高速电主轴静动态性能分析与实验检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速电主轴作为现代高速加工技术的核心部件之一,广泛应用于各种数控加工中心和高性能的机床主轴上,具有多变量、非线性、强耦合的特点,其内部的电磁转换与主轴动态输出性能之间存在着非常复杂的相互依存关系。因此,研究如何解释和控制这种相互依赖关系,一直是高速电主轴的研究重点之一。但由于高速电主轴运行时,转速非常高,很难对其进行动态加载测试,且由于国外的技术垄断,国内尚未完全掌握主轴内部的电磁耦合关系与主轴转矩动态输出性能之间的作用规律,有关这一方面的基础资料也十分缺乏,严重影响了高速电主轴技术的深入研究和工程应用。基于上述原因,本课题从高速电主轴的电磁特性出发,提出了一套比较完整的高速电主轴动态性能测试方法,并通过对实验数据与理论分析的对比,取得了以下主要结论:
     ①高速电主轴的动态性能测试包括电气参数测试和机械特性参数的测试。利用测功机并结合三相高频电参数仪等辅助设备,可以获得高速电主轴的输入电压、电流、功率因数以及输出转矩、转速和效率等机械和电气参数;而通过单向加载并同时测试力与力的方向上的位移可以获得高速电主轴的动态刚度值。本文对高速电主轴的转矩和动态刚度的测试均给出了机械式和电磁式两种测试方法,并指出采用测功机测试转矩时,对机械接触式加载需解决测功机与被测电主轴及联轴器的动平衡问题;而用非接触式的电涡流测功机,则需保证加载磁场的稳定性和测功机侧电磁热的及时散发。当对高速电主轴的动态刚度进行测试时,若采用机械式的接触式加载,需有效解决接触磨损所导致的加载失效以及磨屑和摩擦热的散失;而采用电磁加载方式时,除了磁场的稳定性外,还需要考虑磁场对位移传感器的干扰,以防止数据采集失败。
     ②由于高速电主轴输出的机械能取决于高速电主轴气隙磁场中的机电能量转换,所以对磁场的控制,是高速电主轴动态性能研究的重点,涉及到高速电主轴数学模型的建立和控制方式的选取。本文根据高速电主轴的特性建立了两种模型:以高速电主轴电磁参数有效值为基础的稳态数学模型和以过程控制为基础的动态数学模型。前者以控制气隙磁场为目的,当负载变化时,通过控制定子电流来近似控制励磁电流恒定,以满足转子电流与负载的线性关系。该模型适应U/f控制方式,控制方法简单,但控制精度不高。后者分别以控制转子磁链和定子磁链为目的,各自对应矢量控制和直接转矩控制方式。本文重点对矢量控制进行了分析和试验,介绍了无速度传感器矢量控制的原理和该控制方式下高速电主轴的动态性能,论述了当主轴负载变化时,该控制方式控制磁通稳定和抵抗外界干扰时所采用的策略,并进行了实验验证。
     ③当主轴的运行频率下降时,U/f控制下的输入电压应根据高速电主轴额定状态下定子绕组反电动势的大小进行电压补偿,以确保低频下的磁通稳定性;而矢量控制时对励磁电流和转矩电流的控制精度取决于高速电主轴动态数学模型中耦合电压的解耦效果。因此,本文详细论述了在U/f控制时,如何有效进行低频电压补偿的方法,并根据实验数据进行了具体论证;而对矢量控制下交叉耦合电压的解耦途径和效果,进行了对比研究,利用实验验证了高速电主轴在矢量控制下的抗扰动能力和动态速度跟随精度。
     ④应用叠加原理,论述了由谐波磁场产生的谐波磁动势如何通过叠加在主轴磁通上来影响主轴的电磁转矩和输出转速的方式,进而对高速电主轴的静动态性能产生严重影响。并指出各阶谐波影响的程度不同:谐波阶次越低,影响越大;高速电主轴运行的频率越低,需要抑制的谐波次数越大。所以高速电主轴的实际负载运行速度不能过低,这是因为谐波的干扰限制了高速电主轴的实际转速范围。
     ⑤应用电机学和运动学原理,分析了高速电主轴电磁热和摩擦热产生的原因,并根据传热学理论确定了高速电主轴各部分的传热系数和导热热阻,从而建立了高速电主轴的整体动力学热模型。试验结果表明,转速越高,主轴的温升越大;而气压和润滑油量对主轴温升的影响存在一个最佳的适应范围。
     综上所述,本文主要在高速电主轴的动态性能测试方法、稳态和动态数学模型的建立、控制方法与数学模型之间的相互关系、交叉耦合电压的解耦效果以及对主轴动态性能的影响、主轴整体动力学热模型的建立与主轴温升的影响因素等方面取得了一定的理论和试验测试成果,为揭示高速电主轴的结构参数设计和电磁变量对主轴动态性能的影响机理和规律,进行了比较系统的分析和试验研究,获得了一些有用的结论和试验数据,为高速电主轴的后续研究打下了基础,因而具有一定的学术意义和社会经济效益。
High speed motorized spindles, one of the most important part among the key technologies of the high speed machining, are now used increasingly in a broad range of CNC machining centers and high-performance spindles. A high speed motorized spindle has multivariate, non-stationary and complex coupling characteristics as well as considerable complicated interactions between dynamic performance and electromagnetic conversion of the spindle. Therefore, to understand and control this relationship has always been the key part of the high speed motorized spindle investigation. However, it is difficult to conduct dynamic test with load since the spindle speed can go up to very high in operation conditions. The knowledge of the relations between spindles’dynamic performance and electromagnetic conversion are limited, as the lack of fundamental information on high speed motorized spindles and the foreign monopoly of advanced technology, which hinders the in-depth investigation and application of high speed motorized spindles in high speed machining industry. Thus, this project puts forward a set of relative complete dynamic performance test methods based on the electromagnetic characteristics of high speed electric spindles, and the following conclusions can be obtained by comparing experimental data with theoretical analysis:
