甲磺酸帕珠沙星对多索茶碱药代动力学的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多索茶碱(Doxofylline,Dox),化学名为1,3-二甲基-7-(1,3-二氧环戊烷-2-基)甲基-3,7-二氢-1H-嘌呤-2,6-二酮,是一种新型的甲基黄嘌呤类支气管扩张剂。与茶碱相比具有疗效较强,耐受性好,不良反应少等特点,在治疗支气管哮喘等方面有望成为茶碱的替代品。Ⅱ期临床实验表明,多索茶碱与茶碱控释片不良反应发生率分别为19.6%和20.8%(P>0.05),临床应用需要进行血药浓度监测。
     甲磺酸帕珠沙星(Pazufloxacin mesilate,PZFX)是第三代氟喹诺酮类抗菌药,抗菌谱广,抗菌活性强,不良反应少,有可能成为临床上广泛应用治疗各种感染性疾病的常用药物。有关部门预计到2020年,哮喘等慢性阻塞性肺病(COPD)可能成为导致人类死亡的第三大病因,甲磺酸帕珠沙星合并多索茶碱使用,可能成为很好的用药方案。
     研究发现,氟喹诺酮类药物能不同程度地抑制茶碱类药物的代谢,降低茶碱类药物的清除率、延长半衰期,使体内血药浓度升高,从而引起多种不良反应的发生。有关甲磺酸帕珠沙星对多索茶碱药动学的影响的研究,国内外未见报道。本实验分别以家兔和健康人为试验对象,考察达稳态时PZFX对Dox药动学的影响,为临床合理用药提供理论依据。
     材料与方法:(1)本实验对Dox和PZFX合用家兔、健康人体内药动学进行了研究,采用自身对照设计,分设Dox单用组及其与PZFX合用组。(2)以高效液相色谱法(high performance liquid chromatograghy HPLC)平行监测合用PZFX前后血清中Dox的血药浓度。流动相:含1‰三乙胺的乙腈-0.02M磷酸盐缓沖液(15:85,pH6.5~6.7);流速:0.8mL.min~(-1);柱温:30℃;检测波长:273nm。(3)所有采集血样经二氯甲烷与异丙醇(95:5)混合萃取液提取,流动空气吹干,甲醇溶解进样。本法测得血清中Dox可达基线分离,合用PZFX后,其它组分对Dox的色谱峰无干扰。用多索茶碱和内标峰高比与浓度进行线性回归,标准曲线显示家兔体内Dox在0.10N20.0 mg.L~(-1)范围内、健康人体内Dox在0.5~20.0 mg.L~(-1)范围内均呈良好的线性关系(r~2=0.9968和r~2=1.0000)。稳定性好,家兔和健康人血清中Dox平均回收率分别为100.7%和98.63%;精密度高,家兔和健康人的日内差分别<7.67%和<4.69%,日间差分别<6.68%和<4.68%。(4)药时数据经3P97软件处理。
     结果:Ⅱ家兔药动学试验:单用组d1~4 ig给予Dox 30mg/kg,q12h,至稳态,于第4天晨灌服Dox后不同时间耳缘静脉取血;合用组于第4天晚Dox用法不变情况下加用PZFX 30mg/kg,缓慢静脉推注,q12h,于第7天晨ivPZFX、灌服Dox后不同时间耳缘静脉取血。处理血样,测定合用药前后Dox的血药浓度。结果:(1)单用及合用PZFX后Dox在家兔体内呈一室模型。(2)合用前后Dox的药动学参数:Ke分别为0.148±0.038h~(-1),0.134±0.020h~(-1);Ka分别为17.63±17.30h~(-1),11.32±10.81h~(-1);T_(1/2α)分别为0.119±0.126h,0.164±0.158h;T_(1/2β)分别为4.946±1.146h,5.293±0.790h;V/F_(c)分别为6.448±4.789L/kg,5.562±4.027L/kg;均无显著差异性(P>0.05)。而达峰时间T_(max)由0.580±0.503h增加到0.769±0.583h(P>0.05),延长了32.6%;一个给药周期内的时间-浓度曲线下面积AUC_(0-12)~(ss)由37.535±16.686mg.h.L~(-1)增加到45.136±22.159 mg.h.L~(-1)(P<0.05),增加了20.25%;血浆清除率CL/F由0.904±0.627L.kg~(-1).h~(-1)下降到0.751±0.575 L.kg~(-1).h~(-1)(P<0.05),降低了16.9%;达稳态时Dox的峰浓度和谷浓度分别由合用前的6.00±3.04mg.L~(-1)、1.19±0.58mg.L~(-1)增加到6.87±3.81 mg.L~(-1)、1.67±0.83mg.L~(-1),分别增加了14.4%和39.5%(P<0.05)。
