分布式能源供应链的规划与鲁棒运作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对能源的日益依赖,以及传统集中式供能弊端的暴露,寻求支撑人类文明进程的新型能源体系,已成为全球亟待解决的问题。分布式能源系统因其能源利用效率高,环境负面影响小,能源供应可靠性高和经济效益好的特点,被誉为“解决能源问题的金钥匙”,成为新型能源系统中的核心技术。因此,从能源供应链角度,对分布式能源供能网络的规划和运作鲁棒性评估及优化的研究,可为分布式能源系统的有效应用提供参考和建议,具有重要意义。
     本文在前人成果和前期研究基础上,重点研究了分布式能源供能网络的规划以及突发事件下分布式能源供应链整体及其各个环节的运作鲁棒性评估与优化问题。试图为一定地理区域有效地利用分布式能源系统,建立高效能、低成本、安全可靠的能源供应网络提供思路和参考。
     针对分布式能源系统“需求侧管理”的特点,依据区域客户电能、热能的波动需求量,以双层规划为理论基础,以区域供能总成本最低为目标,建立了区域分布式能源系统网络构建的双层规划模型。分别对区域分布式能源系统的位置、数量、产能、需求点归属以及热能输送网络进行了规划。有针对性的提出了基于K-means聚类的禁忌搜索和基于扫描法的模拟退火混合启发式算法。在禁忌搜索算法中,引入邻域结构动态变化和突发机制以避免陷入局部最优。数值实验证明了该算法的良好效果。同时,通过与同条件下采用集中供能所用成本的对比,证明了用双层规划进行区域分布式能源供能网络规划的良好效益。
     研究中将不可运作性输入输出模型(Inoperability Input-Output Model, IIM)创新性地应用于不安全环境下分布式能源供应链的运作鲁棒性评估和优化方面。并根据供应链节点间相互关系影响因素的特点,提出新的基于有序加权平均(Ordered Weighted Averaging, OWA)算子的相互关系矩阵评价方法,对原IIM的相互关系矩阵评价方法进行了改进。IIM不仅可以评估出突发事件对分布式能源供应链运作水平的直接影响而且可以评估由节点间相互依赖关系引起的在节点间传递和蔓延的间接影响。本文分别以“不可运作性”和“经济损失”为鲁棒评价指标,评价了不安全环境下分布式能源供应链各节点的运作鲁棒性,在对评估结果分析的基础上,提出相应鲁棒优化措施,并用IIM分析了优化措施的效果。通过基于蒙特卡洛的EXTEND仿真分析,验证了IIM在分布式能源供应链中应用的有效性。
With the increasing reliance on energy and the exposed disadvantages of the traditional centralized energy supply system, how to find out a new energy system has become the world’s problem to be solved. Due to the high efficiency of energy use, small environmental negative impacts, high reliability of energy supply and good economic benefits, distributed energy system (DES) has been hailed as a golden key to solve the energy problems and has become the core technology in the new type energy systems. Thus, from the perspective of the energy supply chain, it is very significant to study on the planning and the robust operation of the distributed energy supply chain network, which could provide the reference and recommendations for the efficient use of the DES.
     This paper focuses on the planning of the distributed energy supply network and the robust operation of the DES supply chain under unsafe environment. And the research tries to provide the suggestions and reference for the efficient use of the DES and for developing energy supply networks with high efficiency, low cost and high reliability.
     Based on the theory of Bi-level Programming, according to the fluctuant power and heat demand of customers in a region, taking the minimum cost of the regional DES construction and operation as objective function, a bi-level programming model for the regional DES network construction is formulated. The model is used to deal with distributed energy supply network planning problems including the number, capacity and location of the energy suppliers, the ownership of the customers and the heat convey network optimal planning.
     A hybrid algorithm of a tabu search algorithm combined with k-means algorithm and a simulated annealing algorithm combined with scanning algorithm has been provided to solve the bi-level programming model. Dynamic change and mutation is added into neighbor structure of the tabu search algorithm in order to get overall optimum. At last a testing experiment platform with C# is developed to verify the validity of the algorithm through experiments. The results of the computational experiment have indicated that the proposed algorithm is effective. According to the energy supply cost comparison with the traditional centralized energy supply system, the good benefit of the planning method in this paper is indicated.