     ①Dynamic performance test of high speed motorized spindles includes testing electrical and mechanical properties parameters. A dynamometer and a three-phase high frequency electrical parameters instrument et al. auxiliary equipments are used to obtain mechanical and electrical parameters of high speed motorized spindles, such as input voltage, current, power factor, output torque, speed and efficiency, whilst the value of dynamic stiffness can be obtained by exerting a force and testing the force and the displacement in the force direction. Two methods of testing high speed motorized spindles’torque and dynamic stiffness, mechanical and electromagnetic testing method, are given in this paper. For the mechanical contact load means, when a dynamometer is used for obtaining torque, problems of dynamic balance among dynamometer, spindle and coupling necessitate to be addressed. For another, using a non-contact eddy current dynamometer, one need to ensure that load magnetic field is stable and electromagnetic heat of the dynamometer dissipates in time. When testing dynamic stiffness of high speed motorized spindles, if the mechanical contact load mode is selected, problems related with contact wear including failure load, wear debris and friction heat dissipation need to be considered; if the electromagnetic loading mode is employed, not only the stability of the magnetic field but also the magnetic field interference with the displacement sensor needs to be considered to avoid failure data collection.
     ②As the output mechanical energy depends on the electromechanical energy conversion in magnetic field of high speed motorized spindles, the magnetic field control is the emphasis of the study of dynamic performance of high speed motorized spindle, involving establishing mathematical model and selecting the control method for high speed motorized spindles. According to high speed motorized spindles’characteristics, two models are put forward in this paper: a steady-state mathematic model based on effective value of electromagnetic parameters and a process-control-based dynamic mathematic model. With the aim of controlling the air gap magnetic field, when the load changes, the steady-state model control the stator current to maintain the excitation current approximate stable to make sure the relationship between the rotor current and the load is linear. The control method with the steady-state model is very simple and the control accuracy is not high, and it is subjected to the U/f control mode. The process-control-based dynamic mathematic model focuses on controlling the rotor flux and the stator flux, corresponding with vector control mode and direct torque control mode, respectively. In this paper, analysis and experiment of vector control is conducted. The theory of speed sensor-less vector control and the dynamic performance of high speed motorized spindle under this condition are introduced, and the strategies used for maintaining the magnetic flux constant and resisting the external interference when the spindle load changes are described as well as experimental verification is performed.