     Ⅱ健康人药动学试验:单用组d1~4 po给予Dox 400mg,q12h至稳态,于第4天晨口服Dox后不同时间肘静脉取血;合用组于第4天晚Dox用法不变情况下加用PZFX 300mg,ivgtt,q12h,于第7天晨ivgtt PZFX、口服Dox后不同时间取另一侧肘静脉血。处理血样,测定合用药前后Dox的血药浓度。结果:(1)单用及合用PZFX后Dox在体内呈一室模型。(2)合用前后DOX的药动学参数:Ke分别为0.14±0.04h~(-1),0.12±0.04h~(-1);T_(1/2α)分别为0.29±0.15h,0.16±0.13h;C_(max)分别为11.88±3.43mg/L,12.61±3.09mg/L;V/F_(c)分别为30.73±9.79L/kg,30.14±6.64L/kg;均无显著差异性(P>0.05)。而达峰时间T_(max)由1.23±0.42h减少到0.82±0.42h,提前了33.0%(P<0.05);Ka由3.03±1.55h~(-1)增加至5.64±2.12h~(-1),增加了85.82%(P<0.05);消除半衰期T_(1/2β)由合用前的5.39±1.47h增加至6.45±1.59h,延长了19.6%(P<0.05);一个给药周期内的时间-浓度曲线下面积AUC_(0-12)~(ss),由85.12±23.90mg.h.L~(-1)增加到92.84±25.72 mg.h.L~(-1),增加了9.07%(P<0.05);血浆清除率CL/F由4.07±1.19L.kg~(-1).h~(-1)下降到3.46±1.23 L.kg~(-1).h~(-1),降低了15.1%(P<0.05);稳态Dox的谷浓度由合用前的2.57±1.09mg.L~(-1)增加到合用后的3.83±1.67mg.L~(-1),增加了48.9%(P<0.05)。
     结论:在该给药剂量下,达稳态时甲磺酸帕珠沙星不影响多索茶碱在家兔体内的分布,但可升高其血药浓度,增加药时曲线下面积,降低清除率。
     在该给药剂量下,达稳态时甲磺酸帕珠沙星不影响多索茶碱在健康人体内的分布,多索茶碱的峰浓度的升高亦无统计学意义,但可增加药时曲线下面积,延长消除半衰期,降低清除率。
     本研究提示临床长期合用两药时,应予以重视,配合血药浓度监测,进行多索茶碱个体化给药,避免因药物相互作用带来的不良后果。
Doxofylline (Dox), 7-(methylictheoflline)-l,3-dioxane, is a new-type xanthine antibronchial spasmodic drug. Compared with aminophylline, Dox boasts high curative effect and low position, and it probably replace aminophylline to cure chronic bronchitis. The phase II clinical practice indicates that the rates of occurance of the adverse effects of Dox and TP are 19.6% and 20.8% respectively, there is no notable statistical difference between them(P>0.05). Therefore, TDM is needed in clinical practice.
     Pazufloxacin mesilate (PZFX), a newly developed fluoroquinolone, shows broadspectrum, potent antimicrobacterial activity and lower toxicity than conventional quinolones. It is forecasted that chronic obstructive pulmonary disease (COPD) maybe the third morbid reason for human beings' death by 2020. Therefore, it will be a good treatment for COPD by using Dox combined with PZFX.
     However, researchers have shown that fluoroquinolones can restrain the metabolism of TP to different degrees. They can reduces the clearance of TP, lengthened the elimination half-life time of TP so that the serum concentration of TP can be raised which finally bring ADRs. The reports concerning the influence of PZFX on the pharmacokinetics of Dox are absent at home and abroad. This paper focuses on the influence when the two are used together at steady state.
