基于DSP的砂轮动平衡测控系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在磨床上,砂轮不平衡不仅会引起磨床的振动和噪声,严重影响磨削质量和精度的提高,还会加速主轴及轴承的磨损,严重影响磨床使用寿命。在精密数控加工生产过程中,日益要求解决动平衡影响加工精度的问题。
     文章首先分析了砂轮不平衡量产生的机理和原因,获得不平衡信号的一般特征,为小波分析中小波基的选择奠定了基础。接下来采用计算机仿真分析的方法对现场采样数据进行了小波分析,很好的提取重构出了不平衡振动信号。本文在对平衡头内部结构和原理分析的基础上,建立了平衡头的数学模型。在此基础上把时间最优控制算法引进到砂轮动平衡控制系统中。仿真结果表明:该算法有效地减小了调节时间和超调量,改善了控制效率和精度。本文在广泛了解和借鉴国内外先进技术的基础上,设计了一种新型的砂轮动平衡测控系统。本系统以TMS320LF2407处理器作为核心控制芯片,用磁电式速度传感器检测砂轮旋转时的不平衡振动量,以光电传感器测量的砂轮转速作为基准信号,用DB10小波基小波分析方法对振动信号进行提取重构,采用时间最优控制算法控制高速旋转的砂轮平衡头内的双永磁直流电动机,带动双偏心齿圈改变重心位置,实现对不平衡振动量的平衡补偿。
     本系统采用模块化和结构化方法设计系统的硬件和软件,最终形成完整的砂轮动平衡测控系统,并在外圆磨床上完成台架试验。实验结果显示本系统能很好的提取出不平衡信号,并能显著削减砂轮不平衡引起的振动,平衡时间也达到了预定目标。
In the grinder, grinding wheel imbalance will not only cause the vibration and noise, serious impact on the improvement of quality and precision grinding, but also speed up the spindle and bearing wear, seriously affecting the grinding life. In precision CNC machining process, the increasing demand for dynamic balancing of precision to resolve the issue.
     The article first analyzes the wheel mechanism and the resulting unbalance causes unbalanced signal to obtain the general characteristics of wavelet bases for the wavelet analysis will lay the foundation. Then the method by computer simulation analysis conducted on-site sampling data wavelet analysis, the extraction well reconstructed the unbalance vibration signals. In this paper, head of the internal structure and principle of balance based on the analysis, the establishment of a balancing head of the mathematical model. On this basis, the introduction of the time optimal control algorithm to the wheel balancing control system. The simulation results show:that the algorithm effectively reduces the settling time and overshoot, improved control efficiency and accuracy. Based on the extensive understanding and learn from the advanced technology based on the design of a new type of wheel balancing control system. The system as a core control chip TMS320LF2407 processor, with the magnetic-electric sensors to detect wheel rotation speed of the imbalance vibration to the wheel speed optical sensor as the reference signal, with DB10 wavelet wavelet analysis to extract the vibration signal reconstruction, using the time optimal control algorithm for high-speed rotation of the wheel balance control within the first two-motor, driven double eccentric gear ring to change the center of gravity to achieve balance between the amount of unbalance vibration compensation.
     The system is modular and structured approach to design hardware and software, and ultimately form a complete wheel balancing control system, and to complete the bench in the cylindrical grinder. Experimental results show that the system can extract a good signal imbalance, and can significantly reduce the vibration caused by unbalanced wheels, balance time to reach the intended target.
引文
[1]尤文,马海涛,贾文超.砂轮动平衡测控系统的建模与分析[J].计算机测量与控制,2006(8).
    [2]马海涛,尤文,贾文超.一种基于重块平衡原理的砂轮动平衡系统建模方法[J].长春工业大学学报,2006(1).
    [3]曲磊,韩顺杰,王蔚.基于时间最优控制的砂轮动平衡测控系统的研制[J].气象水文海洋仪器,2006(4).
    [4]李勇,王靖,陆永平.高速转子自动平衡头的研究现状及发展趋势展望[J].振动测试与诊断,1998(12).
    [5]卢奂采.转子振动的前馈自学习控制[J].振动工程学报,1998,11(3):310-316.
    [6]杨小红,贾文超,尤文,赵金宇.砂轮振动信号的小波分析算法[J].计算机测量与控制,2004(12).
    [7]章璇,唐云冰,罗贵火.最小二乘影响系数法的优化改进[J].南京航空航天大学学报,2005,37(1):111-113.
    [8]贺世正.释放液体式自动平衡头的研究[J].浙江大学学报(工学版),2001,35(4):418-422.
    [9]薛迎成,潘俊民,潘志扬.基于DSP永磁无刷直流电动机位置伺服系统[J].仪表技术与传感器,2001(7):27-29.
    [10]曲里强,张锐.砂轮自动动平衡装置[J].轴承,1998(10).
    [11]唐一科,彭浩,李文清.基于DSP的高速转子动平衡测试系统的转速测试法[J].重庆大学学报(自然科学版),2006,4(4).
    [12]Mallat S. Theory for Multi-resolution Signal Decomposition:The Wavelet RePresentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(3):674-693.
    [13]Geronimo J., Hardin DP., Massopust P., Fractal functions and wavelet expansions based on several scaling functions[J]. Approx Theory,1994,78(2):373-401.
    [14]Dowine T R, Silverman B W. The discrete multiple wavelet transformand thresholding methods[J]. IEEETransSP,1998,46(9):2558-2561.
