旋转探头棒材超声检测系统的工艺研究及动力学仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文围绕高速旋转多探头超声检测系统的开发进行研究。在对国内外棒材超声波检测技术的现状和发展趋势进行综合分析和比较的基础上,提出了针对棒材不同缺陷的超声波检测方案,同时详细说明了系统设计的基本原理和一些关键技术,并对棒材检测系统进行了动力学仿真。
     该系统利用水浸法超声检测,结合超声波的垂直入射纵波法和斜入射横波法,对棒材及其表面和近表面的轴向和横向缺陷进行检测。系统采用水浸聚焦探头进行检测,探头高速旋转,探头的超声波信号通过一个旋转耦合电容传送到检测仪器。
     在超声检测系统设计过程中,由于采用探头高速旋转的方式实施检测,检测系统的动平衡对系统性能有非常重要的影响。本文利用Pro/E对系统的各个零部件进行建模,通过MECHANISM/Pro将装配模型导入ADAMS软件。利用ADAMS/Auto Flex将转轴由刚性体转换成柔性体,并将柔性体导入到模型,并且对检测系统模型进行动力学仿真分析。通过对检测系统的平衡性仿真,得到仿真结果,并分析讨论仿真结果,探讨了检测系统由平衡性而引起的问题,为后续检测系统的设计开发提供理论基础。
The High speed multi-probe ultrasonic testing system has been researched in this paper. Based on the generalized analysis to the development and tendency of domestic and abroad related technology, some ultrasonic testing methods for different defects were described in this paper. Simultaneously, the detailed principle of design and some essential technologies were presented.
     Water immersion ultrasonic testing method were used to in this system to test the bar. We use ultrasonic longitudinal wave and shear waves methods to test different defects in the bar. Water immersion focusing probes are used in this system, and the signal was transferred by rotary capacitors to the test instrument.
     High-speed rotary probes were used to test the defects by the bar detection system. And dynamic balance of the system is very important. A simulation model was established by Pro/Engineer. Then the simulation model was imported to ADAMS project software by using the interface module of Mech/Pro. The model was simulated by ADAMS. The problems that caused by the dynamic balance of the system will be discussed in this paper, and theoretical results will be provided for further design.
引文
[1]舒飏.无缝钢管超声检测实验系统的研制与开发.硕士学位论文.浙江大学.2006
    [2]杨辰龙,周晓军,吴瑞明.棒材缺陷超声自动检测系统的研制.机床与液压.2005,No.9:112-113.
    [3]Walker JL. Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels. Materials Evaluation.1997,55:903-907.
    [4]朱根兴,周晓军,黄中原,伍建国.棒材一体化超声检测系统研制.控制与检测.2008,5:55-57.
    [5]张武翔.棒材自动无损检测系统的研究.硕士学位论文,华中科技大学.2004.
    [6]刘京州,陈百锁,马小怀.大直径钛棒材超声自动探伤系统研制金属学报,.2002,38:691-693.
    [7]陈文革,魏劲松.超声无损检测的应用研究与进展.无损探伤.2001,04:50-53.
    [8]韩鹏.环形阵列超声检测仿真技术研究.硕士学位论文,中北大学.2010.
    [9]Kivanc Ekici, Kenneth C. Hall, Earl H. Dowell. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors. Journal of Computational Physics.2008,227:6206-6225.
    [10]张华明.钢棒纵向裂纹磁性检测方法及应用研究.硕士学位论文.华中科技大学.2005.
    [11]施钢,王建德.管材超声波水浸探伤工艺参数的选定.无损检测.1994,16:19-20.
    [12]彭应秋,叶全泽,符艳.高温合金小直径棒材超声检测新方法探讨.南昌航空工业学院学报.1999,6:18-22.
    [13]尹玲.棒材超声波自动探伤系统的研制.学位论文重庆大学.2006.
    [14]Sin sk, Chi Hua Chen. A comparison of disconsolation techniques the ultrasonic nondestructive evaluation of materials. IEEE Transactions on Image Processing.1992,01.
    [15]Zhr Y, Weight J P. Ultrasonic nondestructive evaluation of highly scattering materials using adaptive filtering and detection. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control.1994,41:26-33.
    [16]N. J. Churi, Z. J. Peis. Rotary Ultrasonic Machining Of Titanium Alloy:Effects Of Machining Variable. Machining Science and Technology.2006,10:301-321.
    [17]Renaldas Raisutis. Application of ultrasonic guided waves for non-destructive testing of defective CFRP rods with multiple delaminations. NDT&EInternational.2010,43:416-424.
    [18]Anish Kumar, T. Jayakumar, P. Palanichamy. Influence of grain size on ultrasonic spectral parameters in AISI type 316 stainless steel. Scripta materialia.1999,40:333-340.