     The Inoperability Input-Output Model (IIM) is deployed for assessing the impacts of disruptive events on DES supply chain networks under unsafe environment. And according to the characteristics of the influencing factors of relationships among nodes in supply chain, a new method called OWA Operator is formulated to evaluate the interdependency matrix of the IIM. The IIM for DES supply chain networks is capable of describing the propagation effects of disruptions to interdependent supply chain components. The“inoperability”and“economic losses”metrics have been used to assess the impacts of disruptions to DES supply chain networks. An example DES supply chain network is used to illustrate the application of IIM for systemic risk assessment of supply chains under unsafe environment. And a risk mitigation strategy has been considered to reduce the adverse effects. In addition, a simulation model integrated with Monte Carlo simulation method has been developed to validate the accuracy of the IIM for DES supply chain.
引文
[1]江泽民.对中国能源问题的思考.力学学报. 2008,42(3):345-359.
    [2] Alanne, K., Saari, A. Distributed energy generation and sustainable development[J]. Renewable and Sustainable Energy Reviews. 2006, 10:541-542.
    [3]韩晓平.未来20年中国能源技术发展方向之一——分布式能源及相关技术.沈阳工程学院学报(自然科学版). 2005,1(2、3):13.
    [4]中国科学院可持续发展研究组. 2003中国可持续发展战略报告.北京:科学出版社. 2003:1-2.
    [5]吴大为,王如竹.分布式能源定义及其与冷热电联产关系的探讨.制冷与空调. 2005(5):2-3.
    [6] Shipley, A. M., Ellion, R. N. Distributed Energy Resources and Combined Heat & Power:A Declaration of Terms. http:// www. aceee. org. 2000, 4
    [7]蒋润花.分布式能源系统研究[硕士论文].中国科学院研究生院. 2009.
    [8]杨勇平,徐二树.分布式能量系统.现代电力. 2007, 24(5):73-76.
    [9]陆方,罗永浩.分布式供能系统及应用.上海节能. 2005, 3:37-40.
    [10]隋军,金红光,林汝谋,徐建中.分布式供能及其系统集成.研究论文. 2007, 24:58-62.
    [11]张洪伟,龙妍,黄素逸.分布式能源系统的方案选择及性能分析.暖通空调. 2004,34(5):47-51.
    [12]俞新祥,翁一武,杨锦成.分布式供能系统控制的设计和应用.热力发电. 2006(10):11-16.
    [13] Silveira, J.L., Tuna, C.E. Thermoeconomic analysis method for optimization of combined heat and power systems[J]. Progress in Energy and Combustion Science. 2003, 29:479-485.
    [14] Poullikkas, A. Implementation of distributed generation technologies in isolated power systems[J]. Electricity Authority of Cyprus. 2006,23(7):158-160.
    [15]陈效孺.分布式供能系统的经济性分析[J].上海节能. 2005,6:109-121.
    [16]王丽慧,吴喜平.分布式能源系统运行效果受负荷稳定性的影响[J].建筑节能. 2007,35(1):48-51.
    [17] Gianfranco Chicco, Pierluigi Mancarella. Distributed multi-generation: A comprehensive view [J]. Renewable and Sustainable Energy Reviews. 2009, 13: 535-551.
    [18] Celine Weber, Francois Marechal, Daniel Favrat. Network synthesis for district heating withmultiple heat plants [J]. Paper presented at CIEM 2005, Bucharest, Romania, 20-21 October, available at: http://infoscience.epfl.ch/getfile.py?mode =best & recid=55861.
    [19] Soderman J, Petterson F. Structural and operational optimization of distributed energy systems [J]. Applied Thermal Engineering. 2006, 26: 1400-1408.
    [20] Damiana Chinese. Optimal size and layout planning for district heating and cooling networks with distributed generation options [J]. International Journal of Energy Sector Management. 2008, 2(3): 385-419.
    [21] Brachen, J., McGill, J. Mathematical programs with optimization problems in the constraints[J]. Operations Research. 1973, 21:37-44.
    [22] Candler, W., Norton, R. Multilevel programming[R]. Technical Report 20, World Bank Development Research Center, Washington D.C., 1977.