     ③To ensure the flux is stable when high speed motorized spindles are operated at low frequencies, the input voltage with U/f control should be compensated according to the level of back electromotive force of the stator windings of high speed motorized spindles in rated condition. However, under the vector control mode, the control accuracy of exciting current and torque current depends on the decoupling effects of coupling voltages in the dynamic mathematical model of high-speed motorized spindles. Therefore, effective voltage compensating methods at low frequencies with U/f control are discussed in detail, and validated by experiments. Decoupling means and effect of cross coupling voltages under vector control are compared, and anti-disturbance ability and dynamic speed tracking accuracy of high speed motorized spindles under vector control are verified experimentally.
     ④How the harmonic magnetomotive force of harmonic magnetic field superimposes on the spindle flux, the way in which it affects the spindle electromagnetic torque and output speed, thereby exerting severe influences on the spindle static and dynamic performance, is elaborated. The impacts of different harmonics on spindles vary: the lower the harmonic orders, the more serious the impacts; the lower the frequencies of high speed motorized spindles, the higher the harmonics necessitate to be suppressed. As harmonic interference limits the scope of the actual rotational speed of high speed motorized spindles, the spindle actual speed with load cannot be too low.
     ⑤The principles of electromagnetic heat and friction heat of high speed motorized spindles are analyzed on the basis of electrical machines and kinematics, and the heat transfer coefficient and the thermal resistance of the spindle each part are determined according to heat transfer theory. An integrated dynamic thermal model of high speed motorized spindles is established. The experimental results show that the spindle temperature increases with the spindle speed increases, while there is an optimum range for air pressure and lubricant volume where they exert the lest impact on the spindle temperature rise.
     In conclusion, some significant achievements in both theoretical and experimental terms can be obtained, including: the methods how to test dynamic performance of high speed motorized spindles are illustrated, the static and dynamic mathematic models are established, the relationship between the control method and the mathematic model is revealed, the decoupling effect of the cross-coupling voltages and its effect on spindles’dynamic performance are described, an integrated dynamic thermal model of high speed motorized spindles is developed and the factors related to the temperature rise of spindles are also determined. To investigate how the structural parameter design and electromagnetic parameters of high speed motorized spindles exert effects on spindles’dynamic performance, systematic analysis and experimental researches are performed, and some useful conclusions and experimental datum are obtained. These investigations constitute the basis for further studies of high speed motorized spindles, and thus they have academic significance and social and economic benefits to a large extent.
引文
[1] B. Bossmanns, J.F. Tu, A power ?ow model for high speed motorized spindles-heat generation characterization, in: International Mech-anical Engineering Congress and Exposition, Anaheim, CA, USA,1998.
    [2] Chi-Wei Lin, Jay F. Tu, Joe Kamman. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation[J]. International Journal of Machine Tools & Manufacture 43 (2003): 1035-1050.
    [3] Jenq-Shyong Chen, Wei-Yao Hsu.Characterizations and models for the thermal growth of a motorized high speed spindle[J]. International Journal of Machine Tools & Manufacture 43 (2003) 1163-1170.
    [4] Jenq-Shyong Chen ,Kwan-WenChen,Bearing load analysis and control of amotorized high speed spindle. International Journal of Machine Tools & Manufacture 45(2005)1487-1493.
    [5] Bernd Bossmanns, Jay F. Tu.A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools & Manufacture 39 (1999):1345-1366.
    [6] J.L. Stein, J.F. Tu, A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools, Transactions of the ASME 116 (1994): 372-386.
    [7] K.Mizuta et al., Heat transfer characteristics between inner and outer rings of an angular ball bearing, Heat Transfer-Asian Research 32(2003) :42-57.
    [8] B. Bossmanns, J.F. Tu, A thermal model for high speed motorized spindles, International Journal ofMachine Tools andManufacture 39(1999): 1345-1366.
    [9]肖曙红,郭军,张伯霖.高速电主轴热结构特性的有限元分析[J].机械设计与制造,2008(9):96-98.
    [10]蒋兴奇,马家驹,赵联春.高速精密角接触球轴承热分析[J].轴承, 2000(8): 1- 4.
    [11]王保民,胡赤兵,孙建仁等.高速电主轴热态特性的ANSYS仿真分析[J].兰州理工大学学报,2009,35(1):28-31.
    [12]蒋红琰,黄中浩,程峰等.高速电主轴系统的在线动平衡及其仿真研究[J].制造技术与机床,2009(4):47-51.
    [13]陈观慈,王黎钦,古乐.高速球轴承的生热分析[J].航空动力学报,2007,22(1):163-168.