     Materials and Methods (1) This experiment aims at the study of the pharmacokinetics of Dox alone and its combination with PZFX in rabbits and healthy volunteers. The study is conducted by using a crosser design. (2) The concentration of Dox in blood is detected by high-performance liquid chromatography (HPLC). Mobile phase: acetonitrile: 0.02M KH_2PO_4 buffer (15:85 v/v pH6.5~6.7) consists of 1‰triethypamine. Flow rate: 0.8mL/min. The peaks are monitored with UV at 273nm. The column temperature was maintained at 30°C. (3) All of the specimens are extracted by dichloromethane and isopropanol and are evaporated to dryness. The residue is reconstituted with mobile phase, and subjected to HPLC analysis. Dox in blood can be separated from the baseline very well by this method. After combination of PZFX, the chromategrafhic peak of Dox can be detected without any other interferences. The regression between concentrion and peak height shows that Dox has a good linear relationship. The detecting method is stable and precise. (4) The concentration-time data are disposed with 3P97 programe.
     Results I The pharmacokinetics in rabbits: Dox alone was given as 30mg/kg oral dose, ql2h, for 4 days. Serum samples were obtained on day 4 at indicaed time before and after using Dox. From the fourth day evening, concomitant administration of PZFX (30mg/kg), q12h, was commenced. Serum samples were obtained on the seventh day at indicaed time before and after using Dox. The results are as follows: (1) The concentration-time curve in Dox alone and comdined groups are adequately fitted one-compartment open model. (2) The parameters such as Ke, Ka, T_(1/2a), T_(1/2β), V/F_(c) are 0.148±0.038h~(-1) and 0.134±0.020h~(-1), 17.63±17.30h~(-1) and 11.32±10.81h~(-1), 0.119±0.126h and 0.164±0.158h, 4.946+ 1.146h and 5.293±0.790h, 6.448±4.789L/kg and 5.562±4.027L/kg, no significant (P>0.05) . After the combination of PZFX , the rated of increase of AUC_(0-12)~(ss), C_(max) and C_(min), compared with using Dox alone, were 20.25%, 14.4% and39.5%, respectively. CL/F value for Dox decreased significantly, by 16.9%.
     II The pharmacokinetics in healthy volunteers: Dox alone was given as 400mg oral dose, ql2h, for 4 days. Serum samples were obtained on day 4 at indicaed time before and after using Dox. From the fourth day evening, concomitant administration of PZFX (300mg), dissolved in 100mL of saline, q12h, was commenced. Serum samples were obtained on the seventh day at indicaed time before and after using Dox. The results are as follows: (1) The concentration-time curve in Dox alone and comdined groups are adequately fitted one-compartment open model. (2) The parameters such as Ke, T_(1/2a), C_(max) and V/F_(c) are 0.14±0.04h~(-1) and 0.12±0.04h~(-1), 0.29±0.15h and 0.16±0.13h, 11.88±3.43mg/L and 12.61±3.09mg/L, 30.73±9.79L/kg and 30.14±6.64L/kg, no significant (P>0.05) . After the combination of PZFX , the rated of increase of T_(1/2β), AUC_(0-12)~(ss) and C_(min), compared with using Dox alone,were 19.6%, 9.07% and48.9%, respectively (P<0.05) . CL/F value for Dox decreased significantly, by 15.1%.
     Conclusions This finding suggests that Pazufloxacin mesilate can slightly inhibit metabolism of doxofylline at steady state and increase Dox concentration in serum. Moreover, the serum concentration of Dox in both rabbits and health volunteers are very different so that careful monitoring of Dox levels is recommended if the use of the two drugs in clinical combination therapy is necessary.