    [19]Baugh. Ultrasonic Aimed at First-Time User. Welding and Metal Fabrication.1981,9: 539-541.
    [20]J.Booguard, Evan Wersch. Ultrasonic testing of tube-to tube sheet welds, Materials and Corrosion Research Department. DSM.1985,13:34-37.
    [21]A. McCrea, D. Chamberlain, R. Navon. Review Automated inspection and restoration of steel bridges-a critical review of methods and enabling technologies. Automation in Construction.2001,351-373.
    [22]朱宝根.超声波在小口径薄壁管材探伤中的应用.上海有色金属.1997,18:142-144.
    [23]张利,杨建伟,程辉,张磊.超声波水浸探伤中探头距工件的最佳距离及调整.轻合金加工技术.2006,30:47-48.
    [24]武金楼.超声探伤检查圆棒料缺陷.材料开发与应用.1995,10:40-43.
    [25]霍岩.独立分量分析在超声波检测信号处理中的应用.硕士学位论文,哈尔滨理工大学.2008.
    [26]王勇灵.SUJ2银亮钢棒近表面超声波探伤方法的研究.冶金分析.2004,24:622-625.
    [27]李滨徽.圆棒超声波探伤方法的讨论.黑龙江电力.2010,32:299-320.
    [28]郭伟灿,许辉庭,张拥军,刘仲强,李文利.圆柱曲界面对垂直入射法超声检测的影响分析.压力容器.2011,28:22-27.
    [29]张恒,吴扬宝,邹正烈.φ60~245mm无缝钢管超声波自动检测系统.无损检测.2003,25:291-293.
    [30]耿荣生.棒材自动化超声探伤时晶片排列方式的探讨.冶金分析.2004,24:631-632.
    [31]刘明,邓景珊,庄丽萍,王玉岭.锆合金棒超声波自动检测系统.无损检测.2005,2:87-90.
    [32]马铭刚,张企耀.锆合金棒超声波自动检测系统.无损检测.2005,27:87-99.
    [33]喻红根.管材超声水浸探伤干扰因素的分析.无损检测.1994,16:71-72.
    [34]戚励文,王召巴,金永,丁战阳.合金弹体棒状坯料超声检测方法研究.弹箭与制导学报.2009,4:269-272.
    [35]江健,周晓军,郭天太,吴思源.水浸式棒材超声检测成像系统的若干关键技术研究.传感技术学报.2006,19:163-165.
    [36]马小怀,赵喜目,张延生.钛台金大直径棒材超声检测方法研究.中日科协第五届青年学术年会陕西卫星会议.2005,148-151.
    [37]白仁昭.无缝钢管超声波自动检测系统研制.机电工程.2006,23:56-58.
    [38]戴利军.无缝钢管局部水浸探伤工艺参数的确定.无损探伤.1995,3:43-44.
    [39]刘清洋,殷国富,赵秀粉,周莉.小口径薄壁钢管水浸法超声波探伤系统研究.中国测试技术.2008,34:110-113.
    [40]史亦韦,梁菁.小直径棒材超声波双探头法探伤参数对结果的影响.无损检测.2002,38:663-666.
    [41]李劲松,叶琛,梅德松.超声波检测数据高速采集和传输技术的研究.无损检测.2003,8:395-398.
    [42]杨金岩,郑应强.一种用于超声波检测的高速数据采集卡.计算机自动测量与控制.2000,5:20-22.
    [43]蒋红琰.高速电主轴在线动平衡补偿技术研究.学位论文,中北大学.2008.
    [44]蒋红琰,黄中,浩程峰,王俊元.高速电主轴系统的在线动平衡及其仿真研究.制造技术与机床.2009,4:47-51.
    [45]Genta G, Delprete C, Busa E.Some. Considerations on the basic assumptions in rotor-dynamics. Journal of Sound and Vi bration.1999,3:227-229.
    [46]Shiyu Zhou, Jianjun Shi. Active Balancing and Vibration Control of Rotating Machinery:A Survey. The Shock and Vibration Digest.2001,33:361-371.
    [47]刘宏琴,王俊元.虚拟样机技术在电主轴动平衡中的应用.机械设计与制造.2010,5:86-88.
    [48]刘俊,林砺宗,刘小平,王刚.ADAMS柔性体运动仿真分析研究及运用.现代制造工程.2004,5:53-55.
    [49]王俊元,蒋红琰,杜文华.复合式高速电主轴在线动平衡装置的开发.中北大学学报(自然科学版).2007,28 491-495.
    [50]K.UCHINO, B.KOC, S.DONG. Conpact Ultrasonic Rotary Motors. Ferroelectrics. 2001,3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700