley, et al. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet,1989.77:95-100
    44. N. Nesi. et al. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.C. R. Biologies,2008,331:763-771
    45. Osborn, T.C., D.C. Alexander, and J.F. Fobes. Identifi cation of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet,1987,73:350-356
    46. OTTO TO RJE K, RHONDA C MEYER, MAIK ZEHNSDORF, et al. Construction and Analysis of 2 Reciprocal Arabidopsis Introgression Line Populations. Journal of Heredity, 2008:99:396-406
    47. P. Ramu, B. Kassahun. S. Senthilvel, et al. Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet, 2009,119:1193-1204
    48. Percy RG, Cantrell RG, Zhang J. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci,2006,46:1311-1317
    49. Pestsova EG, Bo'mer A, Ro'der MS. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet,2006,112:634-647
    50. Prakash NS, Combes MC, Somanna N, et al. AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica,2002. 124:265-271
    51. Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshall DF.The construction of a substitution library of recombinant backcross lines in Brassicaoleracea for the precision mapping of quantitative trait loci. Genome,1996, 39:348-358
    52. Song, K, K. Tang, T.C. Osborn. Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theoretical Applied Genetics,1993.86:811-821.
    53. Szalma SJ, Hostert BM, LeDeaux JR, et al. QTL mapping with near-isogenic lines in maize. Theor Appl Genet,2007,114:1211-1228
    54. Tan LB, Liu FX, Xue W, et al. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. Plant Biol.2007,49:871-884
    55. Tanksley, McCouch. Seed Banks and Molecular Maps:Unlocking Genetic Potential from the Wild. Science,1997,277:1063-1066
    56. Tanksley s D, Grandillo S. Fullton T M, et al. Advanced backcross QTL analysis in a cr098 between an elite processing line of tomato and its wild relative L pimpineUifolium[J]. Theor Appt Genet,1996,92:213—224.
    57. Tanksley s D, Grandillo S, Fullton T M, et al. Advanced backcroas QTL analysis between an elite processing line of tomatoand its wild relative L pimpineUifolium. Theor Appt Genet, 1996,92:213—224
    58. Tian F, Li DJ, Fu Q, et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet,2006,112:570-580
    59. Vijayakumar CHM, Maghirang R, Zheng TQ, et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes on rice(Oryzasativa L.). Plant Mol Biol,2005,59:33-52
    60. von Korff M, Wang H, Le'on J,et al. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet. 2004,109:1736-1745
    61. Ye Shen, Daowei Zhou, Bao Liu. Extensive de Novo Genomic Variation in Rice Induced by IntrogressionFrom Wild Rice (Zizania latifolia Griseb). Genetics,2005,10:1534-1540
    62. Zamir. D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet,2001,2: 983-989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700