引文
[1] Frazone J S, Cirillo R, Biffignandi E Doxofyline exerts a prophylactic effect against brochocostriction and pleurisy induced by PAF [J]. Eur J Pharmacol, 1989, 165(2): 269-271
    [2] Lazzaroni M, Grossi E, Porro GB. The effect of intravenous doxofylline or aminofylline on gastric secretion in duodenal ulcer patients[J]. Aliment Pharmacol Ther. 1990; 4(6): 643-9
    [3] Dini FL, Cogo R. Doxfylline: a new generation xanthine bronchodilator devoid of major cardiovascular aderves effects[J]. Curr Med Res Opin. 2001; 16(4): 258-68
    [4] 胡露,王达.达复啉.中国新药杂志,2001;10(6):470
    [5] 蒋锦,刘明,郭慧元.喹诺酮类抗菌药的新分类法及合理用药[J].国外医药抗生素分册,2003,24(6):272~275
    [6] Muratani T, Inoue M, Mitsuhashi S. In vitro activity of T-3761, a new fluoroquinolone. Antimicrob Agents Chemother. 1992; 36(10): 2293-2303
    [7] Klopman G; Fercu D, Renau TE, et al. N-l-tert-butyl-substituted quinolones: in vitro anti-Mycobacterium avium activities and structure-activity relationship. Antimicrob Agents Chemother. 1996; 40(11): 2637-2643
    [8] Kobayashi H. Interim results from a multicentre clinical trial of T-3761 in Japan. Drugs. 1995; 49(supple 2): 470-471
    [9] Shimada K, Oka S, Sano Y, et al. Phase II study of intravenously infused pazufloxacin mesilate. 日本化学疗法学会杂志. 1999; 47(supple 1): 176-195
    [10] Shimada K, Shosaku A, Fujishima T, et al. Clinical evaluation of pazufloxacin mesilate for chronic respiratory tract infections.-- Phase Ⅲ comparative study of pazufloxacin mesilate versus ceftazidime, 日本化学疗法学会杂志. 2000; 48(6): 464-494
    [11] Furuhata K, Hayakawa H, Soumi K, et al. Histamine-releasing properties of T-3762, a novel fluoroquinolone antimicrobial agent in intravenous use. Ⅰ. Effects of doses and infusion rate on blood pressure, heart rate plasma histamine concentration. Biol Pharm. Bull. 1998; 21(5): 456-460
    [12] Furuhata K, Fukuda Y, Soumi K, et al. Histamine-releasing properties ofT-3762, a novel fluoroquinolone antimicrobial agent in intravenous use. Ⅱ. Dermovascular permeability-inceasing effect and action on peritoneal mast cells. Biol Pharm. Bull. 1998; 21 (5): 461-464
    [13] Furuhata K, Todo Y, Takakura T, et al. Pharmacologoal properties of T-3762, a novel fluoroquinolone antimicrobial agent in parenteral use. Ⅲ. Chemical structures and dermovascular permeability-increasing activities. Biol Pharm. Bull. 1998; 21(9): 919-923
    [14] Ziedalski TM, Sankaranarayanan V, Nelson H S, et al. Advances in the management of chronic obstructive pulmonary disease. Expert Opin Pharmacother, 2003; 4(7): 1063-82
    [15] Scognamiglio A, Baldacci S. Epidemology of Viegi chronic obstructive pulmonary disease(COPD). Rspiration, 2001; 68(1): 4-19
    [16] Niki Y, Watanabe S, Yoshida K, et al. Effect of pazufloxacin mesilate on the serum concentration of theophylline. J Infect Chemother. 2002; 8(1): 33~36
    [17] 陈吉生,张亮.反相高效液相色谱法测定血浆中多索茶碱的浓度[J].中国医院药学杂志,2002,22(7):406
    [18] Nakashima M, Uemura K, Kosuge K, et al. Phase Ⅰ clinical study of pazufloxacin mesilate. 日本化学疗法学会杂志. 1999; 47(supple 1): 141-175
    [19] Wijnand W J, Van Herwaarden CL, Vree TB. Enoxacin raises plasma theophylline concentrations. Lancet, 1984; 2(8394): 108~9
    [20] Matuschka PR, Vissing RS. Clinafloxacin-theophylline drug interaction. Ann Pharmacother, 1995; 29(4): 378~80
    [21] 王佩,李玉珍,陈尔璋等.环丙沙星对氨茶碱药物动力学的影响.中国医院药学杂志,1994;14(1):12~3
    [22] Batty RA, Davis TM, Ilett KF, et al. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol, 1995; 39(3): 305~11
    [23] Sorgel F, Kinzig M. Pharmacokinetics of gyrase inhibitors, part 2:renal and hepatic elimination pathways and drug interactions. Am J Med, 1993; 94(suppl 3A): 56S~69S.