    [15]Ildar Khalidov and Michael Unser, Form Differential Equations to the Construction of New Wavelet-Like Bases[J]. IEEE Transactions On Signal Processing,2006,54(4).
    [16]贾文超,尤文,林晓梅等.基于整周期自适应采样的砂轮不平衡量分析[J].仪器仪表学报,2004,1(6).
    [17]刘国繁,熊维国.片机在动平衡测量中的应用[J].工业仪表与自动化装置, 2000(4):33-35.
    [18]杨克己.基于DSP的数字式动平衡测量系统及其关键技术的研究[J].仪器仪表学报,2005,26(8):461-462.
    [19]HansErnst. Automatic Precision Balancing[J]. Machine Desig,1995,67(1):107-114.
    [20]S.Bejerke. Digital signal processing solutions for motor control using the F240 DSP controller[J]. ESIEEE, Paris,1996,46(4):865-896.
    [21]孙宝东.高速转子自动平衡技术的研究[D].哈尔滨:哈尔滨工业大学,1995.
    [22]潘纪根,舒勤勤.周礼彬.SBS全自动磨床砂轮在线动平衡系统在轧辊磨床的应用[J].宝钢技术,1997(2):10-12.
    [23]郑建彬.基于DFT的动平衡机不平衡量提取算法[J].武汉理工大学学报(交通科学与工程版),2002,26(3):319-320.
    [24]Kellen berger W. Should A Flexible Rotorbe Balanceing in Nor(N+2) Planes, Tran.of ASME[J]. J.of Engineering for Industry,1972,94(2):554-560.
    [25]S J Rothberg and N A Halliwell. Vibration Measurements on Rotating Machinery Using Laser Doppler Velocimeter[J]. Trans ANSEJ of Vibration and Acoustics,1994, 116(3):326-331.
    [26]SmalleyAJ, SprayWR. Automated Balancing of Rotors:Concept and Initial Feasibility Study[J]. J.of Engineering for Gas Tur-binesand Power,1989,111(4): 659-665.
    [27]刘进明,应怀樵.FFT谱连续细化分析的傅立叶变换法[J].振动工程学报,1995,8(1):162-166.
    [28]罗良玲,胡容华.互相关技术在动平衡测试中的应用[J].南昌大学学报(工科版),2000,22(4):25-28.
    [29]张毅刚,赵光权等.DSP原理、开发与应用[M].哈尔滨工业大学出版社,2006.
    [30]顾绳谷.电机及拖动基础[M].机械工业出版社,2006.
    [31]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].电子工业出版社,2005:238-258.
    [32]张明照,刘政波,刘斌等.应用MATLAB实现信号分析和处理[M].科学出版社,2006.
    [33]胡寿松,王执铨,胡维礼.最优控制理论与系统[M].科学出版社,2005:330-340.
    [34]薛定宇.控制系统仿真与计算机辅助设计[M].机械工业出版社,2005.
    [35]蒋红琰.高速电主轴在线动平衡补偿技术研究[D].中北大学,2008.
    [36]欧阳红兵,曾胜,汪希萱.转子系统在线动平衡综述及展望[M].机械强度出版社,1997.
    [37]魏杰.逆压电效应在微型机械转子动平衡中的应用研究[D].沈阳:沈阳工业大学, 2007.
    [38]葛哲学.刚性转子自动平衡系统研究[D].国防科学技术大学,2007.
    [39]杨晓红.不平衡量信号的精密谱分析及其在砂轮动平衡测控仪中的应用[D].长春光学精密机械与物理研究所,2005.
    [40]Goodman TP. A Least-squares Method for Computing Balancing Correction, Transaction of the American Socirty of Mechanical ngineers[J]. J. of Engineering for Industry,1964,86(3):273-279.
    [41]A.J.Koshkouei, K.J.Burnham, A.S.I.Zinober. Dynamic sliding mode control design[J]. IEE Proc.-Control Theory Appl.,152(4), July 2005.
    [42]ArieLevant. Quasi-Continuous High-Order Sliding-Mode Controllers[J]. IEEE Transtions on automatic control,50(11), November 2005.
    [43]Arie Levant. Homogeneity approach to high-order sliding mode design[J]. Automatica 2006(41):823-830.
    [44]Hyun-Sik Kim, Yong-Ku Shin. Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control[J]. Ocean Engineering, Volume 34, Issues 8-9, June 2007,1080-1088.
    [45]张志新.智能整机动平衡仪中基准信号的提取与处理[J].风机技术,2003(3):50-53.
    [46]白志刚,唐贵基.一种转子动不平衡信号幅相特征的提取方法[J].电力科学与工程,2002(4):69-70.
    [47]张志新,童水光.智能动平衡仪中转速测量方法研究[J].流体机械,2002,30(9):32-34.
    [48]J. Stephant, A. Charara, D. Meizel. Evaluation of a sliding mode observer for vehicle sideslip angle[J]. Control Engineering Practice, Volume 15, Issue 7, July 2007, 803-812.
    [49]Yue-Qing Yu, Bin Jiang. Analytical and experimental study on the dynamic balancing of flexible mechanisms. Mechanism and Machine Theory, Volume 42[J]. Issue 5, May 2007,626-635.
    [50]Chyuan-Yow Tseng, Ting-Wei Shih and Jun-Tsun Lin. Dynamic balancing scheme for motor armatures[J]. Journal of Sound and Vibration,In Press, Corrected Proof, Available online 20 April 2007.
    [51]韩顺杰.基于支持向量机的工程车辆自动变速方法研究[D].吉林:吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700