    [14]熊万里,吕浪,阳雪兵等.高频变流诱发的电主轴高次谐波振动及其抑制方法[J].振动工程学报,2008,21(6):600-607.
    [15]栾景美,黄红武,熊万里.高速异步电主轴矢量控制系统的仿真研究[J].湖南大学学报(自然科学版),2003,30(3):34-37.
    [16]孟杰,陈小安,合烨.高速电主轴电动机—主轴系统的机电耦合动力学建模[J].机械工程学报, 2007, 43 (12):160-165.
    [17]吕浪,熊万里,黄红武等.超高速磨削SPWM电主轴系统机电耦合振动的瞬态特性研究[J].精密制造与自动化,2006(1):13-16.
    [18]李劼科.高速大功率全支承空气静压主轴动静态特性的有限元分析与实验研究[D].广州:广东工业大学,2005.
    [19]金明光.高速电主轴设计与动静态特性分析[D].长春:吉林大学,2009.
    [20]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1995.
    [21]冯垛生,曾岳南.无速度传感器矢量控制原理与实践[M].北京:机械工业出版社,1998.
    [22]栾景美.超高速加工机床用电主轴及其矢量控制方法研究[D].长沙:湖南大学,2003.
    [23]陈燕林.高频电主轴系统电机参数设计及其优化方法研究[D].西安:西安建筑科技大学,2004.
    [24]汤天浩.电机与拖动基础[M].北京:机械工业出版社,2004.
    [25]张燕宾.变频器应用教程[M].北京:机械工业出版社,2007.
    [26] Dhaouadi Rached,Ghorbel Fathi H,Gandhi Prasanna S.A new dynamic model of hysteresis in harmonic drives[J].IEEE Transactions on Industrial Electronics,2003,50(6):1165-1171.
    [27]周渊深.感应电动机交-交变频调速系统的内模控制技术[M].北京:电子工业出版社,2005.
    [28] G.Tadmor.Control of a combined GTO/IGBT drive system for low torque ripple in a large permanent magnet synchronous motor[J].IEEE Transactions on Control Systems Technology,2004,12(1):21-35.
    [29] Yong Li,Ji Bin Zou,Yong Ping Lu.Optimum Design of Magnet Shape in Permanent-magnet synchronous motors[J].IEEE Transactions on Magnetics,2003,39(6):3523-3526.
    [30] J.R.Brauer,I.D.Mayergoyz.Finite-element computation of nonlinear magnetic diffusion and its effects when coupled to electrical,mechanical,and hydraulic systems[J].IEEE Transactions on Magnetics,2004,40(2):537-540.
    [31] Frederickson, Paul, Grimes, David. Optimizing motor technology for spindle applications [J]. Motion System Design, 2004, 46(11):24-32.
    [32] Muhammed Fazlur Rahman.A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor[J].IEEE Transactions on Energy Conversion,2003,18(1):17-22.
    [33]曹玉璋.传热学[M].北京:北京航空航天大学出版社,2001.
    [34]赵春江,王建梅,黄庆学,等.高速滚珠轴承动态特性求解的沟道控制理论修正[J].农业机械学报, 2009, 40(5): 199-202.
    [35] J.J?drzejewski, Z.Kowal, W.Kwa?ny, et al. High-speed precise machine tools spindle units improving[J]. Materials Processing Technology, 2005,162-163:615~621.
    [36] Wasawat Nakkiew, Chi-Wei Lin, Jay F Tu. A new method to quantify radial error of a motorized end-milling cutter/spindle system at very high speed rotations[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 877-889.
    [37] Burton R A, Staph H E. Thermally activated seizure of angular contact bearing[J]. ASLE Trans, 1967, 10: 408-417.
    [38]解文志.高速电主轴动静态特性的有限元分析[D].哈尔滨:哈尔滨工业大学,2006.
    [39]王硕桂,严红日.高速电主轴端部跳动对电主轴横向振动的影响[J].机械研究与应用, 2004, 17(5):38-39.
    [40]杨光,程胜文.高速转子动力学研究[J].武汉理工大学学报(信息与管理工程版),2002,24(2):119-121.
    [41]张庆春,邢涛,李国栋等.电磁轴承磨床电主轴控制器的研究[J].机械工程学报,2006,42(11):168-172.