    [24] 周权等.代谢性药物的相互作用.Chin J Clin Pharmacol[J].1995;39(9):2138
    [25] Ha HR, Chen J, Krahenbuhl S. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol[J]. 1995; 39(3): 321-6
    [26] Fuhr U, Anders EM, Mahr G, et al. Inhibitory potency of quinolone antibacterial agents cytochrome P-450IA2 activity in vivo and vitro. Antimicrob Agents Chemother, 1992; 36: 942~948
    [27] Sorgel F. Effect of 2 quinolone antibacterials, temafloxacin and enoxacin on theophylline pharmacokinetics. Clin Pharmacokinet[J]. 1992; 22(suppl 1): 65
    [28] 王群等.茶碱类药物在哮喘及慢性阻塞性肺疾病治疗中的作用.山东医药 [J].2000;40(4):49
    [29] Muralidharance G. The effects of tosufloxacin(TOS) on the metabolism of theophylline(THE) and the relationship to TOS drug level. [Abstract No. 1466] In: program and abstract of the 30th interscience Conference on Antimicrobial Agents and Chemotheraphy. Washington, DC: American Society for Microbiology, 1990.
    [30] 张炎等.培氟沙星及诺氟沙星对慢性阻塞性肺疾病患者氨茶碱药物动力学的影响.中国临床医院药学杂志[J].2000;9(1):18
    [31] 莫岚,钱元恕,王其南等.氟喹诺酮类对大鼠肝微粒体细胞色素P-450的影响.重庆医科大学学报,1994;19(4):274~26
    [32] 钱元恕,莫岚,兰雁飞等.环丙沙星、氧氟沙星和诺氟沙星对大鼠肝微粒体混合功能氧化酶的作用.中国抗生素杂志,1994;19(6):459~63
    [33] Hasegawa T, Nadai M, Haghgoo S, et al. Influence of a newly developed quinolone, T-3761, on pharmacokinetics of theophylline in rats. Antimicrob Agents Chemother. 1995; 39(9): 2138~40
    [34] Hashiguchi K, Miyashita N, Kubota Y, et al. Effect of pazufloxacin on serum concentration of theophylline. Chemotherapy(Tokyo). 1995; 43: 270~5
    [35] Nakanishi S, Okuno H. Comparison of inhibitory effects of new quinolones on drug metabolizing activity in the liver. Jpn J Pharmacol, 1990, 53(1): 81~96
    [36] Franzone JS, Cirillo R, Reboani MC. Masera F. Pharmacological studies in animals of beta-hydroxyethyltheophylline, the major metabolite of doxofylline in humans. Methods Find Exp Clin Pharmacol. 1991; 13(4): 289-99
    [37] Labedzki A, Buters J, Jabrane W. Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2. Biochem Pharmacol. 2002; 63(12): 2159-67
    [38] Legana A, Bizzarri M, Marino A, et al. Solid phase extraction and high performance liquid chromatographic determination of doxophylline in plasma[J]. Biomed Chromatogr, 1990, 4(5): 205-7
    [39] Bolona E, Lagana A, Terracino D, et al. Oral and intravenous pharmacokinetic profiles of doxofylline in patients with chronic bronchitis[J]. J Int Med Res, 1990, 18(4): 282-8
    [40] 加藤隆一,慊哲也编.药物代谢学[M].第3版.东京:东京化学同人,1997.51~61
    [41] Villani F, De Maria P, Ponchi E, et al. Oral doxofylline in patients with chronic obstructive pulmonary disease[J]. Int J Clinpharmacol Ther Taxicol, 1997, 35(3): 107-11
    [42] Grosa G; Franzone JS, Biglino G. Metabolism of doxofylline by rat liver microme[J]. Drug metab dis, 1990, 14(2): 267-70
    [1] Slobodan R, Frederick J C. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metabol Rev. 1997, 29: 413~580
    [2] Honig RK, wortham DC, Zaman K, et al. Terfenadine ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA, 1993, 269: 1535~1539
    [3] Wilkinson GR. Cytochrome P450(CYP3A) metabolism: prediction of in vitor activity in humans. J pharmaco Biopharm, 1996, 24: 475~490
    [4] Nemeroff CB, Preskorn SH, Devane CL. Antidepressant drug-drag interactions: clinical relevance and risk management. CNS Spectr. 2007; 12(5 Suppl 7): 1-13
    [5] 舒炎,周宏灏.细胞色素P450药物氧化代谢酶的遗传药理学进展.见:王永铭,苏定冯.药理学进展[M].北京:科学出版社,2000,19~31
    [6] Warner M, Stromstedt M, et al. Regulation of cytochrome P450 in the Central nervous system. Journal of Steriod Biochemmol Biol, 1993, 47: 191~194
    [7] Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987, 56: 945~993
    [8] Gonzalez FJ. The Molecular biology of cytochrome P450s. Pharmacol Rev. 1989, 40: 243~288
    [9] Yun CH, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P450 2A6. Mol Pharmacol, 1991, 40(5): 679~85
    [10] Endo T, Ban M, Hirata K, et al. Involvement of CYP2A6 in the formation of a novel metabolite, 3-hydroxypilocarpine, from pilocarpine in human liver microsomes. Drug Metab Dispos. 2007; 35(3): 476-83.