    [23]曾凡超.车辆路径问题的改进遗传算法[硕士论文].重庆:重庆大学. 2007.
    [24]滕春贤,李智慧.二层规划的理论与运用.科学出版社. 2002:50-60.
    [25]张苗.基于双层规划的多目标校车路径优化研究[硕士论文].成都:西南交通大学. 2006.
    [26]杨莉.物流中心选址和布局规划的两阶段双层规划模型及算法研究[硕士论文].长安:长安大学. 2006.
    [27]黄伟,黄民翔,赵学顺等.基于主从递阶决策模型的TRM评估.电力系统自动化. 2006, 30(4):17-21.
    [28]黄伟,黄民翔,甘德强.考虑电压稳定的电网至少传输容量评估.电力系统自动化. 2006,30(22):25-27.
    [29] Webber, J. D., Overbye, T. J. A Two-level Optimization Problem for Analysis of Market Bidding Strategies[C]. proceedings of IEEE Power Engineering Society Summer Meeting, Vol 2, Edmonton(Alta, Canada):1999,682-687.
    [30]马豫超,侯志俭,蒋传文等.基于粒子群算法求解电力市场发电商最优供给函数模型.电力系统自动化. 2006, 30(2):45-50.
    [31]胡庆林,叶念渝,朱明福.数据挖掘中聚类算法的综述.计算机与数字工程. 2007, 35(2):17-20.
    [32]贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述.计算机应用研究. 2007:10-13.
    [33] Chris Ding. A Tutorial on Spectral Clustering[C ]. ICML, 2004.
    [34] Glover, F. Tabu search[J] PartⅠ[J]. ORSA Journal of Computing. 1989, 1 (3),:190- 206.
    [35] Glover, F. Tabu search. PartⅡ[J]. ORSA Journal of Computing. 1990, 2 (1):4- 32.
    [36]贺一.禁忌搜索及其并行化研究[博士论文].重庆:西南大学. 2006.
    [37] Sérgio Barreto, Carlos Ferreira, JoséPaix?o et al. Using clustering analysis in a capacitated location-routing problem[J]. European Journal of Operational Research. 2007, 179(3): 968-977.
    [38] Gillett, B., Miller, L. A heuristic for the vehicle dispatching problem[J]. Operations Research. 1974, 22: 340-349.
    [39] William Pentland.分布式能源系统成为解决能源问题的金钥匙[OL].中国能源局. 2008.08.07(2010.01.06). http://nyj.ndrc.gov.cn/gjdt/t20080917_236228.htm
    [40] Sheffi, Y. Supply Chain Management under the Threat of International Terrorism[J]. The International Journal of Logistics Management. 2001,12: 1-11.
    [41] Pai, R., Kallepalli, V., Caudill, R., Zhou, M. Methods towards supply chain risk analysis[J]. IEEE International Conference on Systems, Man and Cybernetics. 2003,5:4560-4565.
    [42] Wen, L., Xi, Z.C. Supply chain risk evaluation based on fuzzy multi-criteria lattice-order decision-making[C]. IEEE International Conference on Automation and Logistics, August 18 - 21, 2007, Jinan, China, pp.1442-1445.
    [43] Liu, L.P., Ji, J.H., Yu, H.L., Hu, J.L., Fan, T.J. Supply chain risk management in Chinese process Industries[C]. IEEE International Conference on wireless communications, networking and mobile Computing, WiCom 2007, September 21-25,2007, 4923-4926.
    [44] Kumar, V., Viswanadham, N. A CBR-based Decision Support System Framework for Construction Supply Chain Risk Management[C]. The 3rd Annual IEEE Conference on Automation Science and Engineering, Scottsdale, AZ, USA, Sept 22-25, 2007, pp.980-985.
    [45] Souter, G.. Risks from supply chain also demand attention[J]. Business Insurance 2000, 34(20): 28-28.
    [46] Stauffer, D.. Supply-chain Risk: Deal with it. Harvard Business School Working Knowledge, http://hbswk.hbs.edu/item/3442.html, 2003.
    [47] Santos, J.R.. Inoperability Input-Output Modeling of Disruptions to Interdependent Economic Systems[J]. Systems Engineering.2006, 9(1):20-34.