    [42] Xiong, W.L. ; Lu, M.Z.; Huang, H.W;et al.A method of monitoring large power grinding by using the current signal of the motorized spindle[J]. Key Engineering Materials, 2004,259-260: 338-341.
    [43] LU Lang , XIONG Wanli , GAO Hang.Mechanical-electric coupling dynamical characteristics of an ultra-high speed grinding motorized spindle system[J].Chinese Journal of Mechanical Engineering (English Edition),2008,21(5):34-40.
    [44]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程, 2005, 16(10):864-868.
    [45]吴玉厚.数控机床电主轴单元技术[M].机械工业出版, 2006.
    [46]徐宝信,张安琪,谭祯.国内外超高速主轴轴承技术发展研究[J].机械设计与制造, 2005, 5:91-93.
    [47] Eksn I,Guzelkaya M,TOKAT S.Self-tuning mechanism for sliding surface slope adjustment in fuzzy sliding mode controllers[J].Proc Instn Mech Engrs,Part I:J System and Control Engineering,2002,216:393-406.
    [48]李东伟,杨光,刘秀娟.高速加工机床主轴支承系统的研究[J].机械研究与应用, 2006, 19(6):12-13.
    [49] Lixin Tang,Rahman M.F.A novel proportional-integral stator resistance estimator for a direct torque controlled interior permanent magnet synchronous machine drive[J].IEMDC,2003,(1):382-388.
    [50] G.D. Hagiu, M.D. Gafitanu. Dynamic characteristics of high speed angular contact ball bearings[J]. Wear, 1997, 211:22-29.
    [51] Sun-Min Kim, Kang-Jae Lee, Sun-Kyu Lee. Effect of bearing support structure on the high- speed spindle bearing compliance[J]. Machine Tools & Manufacture, 2002, 42:365-373.
    [52] L. Wang, R.W. Snidle, L. Gu. Rolling contact silicon nitride bearing technology: a review of recent research[J]. Wear, 2000, 246:159-173.
    [53] Igor Zverv, Young-Shik Pyoun, Keon-Beom Lee, et al. An elastic deformation model of high speed spindles built into ball bearings[J]. Materials Processing Technology, 2005, 170: 570-578.
    [54] Cheng-Ying Lo, Cheng-Chi Wang, Yu-Han Lee. Performance analysis of high-speed spindle aerostatic bearings[J]. Tribology International, 2005, 38:5-14.
    [55]肖曙红,张伯霖,陈焰基等.高速电主轴关键技术的研究[J].组合机床与自动化加工技术, 1999, 12:5-10.
    [56] Cheng-Hsien Wu, Yu-Tai Kung. A parametric study on oil/air lubrication of a high-speed spindle[J]. Precision Engineering, 2005, 29:162-167.
    [57] S.H. Yeo, K. Ramesh, Z.W. Zhong. Ultra-high-speed grinding spindle characteristics upon using oil/air mist lubrication[J]. Machine Tools & Manufacture, 2002, 42:815-823.
    [58] K. Ramesh, S.H. Yeo, Z.W. Zhong, et al. Ultra-high-speed thermal behavior of a rolling element upon using oil-air mist lubrication[J]. Processing Technology, 2002, 127:191-198.
    [59] Atsumi T,Arisaka T,Shimizu T,et al.Head-positioning control using resonant modes in hard disk drives[J].IEEE/ASME Transactions on Mechatronics,2005,10(4):378-384.
    [60]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社, 2003.
    [61]钟掘,陈先霖.复杂机电系统耦合与解耦设计——现代机电系统设计理论的探讨[J].中国机械工程, 1999, 10(9):1051-1054.
    [62]梁薇. CM04平整机振动测试及其机电耦合分析[D].长沙:中南工业大学, 1999.
    [63]张钢.磁悬浮轴承—转子系统的机电耦合动力学研究[D].西安:西安交通大学, 1999.
    [64]郭立炜,赫苏敏,傅占稳.旋转电机的机电耦合电路[J].河北科技大学学报, 2000, 21 (1):77-80.
    [65]熊万里,段志善,闻邦椿.用机电耦合模型研究转子系统的非平稳过程[J].应用力学学报, 2000, 17(4):7-12.
    [66]贺尚红,段吉安,钟掘.机电系统通用建模矩阵法[J].中南工业大学学报, 2002, 33(5): 517-521.