    [11] Hamitouche S, Poupon J, Dreano Y, et al. Ethanol oxidation into acetaldehyde by 16 recombinant human cytochrome P450 isoforms: role of CYP2C isoforms in human liver microsomes. Toxicol Lett. 2006; 167(3): 221-30.
    [12] Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev, 1995, 27(3): 397~417
    [13] 周宏灏.分子遗传药理学[M].哈尔滨:黑龙江科学技术出版社,1999,224~251
    [14] Rendic S, Di Carlo F J. Human cytochrome P450 enzymes: a status report summarizing the irreactions. Drug metab Rev, 1997, 29: 413~580
    [15] Schaeffeler E, Schwab M, Eichelbaum M, Zanger UM. CYP2D6 genotyping strategy based on gene copy number determination by Tap Man real-time PCR. Hum Mutat, 2003, 22(6): 476~485
    [16] Kitada M. Genetic polymorphism of cytochrome P450 enzymes in Asian population: focus on CYP2D6. Int J Clin Pharmacol Res, 2003, 23(1): 31~35
    [17] Charlier C, Broly F, et al. Polymorphisms in the CYP2D6 gene: association with plasma concentration of fluoxetine and paroxetine. Ther Drug Monit, 2003, 25(6): 738~742
    [18] Rajapaksa KS, Cannady EA, Sipes IG, et al. Involvement of CYP 2El enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites. Toxicol Appl Pharmacol. 2007; 221 (2): 215-21
    [19] Arellano C, Philibert C, Vachoux C, etal. The metabolism of midazolam and comparison with other CYP enzyme substrates during intestinal absorption: in vitro studies with rat everted gut sacs. J Pharm Pharm Sci. 2007; 10(1): 26-36.
    [20] Yamano S, Tatsuno J, Gonzale F J. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry, 1990, 29: 1322
    [21] Torimoto N, Ishii I, et al. Direct interaction between substrates and endogenous steroids in the active site may change the activity of cytochrome P450 3A4. Biochemistry, 2003, 42(51): 15068~15077
    [22] Yamamoto T, Suzuki A, Kohno Y. High-throughput screening for the ssessment of time-dependent inhibitions of new drug candidates on recombinant CYP2D6 and CYP3A4 using a single concentration method. Xenobiotica, 2004, 34(1): 87~101
    [23] Dilmaghanian S, Gerber JG, et al. Enantioselectivity of inhibition of cytochrome P450 3A4 by ketoconazole: Testosterone and methadone as substrates. Chirality, 2004; 16(2): 79~85
    [24] Lown KS, Thummel KE, et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther, 1995, 57(1): 16~24
    [25] Turgeon DK, Normolle DP, et al. Erythromycin breath test predicts oral clearance of cyclosporine in kidney transplant recipients. Clin Pharmacol Ther, 1992, 52(5): 471~478
    [26] 许振华,周宏灏.细胞色素氧化酶P4501A2与药物代谢.中国临床药理学杂志,1996,2:115
    [27] Nakajima M, Yamagishi S. Relationship betwecn inter individual differences in nicotine metabolism and CY-P2A6 genetic polymorphism in humans. Clin pharmacol Therp, 2001, 67: 57