    [48] Leontief, W.W. Input-output economics[J]. Scientific American 1951,185(4): 15-21.
    [49] Lahr, M. L., Stevens, B. H. A study of regionalization in the generation of aggregation error in regional input-output models[J]. Journal of Regional Science 2002,42: 477-507.
    [50] Hsu, G., Chou, F.Y. Integrated planning for mitigating CO2 emissions in Taiwan: a multi-objective programming approach[J]. Energy Policy 2000,28: 519-523.
    [51] Velazquez, E. An input-output model of water consumption: analyzing intersectoral water relationships in Andalusia[J]. Ecological Economics. 2006,56: 226-240.
    [52] Tuyet, N.T.A., Ishihara, K. N. Analysis of changing hidden energy flow in Vietnam[J]. Energy Policy. 2006,34: 1883-1888.
    [53] Haimes, Y. Y., Nainis, W. S. Coordination of regional water resource supply and demand planning models[J]. Water Resource. 1974,10(6):1051–1059.
    [54] Haimes, Y. Y. Hierarchical analyses of water resources systems: Modeling and optimization of large-scale systems[C]. McGraw-Hill, New York, 1977.
    [55] Olsen, J.R., Beling, P.A., Lambert, J.H. Haimes, Y.Y. Leontief input-output model applied to optimal deployment of flood protection[J]. Journal of Water Resources Planning and Management. 1997,124(5): 237-245.
    [56] Haimes, Y.Y., Jiang, P. Leontief-based model of risk in complex interconnected infrastructures[J]. ASCE Journal of Infrastructure Systems. 2001,7(1):1-12.
    [57] Santos, J.R., Haimes, Y.Y. Modeling the Demand Reduction Input-Output (I-O) Inoperability Due to Terrorism of Interconnected Infrastructures[J]. Risk Analysis. 2004,24(6): 1437-1451.
    [58] Crowther, K. G., Haimes, Y. Y. Application of the Inoperability Input–Output Model (IIM) for Systemic Risk Assessment and Management of Interdependent Infrastructures[J]. Systems Engineering. 2005,8(4):323-341.
    [59] Lian, C.Y., Haimes, Y.Y. Managing the Risk of Terrorism to Interdependent Infrastructure Systems Through the Dynamic Inoperability Input–Output Model[J]. Systems Engineering. 2006, 9(3):241-258.
    [60] Yager, R. R. On ordered weighted averaging aggregation operators in multi-criteria decision making[J]. IEEE Transactions on Systems, Man and Cybernetics. 1988,18: 183-190.
    [61] Carlsson, C. OWA Operators for Decision Support[C], EUFlT′97 Conference, vol. 2, 1997, pp. 1539-1544.
    [62] Goh, C. H., Tung, Y. C. A., Cheng, C. H. A revised weighted sum decision model for robot selection[J]. Computers & Industrial Engineering. 1996,30(2):193-199.
    [63] Kujawski, E. Multi-Period Model for Disruptive Events in Interdependent Systems[J]. Systems Engineering. 2006,9(4):281-295.
    [64] Sahoo, N. R., Jothimani, P., Tripathy, G. K. Multi-criteria analysis in GIS environment for natural resource development - a case study on gold exploration [J]. http://www.gisdevelopment.net/application/geology/mineral/geom0002.htm, 2002.
    [65] Ulam, S., Richtmyer, R.D., Neumann, J.V. Statistical methods in neutron diffusion[J]. Los Alamos Scientific Laboratory Report LAMS-551, 1947.
    [66] Battaile, C. C. The Kinetic Monte Carlo method: Foundation, implementation, and application[J]. Comput. Methods Appl. Mech. Engrg. 2008,197:3386-3398.
    [67] Law, A.M., Kelton, W.D. Simulation Modelling and Analysis[J]. McGraw Hill Higher Education, 2000: 208-209.
    [68] Anderson, C.W., Santos, J.R., Haimes, Y.Y. Risk modeling, assessment, and management of the August 2003 northeast blackout[C]. Presented at the 2004 Society for Risk Analysis Annual Meeting, full report printed by the Center for Risk Management of Engineering Systems, University of Virginia, Charlottesville, VA, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700