    [67]贺建军.复杂机电系统机电耦合分析与解耦控制技术[D].长沙:中南大学, 2004.
    [68]李旭宇.复杂机电耦合系统的并行设计方法研究[D].长沙:中南大学, 2004.
    [69]岳东鹏.轻度HEV混合动力系统轴系机电耦合动力学特性的研究[D].天津:天津大学, 2005.
    [70]吕浪.超高速磨削电主轴系统机电耦合参数优化及动态特性研究[D].长沙:湖南大学, 2006.
    [71]蔡海翔.基于变频器性能匹配的高速异步型电主轴设计方法研究[D].长沙:湖南大学, 2006.
    [72]汤蕴璆.电机学——机电能量转换[M].北京:机械工业出版社, 1981.
    [73]廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望[J].中国机械工程, 1996, 7(2):44-46.
    [74]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报, 2002, 33 (5):522-525.
    [75] Tsuneo Kume, Toshihiro Sawa, Toshitaka Yoshida, et al. High speed vector control without encoder for a high speed spindle motor[J]. Industry Applications Society Annual Meeting, 1990, 1:390-394.
    [76] A.Boglietti, P.Ferraris, M.Lazzari, et al. About the design of very high frequency induction motors for spindle applications[J]. Industry Applications Society Annual Meeting, 1992, 1:25-32.
    [77] Tang H P, Wang D Y, Zhong J. Investigation into the electromechanical coupling unstability of a rolling mill[J]. Journal of Materials Processing Technology, 2002, 129: 294-298.
    [78] János Füzi. Strong coupling in electromechanical computation[J]. Magnetism and Magnetic Materials, 2000, 215.216:746-748.
    [79] PHAM T H, WENDLING P F, SALON S J, et al. Transient finite element analysis of an induction motor with external circuit connections and electromechanical coupling[J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1407-1412.
    [80] H.P.Tang, D.Y.Wang, J.Zhong. Investigation into the electromechanical coupling unstability of a rolling mill[J]. Materials Processing Technology, 2002, 129:294-298.
    [81] A.Boglietti, P.Ferraris, M.Lazzari, et al. Test procedure for very high speed spindle motors[J]. Industry Applications Society Annual Meeting, 1990, 1:102-108.
    [82] Tan H. Pham, Philippe F. Wendling, Sheppard J. Salon, et al. Transient Finite Element Analysis of an Induction Motor with External Circuit Connections and Electromechanical Coupling[J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1407-1412.
    [83] S. Vafaei, H. Rahnejat, R. Aini. Vibration monitoring of high speed spindles using spectralanalysis techniques[J]. Machine Tools & Manufacture, 2002, 42:1223-1234.
    [84]田华.数控机床高速电主轴结构设计及其性能分析[D].成都:四川大学,2006.
    [85] Lu, Z.S. ; Ma, B.H. Research on key technology of hydrostatic motorized spindle and it's designing [J]. Key Engineering Materials, 2009,392.394: 439-442.
    [86] CHEN Jenq-Shyong , HWANG Yii-Wen.Centrifugal force induced dynamics of a motorized high-speed spindle[J]. International Journal of Advanced Manufacturing Technology,2006,30(1.2):10-19.
    [87] Chang CF (Chang,Ching-Feng),Chen JJ (Chen,Jin-Jia). Vibration monitoring of motorized spindles using spectral analysis techniques[J]. Mechatronics,2009,19(5):726–734.
    [88] HAN Fengtian; WU Qiuping; ZHANG Rong .Modeling and Analysis of a Micromotor with an Electrostatically Levitated Rotor[J]. Chinese Journal of Mechanical Engineering,2009,22(1):1-8.
    [89] Lin Chi-Wei. Design parameter sensitivity analysis of high-speed motorized spindle systems considering high-speed effects[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007, p 2087.2092, 2007.
    [90] C. H. Chen, K. W. Wang, Y. C. Shin. An Integrated Approach toward the Modeling and Dynamic Analysis of High Speed Spindles, Part I: System Model[J]. Vibration and Acoustics, 1994, 116: 506-513.
    [91] C.H. Chen, K.W. Wang. An Integrated Approach toward the Modeling and Dynamic Analysis of High Speed Spindles, Part II: dynamics under moving end load[J]. Vibration and Acoustics, 1994, 116: 514-522.