    [28] 朱琳.细胞色素P450酶系及其在毒理学上的应用.上海环境科学,2001,20(2):88~91
    [29] Wijnand WJ, Van Herwaarden CL, Vree TB. Enoxacin raises plasma theophylline concentrations. Lancet, 1984; 2(8394): 108~9
    [30] 钱元恕,莫岚,兰雁飞等 环丙沙星、氧氟沙星和依诺沙星对大鼠肝微粒体混合功能氧化酶的作用[J] 中国抗生素杂志,1994;19(6):469~63
    [31] Schwartz J, Jauregui L, Lettieri J. Impact of ciprofloxacin on theophylline clearance and steady-state concentration in serum. Antimicrob Agents Chemther, 1988; 32(1): 75~77
    [32] Raoof S, Wollschlager C, Khan FA. Ciproxacin increase serum levels of theophylline. Am J Med, 1987; 82(Suppl 4A): 115~8
    [33] Batty KT, Davis TM, Ilett KF, et al. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmol, 1995; 39(3): 305~11
    [34] Saha RN, Sajeev C, Sahoo J. A comparative study of controlled release matrix tablets of diclofenac sodium, ciprofloxacin hydrochloride, and theophylline. DrugDeliv. 2001; 8(3): 149-54.
    [35] Loi CM, Parker B, Vestal RE. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol. 1993; 36(3): 195-200.
    [36] 王佩,李玉珍,陈尔璋等.环丙沙星对氨茶碱药物动力学的影响,中国医院药学杂志,1994;14(1):12~3
    [37] 高建华.甲氟哌酸对茶碱在家兔体内药物动力学的影响,中国药理学通报,1997;13(6):555~7
    [38] 张琰,程建峰,贺建荣等.培氟沙星及诺氟沙星对慢性阻塞性肺疾病患者氨茶碱药物动力学的影响,中国临床药学杂志,2000;9(1):18~21
    [39] 蒋淼,徐丽婷,贾正平等.氟罗沙星对肺心病人体内茶碱药物动力学的影响,中国医院药学杂志,1998;18(10):441~3
    [40] 木村一朗,山本.合成抗菌剂Fleroxacin.医,1991,27(3):610
    [41] Matuschka PR, Vissing RS. Clinafloxacin-theophylline drug interaction. Ann Pharmacother, 1995; 29(4): 378~80
    [42] Ball. P, et al. Safety of the new fluoroquinolones compared with ciprofloxacin. J Chemother, 2000, 12(suppl 1): 8~11
    [43] 邓子煜、邢蓉等.莫西沙星对家兔茶碱药动学的影响,医药导报2004,23(9):621~3
    [44] 顾健,李玉珍.多索茶碱与莫西沙星在大鼠体内药动学的相互作用,中国药学杂志,2003,38(4):285~9
    [45] Martina KS, et al. Absence of effect of rufloxacin on theophylline pharrnacokinetics in. steady state. Antimicrob Agents Chemother, 1998, 42(9): 2359~64
    [46] Melani AS, et al. Safety and effectiveness of lomexacin in patients with Acute Exacerbation of Chronic Bronchitis(AECB) chronically treated with oral theophylline. J Chemother, 2001, 13(6): 628~34
    [47] Niki Y, Hashiguchi K, Miyashita N, et al. Influence of gatifloxacin, a new quinolone antibacterial, on pharmacokinetics of theophylline. J Infect Chemother, 1999; 5(3): 156~62
    [48] 杨永新,杨月春,叶勇等.盐酸加替沙星对兔体内茶碱药动学的影响,中国医院药学杂志,2005,25(3):215~7
    [49] 黄健莹,梁健健,曾建红.加替沙星对人体长效茶碱血清浓度影响的研究,广东药学院学报2004,20(2):145~6
    [50] 夏曙辉,游亮,谈恒山等.稳态时加替沙星对茶碱在家兔体内药动学的影响,中国医院药学杂志2004,24(11):670~2
    [51] 梁健健,王娟,周士臻等.加替沙星对家兔茶碱药动学的影响,中国临床药学杂志,2004,13(5):294~5
    [52] Okimoto N, Niki Y, Soejima R. Effect of Levofloxacin on serum concentration of theophylline. Chemotherapy, 1992; 40(suppl 3): 68~74
    [53] 黎月玲,郑企琨,张辛等.氧氟沙星对健康志愿者和慢性阻塞性肺病患者茶碱药物动力学的影响,中国临床药学杂志,1999;8(4):217~9
    [54] 金玲湘等.老年人口服氟嗪酸对血清氨茶碱浓度的影响,温州医学院学报1996,26(2):86
    [55] Gisclon LG, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol, 1997, 37(8): 744~50
    [56] 贾金广等.左氧氟沙星对慢性阻塞性肺病患者氨茶碱血浓度的影响,中国抗生素杂志,1999,24(增刊):38
    [57] 张永玲.乳酸左氧氟沙星对肺心病人体内茶碱药动学的影响,中国药业,2000,9(5):12~13
    [58] Nakamura H, Ohtsuka T, Enomoto H, et al. Effect of levofloxacin on theophylline clearance during theophylline and clarithromycin combination therapy. Ann Pharmacother, 2001; 35(6): 691~3
    [59] Hasegawa T, Nadai M, Haghgoo S, et al. Influence of a newly developed quinolone, T-3761,on pharmacokinetics of theophylline in rats. Antimicrob Agents Chemother. 1995; 39(9): 2138~40
    [60] Hashiguchi K, Miyashita N, Kubota Y, et al. Effect of pazufloxacin on serum concentration of theophylline. Chemotherapy(Tokyo). 1995; 43: 270~5
    [61] Niki Y, Watanabe S, Yoshida K, et al. Effect of pazufloxacin mesilate on the serum concentration of theophylline. J Infect Chemother. 2002; 8: 33~36
    [62] Wijnands WJ, Vree TB, van CL. The influence of quinolone derivqtives on theophylline clearance. Br J Clin Pharmac, 1986, 22(6): 667-83
    [63] Fuhr U, Wolff T, Harder S, et al. Quinolone inhibition of cytochrome P-450-dependent caffeine metabolism in human liver microsomes. Drug Metab Dispos, 1990, 18(6): 1005~10
    [64] Sarker M, Polk RE, Guzelian PS, et al. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Antimicrob Agents Chemother, 1990, 34: 594~9
    [65] Fuhr U, Strobl G, Manaut F, et al. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol, 1993, 43(2): 191~9
    [66] Niki Y, Soejima R, Kawane H. New synthetic quinolone antibacterial agents and serum concectration of theophylline. Chest, 1987; 92: 663~9
    [67] Kinzig-Schippers M, Fuhr U, Zaigler M, et al. Interaction of pefloxacin and enxoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther, 1999; 65(3): 262~74
    [68] Schulz-TG, Stahlmann-R. Enoxacin is an inducer of CYP1A2 in rat liver. Biochem-Pharmacol, 1995, 50(9): 1517~20
    [69] 钱元恕,莫岚,兰雁飞等.环丙沙星,氧氟沙星和诺氟沙星对大鼠肝微粒体混合功能氧化酶的作用.中国抗生素杂志,1994,19(6):459~463
    [70] 黄仁刚,钱元恕,兰雁飞.洛美沙星对大鼠肝脏混合功能氧化酶的作用.中国抗生素杂志,1999,24(1):53~55
    [71] 周义文,钱元恕.氟喹诺酮类药对人肝药酶活性的影响,中国新药与临床杂志,2003,22(9):523~528
    [72] 王睿,朱曼,张永青等.加替沙星和环丙沙星对大鼠肝细胞色素P450酶系的影响,中国临床药理学杂志,2004,20(6):433~436
    [73] 徐小平,陈聪,MasubuchiNoriko等.依诺沙星及左氟沙星对茶碱代谢影响的研究,中国抗生素杂志,1999,24(3):214~215
    [74] 莫岚,钱元恕,王其南等.培氟沙星对大鼠肝微粒体酶系的抑制作用,新药与临床,1995;14(1):15~7
    [75] Culley CM, Lacy MK, Klutman N, et al. Moxifloxacin: clinical efficacy and safey. Am J Health Syst Pharm. 2001; 58(5): 379~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700