    [92]邱家俊.机电分析动力学[M].北京:科学出版社, 1992.
    [93]朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究, 2005, 21:28-30.
    [94]杨志安,邱家俊,李文兰.发电机转子气隙磁非线性耦合振动分析[J].振动工程学报, 2000, 13(2):170-177.
    [95]邱家俊.电机的机电耦联与磁固耦合非线性振动研究[J].中国电机工程学报, 2002, 22 (5):109-115.
    [96]李松生,张朝煌,李中行等.轴承套圈内表面磨削用高速电主轴的加载试验[J].轴承, 1996, 4:35-38.
    [97]李茂森.动力试验与测功机技术[J].电机与控制应用, 2006, 9:43-45.
    [98]袁先达.小功率测功机国内外现状及发展趋势[J].电动工具, 1997, 3:9-13.
    [99]洪荣华.高速永磁同步电主轴的设计及热态特性研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [100]何湘吉.双气浮轴承高速无刷同步测功机研制[J].电机电器技术,1994, 3:15-17.
    [101]林立,黄声华.基于矢量控制的高性能异步电机速度控制器的设计[J].电子技术应用, 2006, 2: 102-105.
    [102]张锦舟.新型异步测功机测试系统[J].电动工具, 2004, 1:21-29.
    [103]何惠平.全数字测功机控制系统[J].电气传动自动化,2001.
    [104] Hongqi Li, Yung C. Shin. Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 1: Model Development[J]. Manufacturing Science and Engineering, 2004, 126:148-158.
    [105] Hongqi Li, Yung C. Shin. Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 2: Solution Procedure and Validations [J]. Manufacturing Science and Engineering, 2004, 126:159-168.
    [106]张珂;徐湘辉;王利杰等. PMAC2下高速电主轴直接转矩控制系统设计[J].沈阳建筑大学学报(自然科学版),2006,23(4):691-695.
    [107]周志刚.一种感应电机的解藕控制方法[J].中国电机工程学报,2003,23(2):121-125.
    [108]李擎,杨立永,李正熙等.异步电动机定子磁链与电磁转矩的逆系统解耦控制方法[J].中国电机工程学报,2006,26(6):146 -150.
    [109]周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475-482.
    [110]靳其兵,袁琴.双输入双输出过程解耦内模控制[J].控制工程,2009,16(1):5-11.
    [111] Iioka, Daisuke , Mori, Kenichiro , Yokomizu, Yasunobu ,et al.Load current model of electric apparatus based on load voltage characteristics during voltage sag[J]. IEEJ Transactions on Power and Energy,2007,127(7):840-846.
    [112] Korunovic, L.M.,Stojanovic, D.P.; Milanovic, J.V. Identification of static load characteristics based on measurements in medium-voltage distribution network[J]. IET Generation, Transmission and Distribution,2008,2(2):227-234.
    [113] Lu, Z.S. ; Ma, B.H. Research on key technology of hydrostatic motorized spindle and it's designing [J]. Key Engineering Materials, 2009,392.394: 439-442.
    [114]张岳,王凤翔.无刷双馈电动机的双馈运行特性实验研究[J].微特电机,2009,42(1):5-7.
    [115] Shinji Shinaka.A New Position-Sensorless Position Control Method for High-Speed Spindle Systems[J]. Electrical Engineering in Japan,2002,141(3):58-69.
    [116] Juan Luis Zamora,Aurelio Garcha-Cerrada.Online estimation of staor parameters in an induction motor using only voltage and current measurements[J]. IEEE Transactions on industry applications,2000,36(3):805-816.
    [117]邹旭东,朱鹏程,康勇等.基于电压解耦原理的感应电机无速度传感器矢量控制[J].中国电机工程学报,2005,25(14):98-102.
    [118]陈硕,迁峰男,山田英二.感应电机无速度传感器矢量控制系统的定子电阻在线辨识[J].中国电机工程学报,2003,23(2):88-92.
    [119] Maes J,Melkebeek J A.Speed-sensorless direct rotuqe control of induciotn motors usting an adaptive fluxe observer[J]. IEEE Transactions on Industry Applications,2000,36(3):778-785.
    [120] Bruzzese C,Honorati O,Santini E,et al.New rotor fault indicators for squirrel cage induction motors[C].IEEE Industry Applications Society,Tampa,USA,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700